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Abstract— Wearable inertial systems have recently been used
to track human movement in and outside of the laboratory.
Continuous monitoring of human movement can provide valu-
able information relevant to individual’s level of physical ac-
tivity and functional ability. Traditionally, orientation has been
calculated by integrating the angular velocity from gyroscopes.
However, a small drift in the measured velocity leads to large
integration errors that grow with time. To compensate for that
drift, complementary data from accelerometers are normally
fused into the tracking systems using the Kalman or extended
Kalman filter (EKF). In this study, we combine kinematic
models designed for control of robotic arms with the unscented
Kalman filter (UKF) to continuously estimate the angles of
human shoulder and elbow using two wearable sensors. This
methodology can easily be generalized to track other human
joints. We validate the method with an optical motion tracking
system and demonstrate correlation consistently greater than
0.9 between the two systems.

I. INTRODUCTION

Measurement and analysis of human movement has many

applications including assessment of neurological movement

disorders, rehabilitation from injury, and enhancement of

athletic performance. Movement can be measured using a

wide variety of techniques and sensors. Wearable inertial

sensors enjoy the advantages of being simple, unobtrusive,

and self-contained. They are well suited to recording long-

term monitoring while the subject performs normal activities

of daily life at home. A typical wearable inertial sensor

is a compact wearable device that contains a triaxial ac-

celerometer and triaxial gyroscope. Fig. 1 shows an example

of Opal sensor (APDM, Inc., Portland, OR) used in this

study. Traditionally, the orientation of a body segment is

estimated by integrating the angular velocity measured by

gyroscopes, and position is obtained by double integration of

the translational acceleration measured by accelerometers. A

significant problem with integration, however, is that inac-

curacies inherent in the measurements quickly accumulate

in the integrated estimation, resulting in an unacceptable

levels of position error in as little as 10–60 s [1]. Roetenberg
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Fig. 1. Example of an Opal inertial sensor (APDM, Inc.).

showed that integration of gyroscope data resulted in a

drift between 10 − 25◦ after one minute [2]. One approach

to reducing integration drift is to fuse the gyroscope data

with complementary data from other sensors. Luinge et al.

estimated orientation by fusing gyroscope and accelerom-

eter data [3]. The difference between tilt computed from

gyroscope and that from accelerometer sensors was used as

an input to a Kalman filter to obtain a better tilt estimate.

The estimate was then combined with the rotation around

the vertical axis to produce a better orientation estimate.

However, the estimation was accurate for only brief periods

when the subject was not moving and when the acceleration

measurements were only due to gravity. Luinge et al. devel-

oped a method that used constraints in the elbow to measure

the orientation of the forearm with respect to the upper

arm [4]. They reported an average orientation error of 20◦.

Giansanti et al. combined gyroscopes with accelerometers

to track position and orientation during three tasks; stand-

to-sit, sit-to-stand and gait-initiation [5]. Estimation error

was minimal, however they restricted the application to short

periods of 4 s.

Bachmann et al. investigated the effect of electrical and

ferromagnetic materials on the accuracy of orientation track-

ing using a triaxial accelerometer, gyroscope and magne-

tometer sensors [6]. They observed errors that ranged from

12◦ to 16◦ and stated that these errors can be avoided by

maintaining an approximate distance of two feet from any

source of disturbance. This restricts the use of their tracking

system to custom laboratory environment. Yun et al. used a

quaternion-based EKF to track human body motion. A rotary

tilt table with two DOF’s was used to assess the performance



of the tracker [7]. The error for the pitch angle was not

reported, and an error of 9◦ in less than 2 s was obtained

for the roll angle. Zhou et al. successfully estimated elbow

orientation using inertial sensors mounted on the wrist and

elbow joints. They integrated the rotational rate to localize

the wrist and elbow, and smoothed the abrupt amplitude

changes to reduce overshoots of the inertial measurement

due fast movements to reduce error in position estimation.

They attained a high correlation between position estimates

from the inertial tracker and estimates from a reference

optical tracking system, ≥ 0.91. However, all the reported

correlations were not statistically significant [8].

In this paper we combine kinematic models designed

for control of robotic arms with state space methods to

directly estimate human joint angles of a multi-segment

limb. Estimated joint angles are computed from measured

inertial data as a function of time in a single step using

a nonlinear state space estimator. The estimator utilizes

the unscented Kalman filter which incorporates state space

evolution equations based on a kinematic model of the multi-

segment limb. The proposed algorithm can be applied to any

combination of sensors to track any limb movement in either

real-time or off-line processing mode with higher accuracy

for slow and fast motion with a minimal number of sensors.

II. THEORY

In the analysis and control of robotic manipulators, a robot

arm is normally represented as a sequence of links connected

by joints [9]. This convention has also also been successfully

applied in addressing human motion and is based upon

characterizing the configuration between consecutive links

by a transformation matrix. If each pair of consecutive links

is related via a matrix, then using the matrix chain-rule

multiplication, it is possible to relate any segmental link (e.g.,

between the wrist and elbow) to another (e.g., between the

elbow and shoulder).

To obtain a systematic method for describing position and

orientation of each pair of consecutive links, we generate

a transformation matrix between the links using the De-

navit and Hartenberg (D-H) method, starting with attaching

frames or coordinate systems to each link [10]. Each frame

{Xi, Yi, Zi} is then related to the previous one using a 4×4
homogeneous transformation matrix. This matrix depends on

four parameters associated with each link. The first parameter

is the link length ai which is the distance from Zi to Zi+1

measured along the Xi axis. The second parameter is the

link twist αi which is the angle from Zi to Zi+1 measured

about the Xi axis. The distance from Xi−1 to Xi measured

along the Zi axis is known as the link offset di. The fourth

parameter is the joint angle θi, which is the angle from Xi−1

to Xi measured about the Zi axis.

A. Link Transformations

Four transformations are needed to relate the ith frame

to its neighboring (i − 1)th frame. First, rotate about Xi an

angle αi−1 to make the two coordinate systems coincide.

Next, translate along Xi a distance ai−1 to bring the two

origins together. Third, rotate about Zi an angle θi to align

Xi and Xi−1. Finally, translate along Zi a distance di−1

to bring Xi and Xi−1 into coincidence. Each of these

four operations can be expressed by a basic homogeneous

rotation-translation matrix and the product of these four

transformation matrices yields a composite matrix i−1
i T ,

known as the D-H transformation matrix which defines frame

i to its adjacent i − 1

i−1
i T =








c(θi) −s(θi) 0 ai−1

s(θi)c(αi−1) c(θi)c(αi−1) −s(αi−1) −s(αi−1)di

s(θi)s(αi−1) c(θi)s(αi−1) c(αi−1) c(αi−1)di

0 0 0 1









where s(αi−1) = sin(αi−1), c(θi) = cos(θi), etc.

B. Shoulder and elbow joint angle tracker example

As an example, we present a model for forearm move-

ment with shoulder and elbow joints. Fig. 2 shows the

base reference frame 0 at the center of the shoulder joint.

Frames 1 through 3 represent shoulder flexion/extension, ab-

duction/adduction and internal/external rotation, respectively.

Frames 4 through 5 represent the elbow flexion/extension and

pronation/supination of the forearm. The two inertial sensors

are placed near the wrist and on the upper arm between the

shoulder and elbow as shown in Fig. 3. Table I shows the

Fig. 2. Kinematics diagram of the arm model with Frame 0 as the
reference fame. Frames 1 through 3 represent shoulder flexion/extension,
abduction/adduction and internal/external rotation, respectively. Frames 4
through 5 represent the elbow flexion/extension and pronation/supination.

D-H parameters, where αi−1 is the angle to rotate to make

the two coordinate systems coincide, the length of the upper

arm lu, is the distance from Z3 to Z4 along the X4 axis, lf is

the length of the forearm, and θi is the ith angle of rotation.

C. Velocity and acceleration propagation from link to link

At any instant, each link of the arm in motion has some

linear and angular velocity. The linear velocity is that of

the origin of the frame. The angular velocity describes the

rotational motion of the link. The velocity of link i + 1 is



Fig. 3. Subject performing elbow flexion, with one inertial sensor attached
with a black band on the wrist and another on the upper arm. Ten reflective
markers were attached to the arm, and three were attached to the sternum.

TABLE I

DENAVIT-HARTENBERG PARAMETERS FOR THE ARM MODEL.

Frame αi−1 ai−1 di θi

1 0 0 0 θ1

2 - π

2
0 0 θ2

3 - π

2
0 0 θ3

4 π

2
lu 0 θ4

5 - π

2
0 lf θ5

that of link i plus the new velocity component added by joint

i + 1
iωi+1 = iωi + i

i+1R θ̇i+1
i+1Zi, (1)

where i
i+1R is the rotation matrix that relates frame i

to frame i + 1, and is use to represent added rotational

components due to motion at the joint in frame i. If we

multiply both sides of the equation by i+1
i R, we find the

description of the angular velocity of link i + 1 with respect

to frame i+1

i+1ωi+1 = i+1
i R iωi + θ̇i+1

i+1Zi+1

The linear velocity of the origin of frame i + 1 is the same

as that of the origin of frame i plus a new component caused

by the rotational velocity of link i

i+1vi+1 = i+1
i R(ivi + iωi × iPi+1)

where iPi+1 is the position vector of the frame i + 1 and is

the upper right 3× 1 vector of the D-H matrix. The angular

acceleration from one link to the next is

i+1ω̇i+1 = i+1
i R iω̇i+

i+1
i R iωi×θ̇i+1

i+1Zi+1+θ̈i+1
i+1Zi+1

The linear acceleration of each link frame origin is

i+1v̇i+1 = i+1
i R

[

iω̇i ×
iPi+1 + iωi × (iωi ×

iPi+1) + iv̇i

]

where the single and double dot notation is used to represent

first and second derivatives with respect to time. The rotation

matrices R can be obtained by taking the transpose of the

upper left 3 × 3 D-H transformation matrix, and the D-H

parameters shown in Table I. We initialize ω0 = ω̇0 =
(0, 0, 0)T , and v̇0 = (gx, gy, gz)

T , where g is gravity.

These equations are part of what is known as Newton-Euler

equations of motion. The are forward recursive equations that

propagate linear and angular velocity and acceleration from

the reference coordinate system to the last link.

D. State Space Model

Having defined the kinematic model of the arm, we now

formulate the relationship between the measured data and the

biomechanical states using a state space model. The general

discrete time statistical state-space model is of the form,

x(n + 1) = fn [x(n), u(n)] (2)

y(n) = hn [x(n), v(n)] (3)

where n is the discrete time index, x(n) is the unobserved

state of the system, y(n) is the observed or measured data,

fn[·] and hn[·] are nonlinear state and observation equations,

u(n) is process noise, and v(n) is an observation noise. Both

u(n) and v(n) are assumed to be white noise processes with

zero mean. The state model equations which describe the

evolution of the states with time are given by

θi(n + 1) = θi(n) + Tsθ̇i(n) +
1

2
T 2

s θ̈i(n) (4)

θ̇i(n + 1) = θ̇i(n) + Tsθ̈i(n) (5)

θ̈i(n + 1) = αθ̈i(n) + uθ̈i
(n) (6)

where i = {1, . . . , 5}, θi(n) is the ith angle at time n,

θ̇i(n) is the angular velocity of the ith angle at time n,

θ̈i(n) is the angular acceleration of the ith angle at time

n, uθ̈i
(n) is a white noise process with zero mean, α is a

process model parameter, and Ts = 1/fs is the sampling

period. These are standard equations for a physical object

traveling at a constant acceleration. In this case the model

assumes the acceleration is constant for the duration of a

sampling interval, which is short enough (approximately

8 ms) for this approximation to be sufficiently accurate for

tracking. The model of angular acceleration is a first-order

autoregressive process with zero mean. Typically the value

of α will be assigned an intermediate value that represents

typical patterns of human motion in joint angles.

The observation model describes the relationship of the

states to the observed data obtained from the inertial sen-

sor. We assume that the inertial sensor includes triaxial

accelerometers and triaxial gyroscopes. This simple model

assumes the sensor noise is additive and white, but could

be easily generalized to include drift, which is common to

MEMS inertial sensors.

y(n) =

















ωx(n)
ωy(n)
ωz(n)
v̇x(n)
v̇y(n)
v̇z(n)

















+

















vgx(n)
vgy(n)
vgz(n)
vax(n)
vay(n)
vaz(n)

















, (7)

where ωx, ωy and ωz are the angular velocities along the

x, y and z axes, respectively. The gyroscope noise along the



different axes is described by vgx, vgy and vgz . Similarly, the

translational accelerations along the three axes are v̇x, v̇y and

v̇z , and the accelerometer noise is given by vax, vay and vaz .

The acceleration measurement vector includes translational

accelerations and the effects of gravity.

E. Nonlinear state estimator

The arm model introduced above exhibits nonlinearities.

The use of the linear Kalman filter in a highly nonlinear

dynamics introduces estimation errors. The most common

approach to solving the nonlinear estimation problem is

the extended Kalman filter (EKF), which is based upon

linearizing the state and observation models with a first-

order Taylor expansion. However, this linearization leads

to poor performance if the dynamics are highly nonlinear

and the simple linearized model based on the gradient is an

inaccurate approximation. The EKF also requires Jacobian

matrices and inverse matrix calculation. Alternatively, se-

quential Monte Carlo methods (i.e, particle filters), which are

applicable to highly nonlinear and non-Gaussian estimation

problems, allow for a complete representation of the density

function of the unobserved states using a finite number

of samples. However, particle filters require much more

computation. The unscented Kalman filter (UKF) has nearly

the same computational requirements as the EKF, but uses a

more accurate method to characterize the nonlinear effects.

The results in this paper were generated with a UKF [11].

III. RESULTS

To evaluate the performance of the inertial tracking system

in monitoring arm movement, the joint angles calculated by

the inertial tracker were compared to those obtained by an

optical tracking system, used as a reference system. The

study was conducted in the Balance Disorders Laboratory at

OHSU, which is equipped with an optical motion tracking

system that comprises eight high-speed, infrared cameras

(Eagle Analog System, Motion Analysis Corporation, Cal-

ifornia). The cameras record position of reflective markers

placed on the upper arm, forearm, shoulder and wrist.

Optical relative joint angles were calculated from three-

dimensional markers positions using Grood’s method [12].

One subject performed a set of tasks described in Table II.

Each articulation was performed for 15 s while keeping the

rest of the body still. The correlation coefficients between the

angle estimates from the inertial tracker and estimates from

the reference optical tracking system were all statistically

significant (p < .05) and ≥ 0.91.

TABLE II

CORRELATION BETWEEN OPTICAL AND INERTIAL ANGLES OF

SHOULDER AND ELBOW OF A SUBJECT PERFORMING A SET ARM

MOVEMENT.

Task R (normal speed) R (fast speed)

Elbow Flexion/Extension 0.92 0.89
Elbow Supination/Pronation 0.96 0.93
Shoulder Flexion/Extension 0.97 0.94
Shoulder Abduction/Adduction 0.94 0.91

One of the limitations of previous tracking methods is

that they performed well only during slow movements. To

determine the capability of the proposed algorithm of track-

ing fast activities, the subject was instructed to repeat the

same activities as fast as they could. On average, the subject

reached from initial anatomical position to maximum joint

movement range in 0.5 s, compared to 1.0 s during normal

speed activities. Although, the correlation was slightly lower

than that for the regular speed, the correlation coefficients

were still statistically significant (p < .05) and were all

≥ 0.89.

IV. CONCLUSION

This paper described a new method for estimating joint an-

gles of a multi-segment limb using inertial sensors. Estimated

joint angles are computed from measured inertial data as a

function of time in a single step using a nonlinear state space

estimator. The estimator utilizes the unscented Kalman filter

which incorporates state space evolution equations based on a

kinematic model of the multi-segment limb. The algorithms

outlined in this paper can be applied to any combination

of sensors, and could be generalized to track any limb

movement in either real-time or off-line with higher accuracy

for slow and fast motion with a minimal number of sensors.
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Abstract— Several smart phone connected devices are 
becoming popular as replacements for pedometers for 
monitoring human activity and exercise levels. Most of them, 
including Fitbit and Nike Fuel Band measure step cadence 
using accelerometers. It would be advantageous to obtain this 
data using smart phone sensors without additional devices but 
smart phones produce varying accelerometer signal patterns 
when carried in different locations on the body.  
Magnetometers are an alternative low power sensor on most 
smart phones that could potentially be used for cadence 
estimation. We provide an algorithm that derives walking and 
running cadence from magnetometer readings that is robust to 
the location on the body that the smart phone is carried.  The 
algorithm has been tested with data gathered from twenty one 
subjects while walking and running, in several body locations 
that should comprehensively represent body movements. A 
high accuracy was achieved when the estimated cadence was 
verified against an accelerometer worn on the subject’s thigh. 
The algorithm is robust in dealing with sudden changes in 
direction while walking or running which is also likely to make 
it robust against magnetic field fluctuations that are common 
in urban environments. 

Keywords-magnetometer, compass, candance, activity-
recognition, energy-expenditure, smart phone, body sensor 
network, sensor localization 

I.  INTRODUCTION 
Several smart phone connected devices are becoming 

popular as replacements for pedometers for monitoring 
human activity and exercise levels. Most of them, including 
Fitbit and Nike Fuel Band measure step cadence using 
accelerometers. It would be advantageous to obtain this data 
using smart phone sensors without additional devices. 

Smart phones are an excellent platform for context-aware 
computation and pervasive health applications. This arises 
from the large number of sensors integrated into the phone, 
the large processing resources available, the relatively low 
cost and availability, and the internet connection available. 
On the other hand, smart phones face different challenges 
from purpose-built sensors, in that: they can be carried in 
many different orientations and locations on the human body 
with each different location producing different signal 
patterns; may have little connectivity to the body itself (such 
as when in a loose pocket or handbag); have to deal with 
issues originating from platform design (such as inconsistent 

sampling) and algorithms have to be power efficient so as 
not to exhaust the phone’s battery too quickly [1]. 

Among the sensors available on smart phones are 
accelerometers, magnetometers and gyroscopes. At the time 
of writing this paper, gyroscopes are still new and few in 
number, but almost all smart phones come with 
accelerometers and magnetometers. 

Among the three sensors accelerometers are becoming 
widely accepted for human motion studies in free-living 
environments [2]. The signal from the accelerometer, among 
other things, depends on the location it is placed on [2]. 

Much research has been done in measuring cadence or 
step-counts. Although the algorithms used by most 
commercial pedometers are unavailable, several papers have 
gone into verifying the results of commercial step-counters 
that were then common, without considering how the devices 
work internally or the fact that the devices get phased out 
and replaced with new devices after a few years. One 
published algorithm by Oliver and Flores-Mangas [3] 
requires the accelerometer to be worn on the chest, and an 
adaptive threshold is used to detect steps from magnitude of 
the accelerometer signal. Similarly, Barralon, Vuillerme and 
Noury [4] worked on detecting periods of walking in elderly 
people and used frequency analysis on the subject’s vertical 
acceleration for chest-mounted accelerometers.  

Yumono, Su, Moulton and Nguyen [5] looked into 
detecting walking and measuring gait parameters by 
extracting the periodicity in torso pitch angle, which in turn 
is extracted from signals from chest-worn accelerometers 
and gyroscopes. 

Instead of using the accelerometer and gyroscope as done 
by [5] and [6], we use the orientation given by the 
magnetometer and extract the period of each gait cycle. 
Magnetometers are an alternative low power sensor on most 
smart phones that could potentially be used for cadence 
estimation. Magnetometers easily provide the orientation 
angle (as has been extracted from accelerometer and 
gyroscope data by [5]) hence reducing the required 
processing. On the other hand, magnetometers face the 
problem that they get attracted to magnetic and ferrous 
materials in the subject’s vicinity. 

Magnetometers have been used in dead-reckoning for in-
door navigation [7][8] and estimation of body segment 
orientations [6][9][10]. We found no research has been done 
into examining magnetometer readings for pervasive health 
applications. 
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In the following sections, we discuss how we collected 
the data, our method of extracting cadence from 
magnetometer readings, the results we got when we 
compared the cadence extracted from magnetometer 
readings and the cadence extracted from an accelerometer 
won on the subject’s thigh, and future work we hope to do. 

II. DATA COLLECTION 
To avoid issues originating from mobile platform design 

(e.g. inconsistent sampling due to multitasking, and low 
sampling rates), an Opal System from APDM [11] was used 
in wireless buffering mode to capture data. Each sensor 
module has a triaxial accelerometer (range: ±6g, noise: 
0.0012 m/s / Hz), a triaxial magnetometer (range: ±6 
Gauss, noise: 0.5 mGauss/ Hz) and a triaxial gyroscope 
(range: ±2000 deg/s, noise: 0.05 deg/s/ Hz). Sampling was 
done at 128Hz (<=10μs synchronized sample timing 
difference). 

 

 

Figure 1.  Subject age and gender distributions. (a) shows the age 
distribution, while (b) shows the age distribution. 

Fig. 1 above shows the age and gender distributions of 
the subjects. 

Sensor modules were strapped onto 21 able-bodied 
subjects on 3 locations: thigh, trunk, and palm. For 4 of the 
subjects, additional modules were strapped on the ankle, 
upper arm, and on the navel (near the body’s center of 
gravity [12]). The placement is illustrated in the Fig. 2. 

The sensors were strapped onto the locations, because we 
wanted to avoid artifacts caused by the sensor module 
moving in the pocket so as to obtain the best-case 
performance of our algorithm. 

The subjects were asked to walk 20 meters on flat 
ground, turn and walk back. Each subject did this 3 times for 
each activity, making a total distance of 120 meters recorded 
per subject-activity session. Two activities were recorded: 
walking and running. No speed or time constraints were set 
to avoid any effects the constraints might have on the 
walking and running styles. For running, the subjects were 
instructed to do a “light run”, and were left to decide what 
that meant to them. The turns made at the end of every 20 
meter straight were included in the data recording. The 
subjects took the turns in different ways; some took sharper 
turns while some took wider turns. In addition, to cover 

multiple walking surfaces, for 4 of the subjects, data was 
taken on both hard (pavement) and soft (grass) surfaces. 

 

 

Figure 2.  Sensor placement on the subjects. 

The data collection method was selected so as to allow 
the subjects to walk and run naturally, at their own natural 
pace, while at the same time, allow us to observe and 
accurately label the dataset.  

III. METHOD 
The algorithm we propose for extracting cadence is based 

on the assumption that when we analyze the orientation at a 
point on the body, while walking or running, each body part 
completes one cycle in every two steps (one right step and 
one left step, equivalent to one complete gait cycle). Based 
on this assumption we attempted to extract the time-taken by 
the gait cycle (the period) and hence derive the cadence of 
the activity. 

In order to extract the subject’s cadence our method 
includes the following steps: conversion from 3D space to 
2D space, signal filtering, and cadence extraction. 

A. Conversion from 3D space to 2D space 
Data sampled from the magnetometer is in the form of 

3D vectors pointing to the direction of magnetic North. We 
can reduce the data’s dimensions from 3 to 2 while still 
maintaining the important attributes in the data that allow the 
period of the cycles to be extracted, by removing the length 
of the vector (normalizing) then converting the orientation of 
the vectors as the latitude and longitude. Whether or not the 
magnetometer was pointing towards the magnetic North is 
not important, as long as it points towards a stationary 
external (off the subject’s body) point. The actual direction 
they point to is also not important, since we discard this but 
maintain the relative angles between the vectors. 

By using the relative direction to any fixed point instead 
of to the magnetic North, we avoid errors that would have 
been caused had the magnetometer been attracted to a 
magnetic or ferrous material in the subject’s vicinity. 

The 3D vectors are converted to points on a 2D Cartesian 
plane representing the longitude and latitude of the given 
magnetometer vector with relation to a given equator. The 
direction and magnitude of the change in the longitude and 
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latitude from one vector to the next vector must be 
maintained in the conversion process. This means avoiding 
the wrapping of angles to the range [-π rad, π rad] that 
happens because of trigonometric equations, and the π rad 
flip that occurs when the vectors cross the north and south 
poles. The following algorithm was used to do this: 

1. Normalize the 3D vectors gathered. 
2. Compute the mean vector, m. 
3. Find the furthest vector, f, which has the largest 

angle to the mean vector, m. 
4. Compute vector u, such that: u = m*f, where * 

represents the cross product. u is then taken as the 
vector that points to the north pole of the sphere, of 
which m and f lie on the equator. 

5. For each of the normalized 3D vectors extract: 
a. Change in longitude from the previous vector 

along the equator. The longitude of a vector can 
then be obtained as the cumulative change of 
longitude from the first vector to the current 
vector. The longitude of the first vector would 
be zero. 

b. Latitude from the sphere’s equator, positive 
towards the direction of vector u, and negative 
in the opposite direction. 

 

 

Figure 3.  A 3D rendering of some sample data taken from the thigh while 
the subject was walking. The mean vector m and the furthest vector f lie on 

the equator of the unit sphere. The points on which the normalized 
magnetometer data intersect with the surface of the sphere are shown in 

yellow. The up vector u points to the north of this sphere. The longitudes 
extracted are degrees along the sphere’s equator while the latitudes 

extracted are the angles between the sphere’s equator and the normalized 
magnetometer vectors, positive in the direction of the up vector u, and 

negative away from it. 

B. Filtering 
We assume the highest cadence for a human being while 

running is 10 steps per second. To reduce noise we filter the 
signal using an FFT-based FIR low pass filter, removing any 
signal components above 5Hz. We then again use FFT to 
split the signal into low frequency components and high 
frequency components. We used a cutoff threshold of 0.5Hz.  
Since the frequencies reflect half of the cadence, 0.5Hz 
equates to 1 step per second, which is lower than the slowest 

walking speed, 95% confidence level, for a person that is 
walking [13]. 

The split removes any effect of sharp changes of 
direction (e.g. when the magnetometer suddenly gets 
attracted to a different item in the subject’s vicinity, or when 
the subject turns sharply) in the high frequency signal and 
leaves the gradual change in direction reflected in the low 
frequency signal. 

Samples of data before and after the 5Hz low pass filter 
are shown in the Fig. 4. Fig. 5 shows a sample containing a 
subject walking towards, turning around a cone and walking 
back and its low frequency signal. The arc is a result of the 
turn, while the clusters on either side of the arc represent the 
subject’s walk towards the cone, and return. In addition, Fig. 
5 shows the low frequency component which tracks the arc 
and hence shows the greatest change for the turn section. 

C. Cadence Extraction 
In this step we extract the gait cycle frequency in the data 

(i.e. the smallest period at which gait cycles exist). We based 
the process on the assumption that, as a cycle repeats, the 
Euclidean distance of a point to a similar point on the 
previous cycle is minimized. 

To do this, we define the distance function d of the point 
at index i and time period τ, as: 

� � ����

Where x and y are the longitude and latitude. 
We then define the mean distance function h for time 

period τ, based on d(i,τ), as the mean of the distances for i in 
the range of [1,N] where N are the number of points in the 
given window. 

� � ����

We then find the first time offset with local minima (m) 
that occurs after a local maxima (n), such that (m – n) > a. 
Where a is a threshold value that is experimentally 
determined and set to avoid selecting local minima caused by 
noise. The time offset at which m occurs corresponds to the 
period of the gait cycle. 

� � ����
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Figure 4.  Sample data after convertion from 3D space to 2D space, then 
filtered using a low band pass of 5Hz. (a) Shows data from a thigh mounted 

sensor, (b) from a hand mounted sensor, and (c) from a chest mounted 
sensor. Each graph shows the data before the 5Hz low band pass filter, and 

after the filter. 

 

Figure 5.  A sample of chest data with the subject taking a corner showing 
the data after the 5Hz low pass filter and low frequency signal (< 0.5Hz). 
The arc represents the corner, and the two clusters on either side of the arc 
represent the signal as the subject walks into the corner and later out of the 

corner. 

While analyzing the signals, we found that because of the 
noisy chaotic nature of the signals (especially the chest 
signals) this method works better than the autocorrelation of 
the complex signal (longitude and latitude). Fig. 6 shows an 
example where the function h(τ) performs better than 
autocorrelation. 

 

Figure 6.  Results of the function h(τ) for τ=[0,3] seconds compared to 
autocorrelation results of the same walking data. The peak/minima of the 

actual measured cadence is expected at approximately 1 second, equivalent 
to the period of a single gait cycle for this subject at this point in time. (a) 

Shows the autocorrelation of the complex signal, while (b) shows results of 
function h(τ). Autocorrelation gives several peaks, of which the closest to 

measured cadence is the third, while the first minima of h(τ) gives the 
required minima. 

 

IV. RESULTS ANALYSIS 
In this section we validate the cadence extracted using 

our method against the actual cadence. The actual cadence 
that we used to verify our results was extracted using a 
method similar to that of [3], except we made use of the 
autocorrelation of the vertical component extracted from 
accelerometer data from the thigh-mounted sensor, which we 
then visually verified to be correct. 

We measured the accuracy of our method based on the 
deviation from the actual cadence (estimated – actual). We 
then manually fit a Gaussian cluster over the data and 
extracted two sets of values: 

1. the mean and standard deviation of the main cluster; 
and 

2. the percentage of samples outside the main cluster 
(outliers). 

The reason for doing this is that the results had a majority 
of the estimated cadences distributed close to the actual 
cadence, while some were distributed far from the actual 
cadence. These outlying points affect our results by 
increasing the standard deviation and hence giving the 
impression of a wider Gaussian distribution. 
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The results are given in Table 2 for the three body 
locations and two activities. For each location-activity 
combination, the mean and standard deviation (S. D.) of the 
main cluster is given, together with the percentage of 
samples outside the cluster. Data from sensors on the ankle, 
upper arm and navel, gave similar results to thigh, hand and 
chest respectively. 

TABLE I.  DEVIATION OF ESTIMATED CADENCE FROM ACTUAL 
CADENCE (STEPS PER SECOND) FOR THREE BODY LOCATIONS, AND TWO 
ACTIVITIES STUDIED. MEAN AND STANDARD DEVIATION (S. D.) OF THE 

MAIN CLUSTER DISTRIBUTION IS GIVEN, TOGETHER WITH PERCENTAGE OF 
DATA OUTSIDE THE CLUSTER. 

Location 
Walking Running 

Mean S. D. % 
outliers Mean S. D. % 

outliers 

Thigh 0.00 0.04 1.69 0.00 0.04 0.55 

Hand 0.00 0.02 4.04 -0.02 0.06 1.99 

Chest -0.04 0.04 21.31 0.00 0.06 2.44 

 
From the results in Table 2, we can see that for the main 

clusters the magnetometer results are close to the thigh 
accelerometer results (maximum standard deviation of 0.06 
for chest and hand running). However there are a number of 
samples for the chest location while walking that were 
outside the main cluster. The error causing this effect is 
shown on Fig. 7. It can be noticed that each gait cycle (loop) 
has a chaotic period in which an inner loop forms. The 
chaotic period results in another peak occurring at half the 
time period (twice the cadence). 

 

 

Figure 7.  Example of cycles with chaotic periods forming inner loops. 
This particular sample was obtained from the chest sensor. (a) Shows the 

graph cycles (b) Graph of the output of h(τ) (eq. 2); even though the actual 
cadence (1.4 cycles/sec or 2.8 steps/sec) is found as the second trough, a 

significant first trough is also found resulting to it’s selection instead of the 
actual cadence. 

V. CONCLUSION 
Magnetometers have largely been used in dead-reckoning 

and less in context-aware computation and pervasive health 
applications. The closest work is that of body segment 
orientation, of which most has been done using gyroscopes 
and accelerometers. Although there have been relatively few 
publications pertaining to the usage of magnetometers in 
context-aware computation, we have shown that 
magnetometer data can be used for measuring walking and 
running cadence. Our algorithm involves converting the 
magnetometer vectors to 2D space, filtering, and then 
estimating the period at which cycles repeat in the 2D 
signals. This period is equal to the period of the gait cycle, 
hence the inverse has to be multiplied by two to obtain the 
cadence in steps per second. Our algorithm is able to extract 
the cadence from the chaotic patterns and has led to results 
comparable to those of a thigh-mounted accelerometer. In 
the future, we hope to implement the algorithm on a smart 
phone so that the cadence can serve as a parameter in 
activity-recognition and ubiquitous energy-expenditure 
estimation in our day-to-day lives. 
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Distinguishing Near-Falls from Daily Activities with Wearable
Accelerometers and Gyroscopes using Support Vector Machines

Omar Aziz, Edward J. Park, IEEE, Member, Greg Mori and Stephen N. Robinovitch

Abstract— Falls are the number one cause of injury in older
adults. An individual’s risk for falls depends on his or her
frequency of imbalance episodes, and ability to recover balance
following these events. However, there is little direct evidence
on the frequency and circumstances of imbalance episodes
(near falls) in older adults. Currently, there is rapid growth
in the development of wearable fall monitoring systems based
on inertial sensors. The utility of these systems would be
enhanced by the ability to detect near-falls. In the current
study, we conducted laboratory experiments to determine how
the number and location of wearable inertial sensors influences
the accuracy of a machine learning algorithm in distinguishing
near-falls from activities of daily living (ADLs).

I. INTRODUCTION

Falls are the leading cause of injuries in older adults
with a substantial impact on health and healthcare costs.
Approximately one in three persons over the age of 65 falls
at least once each year [1-3]. An individual’s risk for falls
depends on his or her frequency of imbalance episodes,
and ability to recover balance following these events [4-6].
For example, investigators have found that older adults who
report multiple “near-falls” (missteps or stumbles) are more
likely to go on to fall [7]. An accurate quantification of near-
falls during daily activities could assist clinicians in assessing
balance and developing strategies to prevent future falls [7,
8]. However, our current knowledge of near-falls in older
adults is based on self-reports, which are often unreliable
and likely underestimate the true occurrence of such events
[6, 9].

Wearable inertial sensors, such as miniature accelerom-
eters and/ or gyroscopes represent a promising technology
for objectively quantifying balance, mobility and falls in
older adults. Sensor hardware is rapidly advancing in terms
of size, accuracy and cost. However, challenges remain in
developing software to derive accurate, reliable and clinically
relevant outcomes from sensor data. At present, the primary
application for these systems is to detect the occurrence of
a fall and alert care providers to this event [1, 10, 11].

Our goal is to enhance the utility of wearable fall mon-
itoring systems beyond fall detection, to distinguish near-
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falls from activities of daily living (ADLs). In particular,
the current paper describes efforts to test, through labora-
tory experiments, how the number and location of sensors
(3D accelerometers and gyros) influence the accuracy of a
machine learning algorithm in distinguishing near-falls from
ADLs.

II. METHODOLOGY

A. Participants

Ten healthy adults participated in this study, ranging in age
between 22 and 32 years. All subjects were students at Simon
Fraser University (SFU), recruited through advertisements
posted on university notice boards. All participants provided
informed written consent and the experiment protocol was
approved by the research and ethics committee at SFU.

Fig. 1. Experiment protocol, indicating various types of near-falls and
Activities of Daily Living (ADLs) simulated by each participant.

B. Experimental Design

During the experiment, participants underwent five types
of near-falls and eight different activities of daily living
(ADLs) (Fig. 1). These near-fall scenarios were selected
as being representative of those emerging as most common
from a study analyzing video-captured real life falls in long
term care. All participants viewed falls from this library
were then asked to act out the scenarios [12]. All near-fall
trials were performed on a 30 cm thick gymnasium mattress,
into which we inserted a 13 cm top layer of high density
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Fig. 2. Acceleration and rate-gyro traces in X, Y and Z direction from a typical participant in near-fall (Incorrect Transfer while Rising from Sitting
(ITRS)) and ADL (Descending from Standing to Sitting (DSS)). The two vertical dotted lines show the completion of fall arrest in near-falls and the
completion of activity in ADL.

ethylene vinyl acetate foam so the composite structure was
stiff enough to allow for stable standing and walking, but soft
enough to reduce the impact force to a safe level in case
of a fall. In the near-falls, the participants were subjected
to five different scenarios: (i) slips, (ii) trips, (iii) incorrect
transfer while rising from sitting to standing (iv) misstep
while walking, and (v) hit and bump by another person.
For ADLs, eight scenarios were included: (i) walking, (ii)
standing quietly, (iii) rising from sitting, descending from

(iv) standing to sitting and (v) standing to lying, (vi) picking
up an object from the ground, (vii) ascending and (viii)
descending stairs. All participants performed three trials in
each category. Accordingly, over the ten participants, a total
of 150 near-falls and 240 ADLs were recorded.

C. Data Acquisition
In each trial, we used seven inertial sensors (triaxial

accelerometers having a range of ±6g and triaxial gyros
having a range of ±1500 deg/s, APDM, Inc. Opals) worn
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bilaterally on ankles and thighs, and at the waist, sternum and
head recording at 128 Hz to acquire synchronized measures
of the 3D accelerations and angular velocities.

III. DATA ANALYSIS

Data analysis focused on determining how the number and
location of sensors influenced the ability of our classifica-
tion algorithm to distinguish near-falls from ADLs. In the
single sensor category, head, sternum, waist and both thigh
sensors were included but not right or left ankle, based on
the consideration that asymmetry in foot movements could
necessitate bilateral placement in any real life application of
our sensor technology. Moreover, in all three or more sensor
categories, only one of the thigh sensors (i.e. right thigh) was
used in the analysis. Thigh sensors are particularly useful for
identifying transitions in movement, for example, descending
from standing to sitting or lying position and vice versa,
and one thigh sensor is deemed sufficient to capture such
transition movements [13].

For each trial, we identified the approximate instant of
fall-arrest (for near-fall trials) and activity completion (for
ADL trials) by visual inspection of the sensor data. We then
selected a 2.5 s time window prior to this instant to calculate
the means and variances of the X, Y and Z signals for each
accelerometer and gyroscope sufficient to capture the near-
fall event from the initiation to arrest phase (Fig 2).

We used the Support Vector Machine (SVM)
implementation in LIBSVM [14] with Radial Basis
Function (RBF) kernel to distinguish near-falls from ADLs.
The features (i.e. means and variances) were then split into
training and testing sets of equal size by choosing the data
from the first five subjects for training and the following five
for testing. The SVM constructs a hyper-plane or a set of
hyper-planes in a high or infinite-dimensional space, which
can be used for classification. However, the effectiveness
of the SVM depends on the selection of kernel and the
kernel’s parameters. In this study we used SVMs with
RBF kernel which required two parameters, C and γ . The
best combination of C and γ was selected by a grid-search
with exponential growing sequences of C and γ (i.e. C ∈
{2−5,2−4, . . . ,214,215}; and γ ∈ {2−15,2−14, . . . ,22,23}).
Each combination of parameter choices was checked using
a 10-fold cross-validation and the parameter with the best
cross-validation accuracy was picked. The final model,
which was used for classifying test data, was then trained
on the whole training set using the selected parameters. The
procedure was conducted on the data from each sensor, and
for each possible combination of 2, 3, 4, 5 and 6 sensors. In
each case, we then calculated the sensitivity and specificity
as:

Sensitivity =
TruePositive

TruePositive+FalseNegative
(1)

Speci f icity =
TrueNegative

TrueNegative+FalsePositive
(2)

TABLE I
SENSITIVITY AND SPECIFICITY OF 3D ACCELEROMETER AND

RATE-GYRO ARRAYS IN SEPARATING NEAR-FALLS FROM ACTIVITIES OF

DAILY LIVING

False Positive (FP) = ADLs, incorrectly identified as near-falls 
False Negatives (FN) = Near-falls, incorrectly identified as ADLs

IV. RESULTS

We found that our SVM algorithm showed good sensitivity
and specificity in distinguishing near-falls from ADLs with
various sensor combinations (Table 1). With a single sensor,
the sensitivity and specificity of the system was at least 88%
except for the waist sensor, which had 80% sensitivity.

With two sensors, the least number of false positives (FP)
and false negatives (FN) was provided by the left ankle +
right ankle combination, which distinguished near-falls and
ADLs with 96% sensitivity and 98% specificity.

With three sensors, the highest sensitivity and specificity
was provided by (a) left foot + right foot + sternum and
(b) left foot + right foot + waist. Both combinations showed
100% sensitivity and 99% specificity.

The best overall performance was observed with the five
sensor combination of left foot + right foot + right thigh +
waist + head, which did not result in any false positive or
false negative, and provided 100% sensitivity and specificity
in distinguishing near-falls and ADLs. Sensitivity and speci-
ficity were no better with four and six sensor combinations
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than with three.

V. DISCUSSION

In this study, we conducted lab based experimental trials
with young adults to examine the utility of a wearable sensor
array for distinguishing near-falls from ADLs. Our results
indicated that the data from various combinations of three
or more sensors, when input in our Support Vector Machine
algorithm, provided sensitivity and specificity higher than
99% in distinguishing near-falls from ADLs. We also found
that sensor placement at the feet considerably decreased false
negatives indicating that lower extremity body kinematics
was essential to identify near-falls.

There are important limitations to this study. First, our
participants were healthy young adults, and they were aware
of the external perturbations being applied to disturb their
balance. An important unanswered question is the extent
to which our classification procedure and results will trans-
fer to unexpected near-falls in real-life scenarios by older
adults, including those with specific disease conditions or
neuromuscular impairment. Ultimately, this issue can only be
addressed by testing the system with older adults as they go
about their daily activities. However, several aspects of our
experimental design enhance the validity of our results for
older adults. Most importantly, before commencing a given
series of trials, each of our participants studied representative
video clips of real-life falls experienced by older adults
residing in long-term care, and were instructed to “act
out” a similar fall and near-fall [12]. Despite the inevitable
variability in the acting style of participants, we believe this
approach substantially enhanced the validity of our results
for older adults.

Second, given the current size of self-contained wearable
3D sensors with on-board data storage and power supply
(which are at least the size of large wrist watches), there is
a legitimate concern that routine wear may be met with low
user compliance in the target population. However, given the
rapid rate of miniaturization of these components, one might
expect that sufficient performance will soon be achieved with
units the size of plasters.

This study demonstrates the utility of a wearable sensor
system in distinguishing near-falls from ADLs with high
accuracy. Incorporation of this application in fall monitoring
systems should substantially enhance their utility for health
professionals in assessing and monitoring the effectiveness
of strategies in reducing fall risk.
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Enhancing clinical measures of postural stability with wearable sensors*

Priyanka M. Deshmukh, Colin M. Russell, Lisa E. Lucarino and Stephen N. Robinovitch

Abstract— About 30% of individuals over the age of 65, and
50% over age 80, fall at least once per year [1]. Fall-related
injuries cost the Canadian health care system $2.8 billion
annually [2]. Risk for falls in older adults is commonly assessed
in the clinical environment using tools such as the Short Physical
Performance Battery (SPPB) [3], which include subjective
assessments of postural sway while standing under various
sensory conditions. This study uses wearable accelerometers
and a force plate to quantify measures of postural stability
during these tasks. Four participants were asked to maintain
quiet stance in six different conditions, while their center of
pressure (COP) and accelerations from six accelerometers were
recorded. Standard deviations in signals were used as measures
of postural sway. The sway observed in all sensors increased
with the difficulty of the stance condition. Manipulation of
vision and surface stiffness caused greater changes in sway in
the AP than ML direction, while changes in stance configuration
were more evident in the ML direction. Furthermore, the ankle
sensor was the most sensitive in registering changes in sway
when manipulating vision and surface stiffness (showing an
increase of 236% over baseline values in AP sway with eyes
closed and standing on foam), while the thigh was most sensitive
to changes in stance width (showing an increase of 336% over
baseline values in ML sway in the tandem stance condition).
This study contributes in establishing the utility of wearable
sensors for quantifying postural stability under various stance
configurations in future studies with high-risk older adults.

I. INTRODUCTION

Falls are a major cause of injury in older adults. An
individual’s risk for falls associates with their postural sta-
bility during daily activities. In the clinical environment,
postural stability is often assessed using tools such as the
Short Physical Performance Battery (SPPB) [3] the timed
Get-Up-and-Go [4], and the Physiological Balance Profile
[5]. However, such tools rely on subjective classifications of
performance.

In the laboratory environment, postural stability is com-
monly assessed by measuring the variability in the location
of the centre-of-pressure (COP) between the feet and ground
from a force plate [6]. Miniature wearable sensors represent a
lower-cost alternative to force plates for quantifying postural
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stability both within and outside of the clinical environment
[7]. However, previous studies have not validated sensor-
based measures of postural stability through comparison with
force plate data.

Accordingly, the primary goal of this study was to com-
pare COP-based measures of postural stability to those
acquired by miniature inertial sensors worn at various body
sites. A second goal was to examine the effect on these mea-
sures of alterations in vision, floor stiffness and stance con-
figuration (manipulations typically incorporated into clinical
tests). Our results illustrate how wearable sensors provide
information on postural stability that correlates with COP
measures, is sensitive to task conditions, and conveys under-
lying postural control mechanisms. These results support the
value of this portable technology as an attractive option to
force plates in quantifying postural stability during stance.

II. METHOD

A. Study participants

Study participants consisted of 4 healthy young individuals
(1 male, 3 female), all of whom provided informed consent.

B. Stance Conditions

Participants were instructed to stand as quietly as possible
while adopting different stance configurations, with eyes
open and closed, and while standing on a firm surface or
foam. The conditions were as follows:

1) Normal stance (feet shoulder width apart), eyes open,
on rigid surface;

2) Semi-tandem (ST) stance (right foot in front of left,
with narrow stance width), eyes open, on rigid surface;

3) Tandem (T) stance (right foot in front of left, with zero
stance width), eyes open, on rigid surface;

4) Normal stance, eyes closed, on rigid surface;
5) Normal stance, eyes open, on compliant surface (10 cm

thick foam pad);
6) Normal stance, eyes closed, on compliant surface.
7) Normal stance, eyes open, rigid surface, exaggerated

anterior-posterior (heel-toe) rocking.

C. Data collection and analysis

In each trial, data were collected from miniature wireless
sensors (tri-axial accelerometers ±6g, Opals, APDM Inc.)
secured at six body sites (Fig. 1): sternum, waist (posterior
aspect), right and left thighs and right and left ankles (lateral
aspects). An additional sensor was placed on a mallet drop
synchronization system. Sensor data were sampled at 128 Hz
(the maximum sampling frequency offered by the sensors).
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Fig. 1. Location of inertial sensors on the body.

We also acquired foot reaction forces and moments
from a force plate (Accusway, AMTI) at 1280 Hz via
LabVIEW. COP in the x and y directions was calcu-
lated from ground reaction forces (Fx, Fy, Fz) and mo-
ments (Mx, My, Mz) as follows: COP x direction = −My

Fz ×
1000 and COP y direction = Mx

Fz ×1000.
The APDM data collection software allowed for synchro-

nized measures from each of the 7 sensors. To synchronize
these sensor data with data from force plate, a hinged mallet,
having a sensor attached to its head, was raised a fixed height
and released to strike the force plate, providing a distinct time
stamp for synchronization of sensor and force data. Force
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Fig. 2. COP and acceleration traces in the AP direction (7) - exaggerated
heel-toe rocking.

plate and sensor data were filtered using a fourth-order low-
pass Butterworth filter, having a 10Hz cut-off frequency [8].
Fig. 2 illustrates an example of COP and acceleration data
acquired under condition (7), exaggerated heel-toe rocking.

In each trial, we characterized postural sway as the stan-
dard deviation (SD) in acceleration (from the sensors) or
COP (from the force plate) in both the anterior-posterior (AP)

TABLE I
EFFECT OF CONDITION ON POSTURAL SWAY

 Sternum Waist Thigh Ankle COP 

AP Direction      

Normal stance 54.1 (20.6) 43.9 (13.3) 40.6 (11.6) 22.5 (8.1) 2.3 (0.8) 

Semi tandem 56.9 (13.4) 50.4 (6.3) 46.8 (5.8) 30.7 (5.7) 2.7 (0.4) 

Tandem 73.2 (11.2) 72.7 (19.4) 84.9 (16.0) 78.8 (22.0) 3.5 (0.9) 

Eyes closed, rigid surface 75.3 (11.6) 70.7 (21.1) 55.3 (15.7) 41.2 (11.6) 4.2 (0.9) 

Eyes open, foam surface 84.3 (26.8) 70.1 (22.2) 65.6 (17.6) 59.4 (19.9) 4.9 (1.5) 

Eyes closed, foam surface 91.3 (19.0) 86.1 (21.0) 86.1 (25.6) 74.4 (23.4) 6.6 (1.9) 

Heel-toe-rocking 860.3 (234.5) 792.9 (275.4) 616.8 (169.3) 414.0 (21.7) 58.4 (8.5) 

      
ML Direction 

! ! ! ! !
Normal stance 33.5 (10.7) 19.8 (2.6) 23.4 (2.8) 12.7 (3.6) 1.0 (0.2) 

Semi tandem 45.7 (9.9) 34.7 (5.3) 32.7 (2.3) 31.1 (10.2) 2.6 (0.3) 

Tandem 110.6 (18.6) 68.6 (9.7) 103.3 (22.0) 82.8 (24.8) 5.5 (1.2) 

Eyes closed, rigid surface 38.4 (9.7) 21.7 (4.1) 26.5 (6.6) 20.9 (8.6) 1.2 (0.3) 

Eyes open, foam surface 42.5 (7.6) 32.3 (8.1) 34.2 (6.5) 32.7 (7.0) 2.3 (0.6) 

Eyes closed, foam surface 42.1 (7.4) 34.2 (6.7) 40.8 (8.8) 43.4 (14.6) 2.9 (0.8) 

Heel-toe-rocking 122.5 (51.8) 98.2 (37.1) 141.2 (16.2) 129.3 (53.5) 6.9 (2.4) 

 Notes: Cell entries show mean values of the standard deviations (SD's) in acceleration and COP location, averaged over all subjects, across right and 
left sides for thigh and ankle sensors. SD's of the SD's are shown in parentheses. Units are mm/s2 for sensor accelerations and mm for COP position.

4522



0

100

200

300

400

500

Semi tandem Tandem

ML direction

Sternum
Waist
Thigh
Ankle

pe
rc

en
t i

nc
re

as
e 

ov
er

 b
as

el
in

e 
sw

ay
Condition

COP B

0

50

100

150

200

250

AP direction
COP
Sternum
Waist
Thigh
Ankle

pe
rc

en
t i

nc
re

as
e 

ov
er

 b
as

el
in

e 
sw

ay

Condition

Eyes closed,
rigid surface

Eyes open,
foam surface

Eyes closed,
foam surface

COP C

0

100

200

300

400

500

Semi tandem Tandem

AP direction
COP
Sternum
Waist
Thigh
Ankle

pe
rc

en
t i

nc
re

as
e 

ov
er

 b
as

el
in

e 
sw

ay

Condition

COP A

0

50

100

150

200

250

ML direction COP
Sternum
Waist
Thigh
Ankle

pe
rc

en
t i

nc
re

as
e 

ov
er

 b
as

el
in

e 
sw

ay

Condition

Eyes closed,
rigid surface

Eyes open,
foam surface

Eyes closed,
foam surface

D

Fig. 3. Percent change in postural sway (signal SD) over baseline (condition
(1)) condition following manipulations in stance configurations (A and B)
or vision and surface stiffness (C and D).

and medial-lateral (ML) directions, over 10 seconds. We also
examined the correlation between sensor accelerations and
COP, after down-sampling the latter (from 1280 to 128 Hz)
using a shape-preserving piecewise cubic interpolation.

III. RESULTS

As the difficulty of the task increased (from 1 to 6), there
was an increase in the SD’s of both COP and acceleration
signals (Table 1). In the AP direction, the largest SD’s
occurred in condition 6 (eyes closed, compliant surface),
except for the ankle sensor, where the largest SD’s occurred
in condition 3 (tandem stance). In the ML direction, the
largest SD’s in COP and acceleration occurred in condition
3 (tandem stance).

Alterations in stance configuration caused larger changes
in sway in the ML than AP direction, with the largest
changes observed at the thigh and waist sensors (Figs. 3A
and 3B). When compared to baseline conditions, tandem
stance (condition 3) involved increases in ML sway of 336%
at the thigh, and 249% at the waist. Conversely, changes in
vision and surface stiffness yielded larger changes in sway
in the AP than ML direction (Figs. 3C and 3D), with the
largest changes observed at the ankle (increases of 90%,
170% and 236% over baseline values for conditions 4, 5
and 6, respectively).

IV. DISCUSSION

In this study, we examined the utility of wearable sensors
in characterizing postural sway under various clinical testing

AP sway Sternum
Waist

Thigh
Ankle

normal semi-tandem tandem
0 2 4 6 8

COP SD (mm)

0

20

40

60

80

100

120

A
cc

el
er

at
io

n 
S

D
 (m

m
/s

 )2

A

ML sway Sternum
Waist

Thigh
Ankle

EO,
rigid

EC,
rigid

EO,
foam

EC,
foam

0 2 4 6 8
COP SD (mm)

0

20

40

60

80

100

120

A
cc

el
er

at
io

n 
S

D
 (m

m
/s

 )2

D

ML sway Sternum
Waist

Thigh
Ankle

normal semi-tandem tandem0

20

40

60

80

100

120

Ac
ce

le
ra

tio
n 

SD
 (m

m
/s

 )2

0 2 4 6 8
COP SD (mm)

B

0

20

40

60

80

100

120

0 2 4 6 8

AP sway Sternum
Waist

Thigh
Ankle

A
cc

el
er

at
io

n 
S

D
 (

m
m

/s
 )2

COP SD (mm)

EO,
rigid

EC,
rigid

EO,
foam

EC,
foam

C

Fig. 4. Combinations of COP and acceleration for various sensor locations
following manipulations in stance configurations (A and B) or vision and
surface stiffness (C and D).

conditions. We found that the variance (standard deviation)
from all sensors increased as the base of support decreased,
as vision was removed, or when moving from a rigid to
compliant ground. We also found that the ankle sensor
was most sensitive in registering changes in sway when
manipulating vision and surface stiffness, while the waist
and thigh sensors were most sensitive to changes in stance
width.

Furthermore, manipulation in vision and surface stiffness
caused greater changes in sway in the AP than ML direction,
while changes in stance configuration had a larger effect on
sway in the ML than AP direction. These results guide the
design of a minimum sensor array for future clinical use.

They also illustrate the value of wearable sensors in
providing insight on the postural control strategies (e.g., hip
versus ankle strategy) used under various sensory and support
conditions [9,10]. An important limitation of this study is
that our participants were young healthy individuals, and an
essential next step is to repeat the experiment with older
adults.

V. CONCLUSION

We instructed human participants to stand as quietly
as possible under various sensory and support conditions,
and compared measures of postural sway from miniature
accelerometers mounted at various body locations, to those
acquired with a force plate. Of all the signals we examined,
AP sway at the ankle was most sensitive to alternations in

4523



vision and surface stiffness, while ML sway at the waist or
thigh was most sensitive to changes in stance width.

While inertial sensors have previously been used to assess
postural stability, to our knowledge, there have been no
previous studies that compare COP measures to information
provided through wearable sensors across a wide range
of static task conditions (that not only include normal
quiet stance, but also alter the base of support, vision
and somatosensory input). Furthermore, we employed a
novel approach by using sensors to identify the relationship
between various task conditions and direction (AP vs. ML)
of greatest instability. Lastly, study findings can guide in
the identification of a minimum sensor array system to
help understand underlying postural control mechanisms.
Overall, the study results contribute to the development of a
cost effective wearable sensor system for providing accurate
and meaningful measures of postural stability.
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Shoulder and Elbow Joint Angle Tracking
With Inertial Sensors
Mahmoud El-Gohary∗ and James McNames

Abstract—Wearable inertial systems have recently been used to
track human movement in and outside of the laboratory. Con-
tinuous monitoring of human movement can provide valuable in-
formation relevant to individuals’ level of physical activity and
functional ability. Traditionally, orientation has been calculated by
integrating the angular velocity from gyroscopes. However, a small
drift in the measured velocity leads to increasing integration er-
ror over time. To compensate that drift, complementary data from
accelerometers are normally fused into tracking systems using the
Kalman or extended Kalman filter. In this study, we combine kine-
matic models designed for control of robotic arms with state-space
methods to continuously estimate the angles of human shoulder
and elbow using two wearable inertial measurement units. We use
the unscented Kalman filter to implement the nonlinear state-space
inertial tracker. Shoulder and elbow joint angles obtained from 8
subjects using our inertial tracker were compared to the angles
obtained from an optical-tracking reference system. On average,
there was an RMS angle error of less than 8◦ for all shoulder and
elbow angles. The average correlation coefficient for all movement
tasks among all subjects was r ≥ 0.95. This agreement between
our inertial tracker and the optical reference system was obtained
for both regular and fast-speed movement of the arm. The same
method can be used to track movement of other joints.

Index Terms—Elbow, inertial sensors, joint angle tracking, kine-
matics, shoulder, wearable devices.

I. INTRODUCTION

M EASUREMENT and analysis of human movement has
many applications including diagnosis of neurological

movement disorders, rehabilitation from injury, and enhance-
ment of athletic performance. Movements can be measured us-
ing a wide variety of techniques and sensors. Optical systems
have been widely used to assess leg, elbow, and shoulder kine-
matics noninvasively. They rely on measurements of reflected
or emitted light [1]. Motion is captured by placing reflective
markers on the body and cameras are used to record the markers
positions. Optical systems are the most common and accurate
in tracking movement [2]. However, they require a clear line of
sight between the source and the sensor, are costly, and can only
be used in a laboratory environment.
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A typical inertial measurement unit (IMU) is a compact wear-
able device that contains a triaxial accelerometer and a triaxial
gyroscope. Accelerometers measure the translational accelera-
tion and acceleration due to gravity. Gyroscopes measure an-
gular velocities. Wearable inertial sensors are simpler, unob-
trusive, and self-contained. They are suitable for continuously
monitoring over long periods while the subject performs nor-
mal activities of daily life at home. Fig. 2 shows an example of
Opal sensor (Ambulatory Parkinsons Disease Monitoring, Inc.,
Portland, OR) used in this study.

Traditionally, orientation of a segment has been estimated by
integrating the angular velocities measured by gyroscopes, and
position is obtained by double integration of the translational
acceleration measured by accelerometers. A significant prob-
lem with integration, however, is that inaccuracies inherent in
the measurements quickly accumulate and rapidly degrades ac-
curacy. Roetenberg showed that integration of noisy gyroscope
data resulted in a drift of 10◦–25◦ after 1 min [3].

One approach to reducing integration drift is to fuse the gyro-
scope data with complementary data from other sensors. Luinge
et al. estimated orientation of body segments by fusing gyro-
scope and accelerometer data [4], [5]. The orientation obtained
by integrating angular rate was spilt into tilt and orientation
around the global vertical axis. The difference between gyro-
scope and accelerometer tilt was fused with a Kalman filter
to more accurately estimate the tilt. This was then combined
with the rotation around the vertical axis to produce a better
orientation estimate. However, the estimation was accurate for
only brief periods when the subject was not moving and when
acceleration was only due to gravity.

To alleviate the cumulative drift around the vertical axis en-
countered in their earlier system [6], Luinge et al. developed a
method that used constraints in the elbow to measure the orien-
tation of the forearm with respect to the upper arm [7], [8]. They
used one inertial measurement unit near the wrist and another
near the elbow. Heading error between the two arm segments
was minimized using the knowledge that the elbow joint does
not permit abduction/adduction. The filter estimated the orien-
tation in a way that sets the adduction angle to zero. Although
they reported an improvement in estimating the orientation, the
average orientation error was 20◦.

Giansanti et al. combined gyroscopes with accelerometers
to track position and orientation during three tasks: stand-to-
sit, sit-to-stand, and gait initiation [9]. Error in estimation was
minimal. However, they restricted the application to simple tasks
and limited the measurements to a time duration of 4 s.

In a series of studies, Bachmann et al. used accelerome-
ters and magnetometers in a quaternion-based complementary
filter to compensate the drift of the orientation produced by

0018-9294/$31.00 © 2012 IEEE
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integrating the angular velocity [10], [11]. The system com-
bined a triaxial accelerometer, a triaxial gyroscope and a triaxial
magnetometer assembled to produce a sensor module referred
to as Magnetic, Angular Rate and Gravity sensor (MARG). In a
later study, Bachmann et al. investigated the effect of electrical
appliances and furniture made of ferromagnetic materials on
the accuracy of orientation tracking using MARG systems [12].
They observed errors that ranged from 12◦ to 16◦ and stated that
these errors can be avoided by maintaining an approximate dis-
tance of two feet from the source of disturbance. This limits the
success of their tracking system and restricts its use to custom
laboratory environment.

Roetenberg et al. argued that errors due to magnetic-field dis-
turbance may be compensated by adequate model-based sen-
sor fusion [13]. They developed a Kalman filter that operated
on two inputs. The first was the difference between inclina-
tion from the accelerometer and gyroscope. The second input
was the difference inclination from the magnetometer and gy-
roscope. The states of the model included the gyroscope bias
error, orientation error, and magnetic disturbance. The filter was
tested under quasi-static and dynamic conditions with ferro-
magnetic materials close to the sensor for less than a minute.
The results show that the orientation estimates improved sig-
nificantly when the magnetic interference correction was used.
However, the accuracy could decrease if the magnetic distur-
bance was due to varying sources that are present during longer
periods of testing. In a subsequent study, Roetenberg et al. com-
bined a body-mounted magnetic system with gyroscopes and
accelerometers to track position and orientation using a com-
plementary Kalman filter [14]. Orientation and position were
obtained by single and double integration of gyroscope and ac-
celerometer data, respectively. These were then updated with
magnetometer data to improve accuracy. The tracker was tested
without metals in the vicinity, and errors were expected to grow
if ferromagnetic materials where anywhere close to the magnetic
system.

Yun et al. used MARG modules and a quaternion-based ex-
tended Kalman filter (EKF) to track human body motion. A
Gauss–Newton iteration method was used to preprocess ac-
celerometer and magnetometer data to produce quaternion input
to the EKF [15]. A rotary tilt table with two DOF’s was used
to assess the performance of the tracker [16], [17]. The pitch
angle error was not reported, and an error of 9◦ in less than 2 s
was obtained for the roll angle. In a recent study, Yun et al.
presented a simplified algorithm for orientation estimation us-
ing only accelerometers and magnetic field measurements [18].
Although the system was suitable for tracking slow movements,
the gyroscope-free system is not suited for normal or fast move-
ments, resulting in large orientation errors.

In a series of studies by Zhou et al. orientations of wrist and
elbow were estimated by fusion of the signals from MARG
modules mounted on the wrist and elbow joints [19], [20]. They
integrated the rotational rate to localize the wrist and elbow, and
smoothed the abrupt amplitude changes to reduce overshoot
during fast movements. Three subjects performed a set of tasks
that lasted 20 s and was repeated three times with a resting
period of 30 s in between. The tasks included reaching a target,
drinking, lifting the arm, and flexing the elbow while keeping the

shoulder still. They attained a high correlation between position
estimates from the inertial tracker and estimates from a reference
optical tracking system ≥0.91 [21].

In summary, other groups have used accelerometers and mag-
netometers to compensate for the orientation error that oc-
curs when integrating the angular rate from gyroscopes, but
all of these methods were only applicable under limited circum-
stances. Some groups restricted the application to simple tasks
and short tracking periods. In other studies, the estimation was
accurate for only brief periods when the acceleration measure-
ments were only due to gravity. Others reported large orientation
errors due to magnetic field disturbances.

In this paper, we combine kinematic models designed for
control of robotic arms with state-space methods to directly and
continuously estimate human joint angles from inertial sensors.
We investigate the performance of our unscented Kalman filter
(UKF)-based method by first validating our statistical models
using synthetic data. We then investigate the performance of our
inertial tracking algorithm by comparing the estimated inertial
angles to those obtained form an optical reference system during
normal and fast movement of eight subjects performing both
simple planar and complex arm movement.

II. THEORY

We use an established method of biomechanical modeling
based on a sequence of links connected by joints. This type
of model could represent any part of the human body. To sys-
tematically describe the position and orientation of each pair
of consecutive links, a method was proposed by Denavit and
Hartenberg in 1955. The method is widely used in the analy-
sis and control of robotic manipulators [22] and has also been
successfully applied to characterize human motion [23]. The
method is based on characterizing the relationship between links
and joints with a (4 × 4) transformation matrix. This matrix de-
pends on four parameters associated with each link. The first
parameter is the link length ai , which is the distance from the
rotation axis Zi to Zi+1 measured along their common normal
axis Xi . The second parameter is the link twist αi , which is the
angle from Zi to Zi+1 measured about the Xi-axis. The distance
from Xi−1 to Xi measured along the Zi-axis is known as the
link offset di . The fourth parameter is the joint angle θi , which
is the angle from Xi−1 to Xi measured about the Zi-axis. These
four parameters are known as the Denavit–Hartenberg (D-H)
parameters and will be specified for the shoulder and elbow in
the following section. To describe the location and orientation
of each link relative to the one next to it, we attach a frame
to each link. The convention of attaching reference frames to
upper arm and forearm segments was detailed in [23].

A. Shoulder and Elbow Joint Angles

We present a model for shoulder and elbow movement with
five degrees of freedom (DOFs). The shoulder and the shoul-
der girdle make up one of the most complex joint groups of
the human body [24]. This complex joint is typically simplified
as a ball-and-socket joint with three DOFs. When a joint has
n-DOFs, it can be modeled as n joints of one DOF connected
with n − 1 links of zero length [22]. Fig. 1 shows the arm
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Fig. 1. Kinematics diagram of the arm model with Frame 0 as the static refer-
ence frame. Frames 1 through 3 represent shoulder flexion/extension, abduction/
adduction and internal/external rotation, respectively. Frames 4 through 5 rep-
resent the elbow flexion/extension and forearm pronation/supination.

TABLE I
DENAVIT–HARTENBERG PARAMETERS FOR THE ARM MODEL

model with static base reference frame 0 at the center of the
shoulder joint. Frames 1 through 3 represent shoulder flexion/
extension, abduction/adduction, and internal/external rotation,
respectively. The elbow joint is a hinge joint that allows move-
ment in one plane, flexion/extension, represented by frame 4.
The radioulnar joint is a pivot joint that allows for forearm
pronation/supination, represented by frame 5 [25].

Table I shows the D-H parameters, where αi−1 is the angle
to rotate to make the two coordinate systems coincide, lu is the
length of the upper arm, lf is the length of the forearm, and θi

is the ith angle of rotation.

B. Propagation of Velocity and Acceleration

To formulate the dynamic equations for the arm IMUs dur-
ing movement, we use three of the Newton–Euler equations of
motion. These forward recursive equations are used to propa-
gate angular velocity, and angular and linear acceleration from
the reference coordinate system through the links of upper arm,
forearm, and wrist. Each link of the arm in motion has some
angular velocity, and angular and linear acceleration (ω, ω̇, v̇).
The velocity i+1ωi+1 of link i + 1 is that of link i plus the new
velocity component added by joint i + 1. Similarly, the angular
and linear acceleration of each link are related by the following
recursive equations:
i+1ωi+1 = i+1

i Riωi + θ̇i+1
i+1Zi+1

i+1 ω̇i+1 = i+1
i Riω̇i + i+1

i Riωi × θ̇i+1
i+1Zi+1 + θ̈i+1

i+1Zi+1

i+1 v̇i+1 = i+1
i R[i ω̇i × iPi+1 + iωi × (iωi × iPi+1) + i v̇i ]

where i+1
i R is the rotation matrix between the ith and (i + 1)th

link, × represents the cross product operation, θ̇i is the angular

velocity, iPi+1 is the position vector of frame i + 1, which is
the upper-right 3 × 1 vector of the D-H matrix. The rotation
matrices R, can be obtained by taking the transpose of the
upper left 3 × 3 transformation matrix with parameters shown
in Table I. Single and double dot notation represents first and
second derivatives with respect to time. We initialize ω0 = ω̇0 =
(0, 0, 0)T , and v̇0 = (gx, gy , gz )T , where g is gravity.

C. State-Space Model

The general discrete time state-space model is of the form

x(n + 1) = fn [x(n), u(n)] (1)

y(n) = hn [x(n), v(n)] (2)

where x(n) is the unobserved state, y(n) is the measured data,
fn [·] and hn [·] are nonlinear state and observation equations,
u(n) and v(n) are the state and observation white noise with
zero mean. Our state model equations are given by

θi(n + 1) = θi(n) + Ts θ̇i(n) +
1
2
T 2

s θ̈i(n) (3)

θ̇i(n + 1) = θ̇i(n) + Ts θ̈i(n) (4)

θ̈i(n + 1) = αθ̈i(n) + uθ̈i
(n) (5)

where i = {1, . . . , 5} of the five angles, θi(n) is the ith angle
at time n, θ̇i is the angular velocity, θ̈i is the angular acceler-
ation, uθ̈i

(n) is a white noise process with zero mean, α is a
process model parameter, and Ts = 1/fs is the sampling period.
These are standard equations for a physical object moving at a
constant acceleration. The model assumes the acceleration is
constant for the duration of a sampling interval. This is suffi-
cient for our data, which was acquired with a sample rate of
fs = 128 Hz. The angular acceleration is modeled as a first-
order autoregressive process with zero mean. Depending on the
choice of α, this model ranges from a random walk (α = 1) to
a white noise model (α = 0). For values of α < 1 the estimated
angular accelerations are biased toward 0, but for human motion
this bias is reasonable and may improve performance.

The observation equations were created with an algorithm
that algebraically applies the Newton–Euler recursive equations
with the parameters in Table I. Equations of the upper arm IMU
are

ω̇z = θ̇3 + θ̇1sθ2

ω̇x = θ̇1cθ2sθ3 − θ̇2cθ3

ω̇y = θ̇1cθ2cθ3 + θ̇2sθ3

v̇x = −lu [θ̇2
1cθ2

2 + θ̇2
2 ] − gcθ1cθ2

v̇y = lu [cθ2sθ2sθ3 θ̇
2
1 − 2θ̇2cθ3sθ2 θ̇1 + θ̈2sθ3 + θ̈1cθ2cθ3 ]

+ g[cθ3sθ1 + cθ1sθ2sθ3 ]

v̇z = lu [cθ2cθ3sθ2 θ̇
2
1 + 2θ̇2sθ2sθ3 θ̇1 + θ̈2cθ3 − θ̈1cθ2sθ3 ]

− g[sθ1sθ3 + cθ1cθ3sθ2 ]

where (ωx, ωy , ωz , v̇x , v̇y , v̇z ) are the gyroscope, and ac-
celerometer data at time n. The time index n was dropped for
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ease of readability. Measurement equations for the forearm IMU
are too long to be shown in this paper.

D. Nonlinear State Estimator

The state-space arm model introduced earlier has a nonlinear
relationship between the joint angles and observed sensor mea-
surements. The EKF is the most common method of nonlinear
state estimation. It is based on linearizing the state and observa-
tion models with a first-order Taylor series expansion. It models
the state variables with first- and second-order moments, which
is most appropriate when the distribution is Gaussian. The lin-
earization leads to poor performance if the dynamics are highly
nonlinear and the local linearization insufficiently characterizes
the relationship. The EKF also requires calculation of Jacobian
matrices, which can be difficult, tedious, error prone, and time
consuming.

Sequential Monte Carlo methods, which are also known as
particle filters, can overcome the performance and implementa-
tion limitations of the EKF [26]. These algorithms can be applied
to highly nonlinear and non-Gaussian estimation problems, has
computational requirements that are orders of magnitude larger
than the EKF. While the methods described in this article could
be implemented with any of these nonlinear tracking algorithms,
in this study we used the UKF [27].

Before the algorithms can be applied, the variance of the mea-
surement noise and the variance of the noise driving the accel-
eration of the joint angles must be specified. We approximated
the measurement noise of the accelerometers and gyroscopes
based on short recordings while the sensors were stationary.
We used 0.001 and 0.01 for gyroscope and accelerometer noise
variance. The variance of the noise driving the acceleration of
the joint angles is the primary user-specified tuning parame-
ter. This controls the tradeoff between the smoothness of the
estimated angles and how precisely the model tracks the data
recorded from the accelerometers and gyroscopes. For all of the
results reported here, we used a process noise variance of 1. The
joint angle acceleration were modeled as a random walk process
(α = 1).

E. Performance Assessment

To evaluate the performance of the inertial tracking system,
we compared the joint angles calculated by the inertial tracker
with those from an optical tracking reference system. We col-
lected two datasets from a total of eight subjects performing
tasks described in Table II. The study was conducted in the Bal-
ance Disorders Laboratory at Oregon Health and Science Uni-
versity, which is equipped with a motion capture system with
eight high-speed, infrared cameras (Motion Analysis Corpora-
tion, Santa Rosa, CA). The cameras recorded the position of 14
reflective markers placed on the sternum, upper arm, forearm,
shoulder and wrist (see Fig. 2). Elbow and forearm angles were
obtained from the 3-D positions of the markers placed on the
upper arm and forearm based on the algorithm described in [28].
Similarly, shoulder angles were obtained from positions of the
reflective markers placed on the shoulder and upper arm. Two
IMUs, containing a triaxial accelerometer and gyroscope, were
placed on the upper arm and forearm. Each IMU was attached

TABLE II
AVERAGE CORRELATION r, RMSE, AND PEAK-TO-PEAK ERROR BETWEEN

OPTICAL AND INERTIAL ANGLES OF SHOULDER AND ELBOW

Fig. 2. Reflective markers and Opal inertial sensors (APDM, Inc.) placement
on the arm of one of the subjects.

to the arm with a strap band, in the center of a cluster of four
markers. A stationary calibration period of 3 s at the initial pose
preceded each movement task. The calibration period served two
purposes. The first was to align the inertial and optical reference
systems. The second was to calculate the gyroscope constant
bias. This bias was removed from the gyroscope data before
calculating the joint angles. Optical and inertial systems were
synchronized to start and stop recording simultaneously. The
inertial data was originally sampled at 128 Hz, and the Vicon
data at 60 Hz. The angles calculated from inertial sensors were
then resampled to 60 Hz for comparison to the Vicon optical
angles.

III. RESULTS

To validate our statistical models, used to generate the state
and observation equations, we first investigate the performance
of the UKF-based tracker on synthetic data generated by these
statistical models. On average, the root-mean-squared error
(RMSE) between the synthetic and estimated angles and was
less than 0.6◦ for all five arm angles. Fig. 3 shows the true (solid
lines) and estimated (dotted lines) synthetic shoulder angles,
and the very small-tracking error in bold gray line.

In the rest of this section, we present results for tracking real
data using the inertial and optical systems. In the first dataset,
four subjects repeated simple planar articulations three times.
Each time lasted 18 s, including a stationary calibration period of
3 s at initial pose. The subjects performed each task at a normal
daily life movement speed, at an approximate average of 180◦/s,
while keeping the rest of the body stationary. Fig. 4 shows
forearm supination/pronation angles, and Fig. 5 shows shoulder
abduction/adduction angles estimated by the inertial and optical
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Fig. 3. Synthetic shoulder angles (solid lines), their estimate (dashed), and er-
ror (grey). The first two bumps represent flexion/extension. The third and fourth
are shoulder abduction/adduction. The last two are internal/external rotation.

Fig. 4. Forearm supination/pronation estimates by the optical system (dashed
line) compared to inertial angles estimate (solid line), and the error in gray.

tracking systems, and the difference between estimates in gray
lines.

We calculated the correlation coefficient r, and the RMSE
between angle estimates from the inertial and optical tracking
system. On average, the correlation coefficient was r ≥ 0.97
for all tasks among all subjects. Table II shows the correlation
coefficient, RMSE average across subjects for all tasks, and the
peak-to-peak error between inertial and optical angles.

In the second dataset, the other four subjects performed the
same tasks described earlier continuously without stopping the
recording. Starting with simple planar articulation, and ending
with free movement to mimic touching the nose with the index
finger, and reaching for a doorknob. The continuous recording
lasted approximately 2 min for each subject. Fig. 6 shows an
example of shoulder flexion/extension angles estimated by the

Fig. 5. Shoulder abduction/adduction angle estimates by the optical system
(dashed line) compared to inertial angles estimate (solid line), and the error in
gray.

Fig. 6. Shoulder flexion/extension estimates by the optical system (dashed
line) compared to inertial angles estimate (solid line), and the error in gray.

inertial and optical tracking systems. The average RMSE for all
tasks among the four subjects was less than 7◦.

To determine the performance of the inertial tracker when
subjects performed more complex movements than simple ar-
ticulation around one axis, each subject was asked to mimic
touching nose with the index finger, and to mimic reaching for
the doorknob to open a door. Each movement was repeated five
times, lasting about 10s. Both tasks were performed around the
end of second minute of recording. Table III shows the average
correlation coefficient r among subjects for each task, RMSE,
and the peak-to-peak error between inertial and optical angles.

To verify the performance of our inertial system in tracking
fast movement, we asked the eight subjects to perform the tasks
described in Table II at a fast pace. The articulation was per-
formed at an approximate average rate of 420◦/s. Fig. 7 shows
the estimated inertial elbow flexion/extension angles compared
to the angles obtained from the optical system. Average RMSE
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TABLE III
AVERAGE CORRELATION r AND RMSE BETWEEN OPTICAL AND INERTIAL

ANGLES OF SHOULDER AND ELBOW

Fig. 7. Elbow flexion/extension during fast arm movement. Inertial estimates
(solid line) compared to estimates from the optical system (dashed line).

among the eight subjects for all tasks was less than 8◦, and the
average peak-to-peak error was less than 12◦.

IV. DISCUSSION

We combined kinematic models with state-space methods to
estimate human joint angles using IMUs containing a triaxial
accelerometer and a triaxial gyroscope. To estimate shoulder
and elbow joint angles, we used the UKF which provides a
few advantages over the most commonly used EKF. The UKF
uses a more accurate method to characterize the propagation
of the state variable distribution through the nonlinear models,
and it does not require the calculation of Jacobian matrices. In
some applications, including the one presented in this study,
the calculation of the Jacobian matrices is tedious and error
prone due to the structure and dimension of the process and
measurement equations.

We compared joint angles estimated by the inertial system to
those estimated by an optical tracking reference system. Two
different datasets from a total of eight subjects were used to
evaluate the performance. In the first dataset, each subject per-
formed 15 s of shoulder and elbow planar articulations at a daily
life movement speed with an approximate average rotation rate
of 180◦/s. RMS angle error between the two systems ranged
from 4.4◦ to 6.5◦, with a correlation coefficient r ≥ 0.97. This
is a very reasonable error range compared to what was achieved
by Bachmann et al. who reported error range of 12◦–16◦ [12].
Based on the recursive measurement equations, distal segment
angles are affected by the accuracy of proximal segments. In
other words, error in shoulder angles might result in added error

in elbow angles. Table II shows that maximum estimation error
occurred at elbow angles.

The majority of tracking algorithms discussed in the intro-
duction limit their performance assessment to slow movement.
We evaluated the performance of our inertial algorithm in track-
ing fast movement of the eight subjects. Each subject performed
the same planar movement at a fast pace, with an approximate
average rotation rate of 420◦/s. On average, we obtained an
RMS angle error of less than 8◦ for shoulder and elbow angles,
with an excellent average correlation coefficient r ≥ 0.95. Dur-
ing all movement tasks, subjects were instructed to keep the
trunk fixed without moving. If the trunk moves, the shoulder
and elbow angles will be underestimated or overestimated.

Although errors between optical and inertial angle estimates
are minimal, performance is reduced by the noise, bias, and
drift of MEMS inertial sensors. Bias generally consists of two
parts: a deterministic part called bias offset and a random part.
The bias offset refers to the offset in the measurement provided
by the inertial sensor, is deterministic in nature. Gyroscope bias
offset was determined from a 3-s calibration period of stationary
movement at the initial pose. This offset was removed from the
gyroscope data before calculating the joint angles. The random
drift refers to the rate at which the error in an inertial sensor
accumulates with time. Gyroscope and accelerometer random
drift can be modeled as a stochastic process; increasing the
dimension of the process model by adding six more states for
each IMU.

Some of the estimation errors might also be attributed to
markers moving independently of each other, especially during
fast movements. Fig. 7 shows that maximum errors occurred
when the elbow reached its peak flexion or extension. Marker
placement over anatomical landmarks can create skin artifacts.
The motion of the skin-mounted markers are usually greater
than bone markers [29]. Soft-tissue artifact is caused by the
relative displacement of markers mounted on the skin surface,
and is a major source of error in the kinematic measurement of
human movement. Another common problem in motion capture
is marker occlusion. When a significant proportion of markers
data was missing in any of the recordings, the recording had
to be discarded. Six of 56 recordings were discarded due to
missing marker data. Vicon data was sampled at 60 Hz. When
one or two markers were nonvisible for six frames or less, the
occluded marker positions were estimated from neighboring
markers using interpolation.

An excellent agreement was also maintained between inertial
and optical angle estimates during target reaching and touching
nose with the index finger. Table III shows an average RMSE
among all subjects that is less than 7◦, and an average peak-to-
peak error less than 10◦.

Because the state-space model includes both the translational
and gravitational components of acceleration, the algorithm is
accurate during both fast and slow movements. However, one
of the limitations of this study, and of all of tracking algo-
rithms discussed in the introduction, is the use of short periods
of movement for performance assessment. Although, we used
longer periods than most of other studies, our continuos record-
ings lasted only 2 min for four of the eight subjects. To mitigate
the effect of sensors drift on the estimated angles during longer
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periods of movement, we plan to use a modified state model. The
model will incorporate prior knowledge of physical constraints
and human natural range of motion, as well as the gyroscope
and accelerometer random drift. The combined effect of im-
posing physical constraints on state estimates and modeling the
sensor random drift are expected to result in better joint angle
estimates by our tracking system which does not utilize magne-
tometer measurements. This could eliminate the need to using
magnetic sensors in other systems, which leads to large errors
due to magnetic field disturbances [12]. We also plan to compare
the performance of the EKF to that of the UKF in estimating the
joint angles, given the nonlinear relationship between the joint
angles and the observed sensor measurements.

V. CONCLUSION

We combined kinematic models designed for control of
robotic arms with state-space methods to directly and contin-
uously estimate human shoulder and elbow joint angles using
wearable inertial sensors containing a triaxial accelerometer and
gyroscope. These algorithms can be applied to any combina-
tion of synchronized sensors and can be generalized to track
any limb movement. The implementation can use tracking al-
gorithms that are either causal, real-time or non-causal, offline
smoothing with higher accuracy. The agreement between our in-
ertial tracker and a traditional optical motion capture reference
system was excellent. This agreement was obtained for both
regular and fast speed, and for simple planar and more complex
movement of the arm. However, unlike optical systems which
require fixed cameras in a controlled environment and suffer
from problems of occlusion, wearable inertial sensors can be
used anywhere, cannot be occluded, and are low cost. They are
suitable for continuous monitoring over long periods while the
subject performs normal activities of daily life at home.
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Abstract: This work deals with the task of human daily activity recognition using miniature inertial sensors. The pro-
posed method is based on the development of a hierarchical dynamic model, incorporating both inter-activity
and intra-activity dynamics, thereby exploiting the inherently dynamic nature of the problem to aid the clas-
sification task. The method uses raw acceleration and angular velocity signals, directly recorded by inertial
sensors, bypassing commonly used feature extraction and selection techniques and, thus, keeping all informa-
tion regarding the dynamics of the signals. Classification results show a competitive performance compared
to state-of-the-art methods.

1 INTRODUCTION

The task of human activity recognition using wear-
able inertial sensors is becoming popular in ap-
plications which require context-aware monitoring,
such as ambulatory monitoring of elderly patients
and home-based rehabilitation. In such applica-
tions, knowledge of the activity being carried out by
the patient is vital for providing the context within
which the patient is being monitored and this context-
awareness can help to overcome the limitations asso-
ciated with the use of self reporting in medical assess-
ment. One of the major advantages of such systems is
that they can reduce the frequency of patients’ visits
to medical centers, improving their quality of life and
reducing medical costs.

There are two main methods for human activ-
ity recognition: vision-based, e.g. (Moeslund et al.,
2006), and inertial sensor-based, e.g. (Sabatini et al.,
2005). The main disadvantages of vision-based sys-
tems are that they can only be used in a confined
space, they interfere with the privacy of the individual
and they produce an excessive amount of information
that must be processed. On the other hand, due to re-
cent advances in sensor technologies, inertial sensor
devices have become compact and portable enough
to be unobtrusively attached to the human body. For
this reason, wearable miniature inertial sensors, in-
corporating accelerometers and gyroscopes, have be-
came the ideal platform for human movement moni-

toring (Sabatini et al., 2005), falls detection (Wu and
Xue, 2008), medical diagnosis and treatment (Pow-
ell et al., 2007), and tele-rehabilitation (Winters and
Wang, 2003).

Nowadays, the main challenge in activity recogni-
tion is the development of a system for real-life mon-
itoring applications using wearable sensors. Long
term recording capabilities and unobtrusiveness are
the primary requirements of such systems. The main
constraint for the long term recording capabilities re-
quirement is the battery life of the sensor devices.
This drawback is even more important in real-time
applications, such as fall detection systems. The pro-
cessing of the data in real time can either be done
by the sensor, if it has an on-board processor, or by
transmitting the data wirelessly from the sensor to an
external processor. Both cases result in high battery
consumption and the latter case also requires the pa-
tient to be confined within the range of the wireless
communication system. In order to make the sys-
tem as unobtrusive as possible, the number of sensors
placed on the body should be kept to a the minimum
despite the fact that the larger the number of sensors,
the more activities the system can recognize (Bao and
Intille, 2004). Thus, choosing the number of sensors
is a trade off between performance and usability.

Further to simply identifying which activities a
subject is carrying out, this work proposes to also pro-
vide information regarding of the dynamics of the ac-
tivity itself. There are two benefits to this approach:



(1) the intra-activity dynamics can aid the classifi-
cation task and (2) additional contextual information
could be gained from characteristics of the dynamic
behaviour. With this in mind, we propose a hierar-
chical dynamical model which takes into account two
levels of dynamics: inter-activity and intra-activity.
The model aims to represent the activities as intu-
itively as possible in terms of the patterns present in
the raw data from the sensors. Thus, not only are dif-
ferent activities recognized, but the “events” within a
given activity are also distinguished, for example, the
steps in the case of walking. Three different dynamic
models are described, each one pertaining to a partic-
ular type of activity: the first is for stationary activi-
ties like standing, sitting and lying; the second, for ac-
tive movements like walking and running, whilst the
third deals with short-time motions like jumping and
falling.

A further advantage of the proposed system is
that it uses raw signals directly from the sensor, thus
avoiding computationally expensive techniques such
as feature extraction and selection. Because the sys-
tem is designed to capture directly the dynamics of
the signals, activity recognition is achieved with high
accuracy whilst eliminating costly processing tech-
niques.

The paper is organized as follows: in Section 2
the activity recognition literature is reviewed. Section
3 describes the proposed hierarchical dynamic model.
The test procedure is outlined in Section 4, whilst in
Section 5 the results obtained with our model are pre-
sented. Finally, in Section 6, conclusions and future
lines of work are discussed.

2 BACKGROUND AND RELATED
WORK

2.1 Sensors and Feature Extraction

The previously published literature in the area of hu-
man activity recognition using inertial sensors is quite
extensive. Most of the published work follows a simi-
lar approach of data collection and processing, as out-
lined in this section.

Perhaps the first consideration in any activity
recognition system, is the selection of the type and the
number of sensors, as well as the positions on the hu-
man body where they will be worn. The simplest sen-
sor used in the recent literature is a triaxial accelerom-
eter (Han et al., 2010; Krishnan et al., 2008; He and
Jin, 2008; Khan et al., 2010). In (Frank et al., 2010;
Altun and Barshan, 2010; Zhu and Sheng, 2010), in-

ertial measurement units (IMU), combining triaxial
accelerometers and triaxial gyroscopes, are used to
provide measurements of specific force and angular
rate, respectively. As has been previously mentioned,
the larger the number of sensors used, the more activi-
ties the system can recognize. Similarly, the choice of
sensor positions on the body is crucial. In the case of
a single sensor, the most popular place is the waist, on
the belt or in the pocket of the trousers (Frank et al.,
2010; Han et al., 2010; He and Jin, 2008). In this
work, a single IMU placed on either the left or right
hip is considered for testing purposes, although the
model is not limited to this configuration.

The first processing step is, typically, focused on
the construction of a feature vector derived from the
raw signals of the sensor. In the literature, a large
number of different features have been reported as
being suitable for the classification task considered in
this work; (Preece et al., 2009) provides a comparison
of the most popular features. A common approach
is to extract many features (for example in (Krishnan
et al., 2008) thirty-nine features are extracted); then,
dimensionality reduction techniques such as Principal
Component Analysis (PCA) or Linear Discriminant
Analysis (LDA) are used to reduce the size of the fea-
ture vector before classification.

In addition to the processing required for feature
extraction and selection, another disadvantage of this
approach is that a predefined window length must be
determined to compute the features. Furthermore, an
overlap is often used between consecutive windows.
The selection of such parameters is somewhat arbi-
trary and there is a lack of agreement on the best
choice; in the literature, the window length varies
widely (e.g. from 16 msec (Han et al., 2010) to 6 sec
(Bao and Intille, 2004)), whilst a 50% overlap is com-
mon.

Once the feature vector has been computed from
the windowed signals, the next step is the develop-
ment of a model that is able to discriminate among
activities. The most popular methods that have been
used to solve this sequential supervised learning prob-
lem are batch supervised learning algorithms and Dy-
namic Bayesian Networks (DBN).

In (Altun and Barshan, 2010), a comparison of
classification results using various batch supervised
learning algorithms, including Bayesian Decision
Making (DBM), Least-Squares Method (LSM), k-
Nearest Neighbor (k-NN), Support Vector Machines
(SVM) and Artificial Neural Networks (ANN) can be
found. Batch supervised learning algorithms, which
ignore the dynamics of the signals, are not consid-
ered in this work. One reason for this is to bypass
the feature extraction step and, furthermore, it will be



seen that consideration the dynamics of the signals
can give useful information about the type of activity
that is being performed.

In the case of DBN, Hidden Markov Models
(HMM) are the most frequently used. The model pro-
posed in this work is based on HMMs and, so, the
next section will describe, briefly, the theory govern-
ing HMMs and discuss, in detail, their use in the task
of daily human activity recognition.

2.2 Hidden Markov Models

2.2.1 Background

A HMM (Rabiner, 1990) is a probabilistic model that
represents the joint distribution of the observations
and the unobserved (hidden) variable. In this work
the observations are continuous signals of accelera-
tion and angular velocity. The unobserved variable
must be discrete and its possible values are called
states. The proposed hierarchical model in this work,
defines two different unobserved variables: the activi-
ties (e.g. walking, running, etc.) and the events within
each activity. This will be explained in more detail in
the Section 3.

A first order HMM is characterized by the follow-
ing:

• N, the number of states in the model. The individ-
ual states are denoted as S = {S1,S2, . . . ,SN}, and
the state at time t as qt .

• The state transition probability distribution ma-
trix, A = {ai j}. This is an N×N matrix where the
element, ai j, is the probability of making a transi-
tion from state Si to state S j:

ai j = P(qt+1 = S j|qt = Si). (1)

• The emission distribution vector, B = {b j(O)},
where, for state j:

b j(O) =
M

∑
m=1

c jmN(O,µ jm,U jm), (2)

where O is the vector to be modeled, M is the
number of mixtures, c jm is the mixture coefficient
for the mth mixture in state j and N is any log-
concave or elliptically symetric density (in our
case we have selected a Gaussian density) with
mean vector µ jm and covariance matrix U jm for
the mth mixture component in state j.

• The initial state distribution π = {πi} where

πi = P(q0 = Si) (3)

Thus, the HMM is defined by λ = (A,B,π).
For HMMs, the problem of learning the model

parameters is solved by the Baum-Welch algorithm
(Rabiner and Juang, 1993). The Viterbi algorithm
(Viterbi, 1967) is used to compute the most likely se-
quence of states, Q = q0 q1 . . .qT , from time t = 0 to
t = T and its probability, given the model and an ob-
servation sequence, O = O0 OT . . . Ot .

2.2.2 HMMs and Activity Recognition

In the literature, there are two main approaches to
solving the activity recognition task using HMMs.
In the first approach (Zhu and Sheng, 2010), only
the temporal dependency among activities is modeled
and there is just one HMM, whose number of states
is equal to the number of activities. This model is
very simple and is usually combined with batch su-
pervised learning algorithms. Modeling the temporal
dependencies among the activities allows the system
to model human behavior by forbidding impossible
transitions like, for example, a direct transition from
running to lying down. An example of this approach
can be found in (Zhu and Sheng, 2010) where the
classification is done in two steps; first, two ANNs are
used for determining whether or not the feature vec-
tor corresponds to a dynamic activity and whether the
movement is vertical or horizontal; then, the fusion of
these two outputs becomes the input to a HMM where
the states are the activities.

In the second approach (Han et al., 2010), one
HMM per activity is modeled. The number of states
of each HMM is a design parameter. The inference
step consists of computing the likelihood of a test se-
quence with each of the HMMs. The activity corre-
sponding to the HMM with the highest likelihood is
the chosen activity. The main drawback of this ap-
proach is that it is necessary to define a sequence size
in order to learn the models and to infer the test se-
quence. Well-defined sub-units do not exist in the
recorded IMU signals, since human activities are con-
tinuous and any given activity can have a highly vari-
able duration. The sequence size is often selected tak-
ing into account the time interval during which only
one activity exists. In (Han et al., 2010), this is set to
2 seconds. Some disadvantages of this approach are
the requirement to define the sequence size, that the
temporal dependency among activities is not modeled
and that the HMM of each activity does not represent
the activity itself but a sequence of, for example, 2
seconds of the activity. Thus, dynamic information
is lost by truncating movement patterns and rhythmic
movements.

To overcome this problem, (Oliver et al., 2002)
develop a Layered Hidden Markov Model (LHMM),



in which each layer of the architecture is connected to
the next layer via its inferential results. This represen-
tation segments the problem into distinct layers that
operate at different temporal granularities. But, again,
the parameters of the HMMs do not give any intuitive
information about how the person is performing the
activity and it is necessary to arbitrarily define these
temporal granularities.

As has been shown in this section, there is no con-
sensus on the most discriminative features for use in
an activity recognition system. For this reason, it is
usual to extract a large number of features and, then,
use a dimensionality reduction technique. The ma-
jor drawback of this approach is the computational
cost. Moreover, it has been mentioned that the win-
dow length used to compute the features is another
design parameter that varies widely among previous
studies. With this in mind, this work aims to bypass
the feature extraction step and work directly with the
raw data produced by the sensor.

3 PROPOSED METHOD

The method proposed in this work consists of a hi-
erarchical dynamical model based on HMMs whose
inputs are the raw signals given directly by the sen-
sor. This model takes into account the temporal
dependencies among activities and models each ac-
tivity in terms of acceleration and angular velocity
signals. The hierarchical scheme concept has been
mentioned before in the activity recognition literature
(Khan et al., 2010). In this work, the term hierarchi-
cal is used because the learning process is done in two
steps. First, the type of the activity (static, dynamic
or transition) is recognized, using an ANN, and, then,
the activity itself is determined.

3.1 Hierarchical Dynamical Model

The final result of our hierarchical dynamical model
is a single HMM (λF = (AF ,BF ,πF)). This final
HMM is built up of “sub”-HMMs, one for each ac-
tivity, which are joined to yield the final HMM. The
learning process is performed in two stages. In the
first stage the intra-activity dynamics are taken into
account, modeling each activity separately with a
unique “sub”-HMM and learning its parameters, as
described in Section 3.1.1. The second stage concate-
nates these HMMs, modeling inter-activity dynamics,
as outlined in Section 3.1.2.

3.1.1 Intra-Activity Dynamics

At this level, the hidden variable represents the sig-
nificant events occurring during the activity. These
events are the internal states of the sub-HMMs of each
activity. The individual events, or states, of activity, Z,
are denoted by EZ = {EZ

1 , · · · ,EZ
KZ} where KZ is the

number of states of activity, Z, and the state at time t
is denoted by et .

In this first stage of the learning process, the joint
probability distribution of the observations, O, and
the events, e, given the activity, Z, (p(e,O|Z)) are
modeled:

p(e,O|Z) =
t

∏ p(Ot|et ,Z)p(et |et−1,Z). (4)

Each activity can have a different number of events
and a different topology, as detailed in the following.

We propose three different topologies, depending
on the type of the activity. All of them have in com-
mon that they have two transient states (the first and
the last), that describe the transition from one activity
to another. Each activity must begin in the first state,
and once this state is left it cannot be returned to from
within the activity. The only possible transition from
the last state is to itself. This is achieved by forcing
the values of the model parameters to be:

• The transition matrix AZ of the activity Z:

AZ =


aZ

11 aZ
12 0 · · · 0

0 aZ
22 aZ

23 · · · aZ
2KZ

0 0 aZ
33 · · · aZ

3KZ

...
...

...
. . .

...
0 0 0 · · · 1

 (5)

• The initial state distribution vector:

πZ =
[
1 0 · · · 0

]
(6)

For stationary activities like standing, sitting and
lying, a left-right model with three states is proposed
(Figure 1). The first and the last states are the transient
states and the state in the middle models the perma-
nent state of being seated, for example.

The second model is designed for active move-
ments like walking and running (Figure 2). In this
case there are two intermediate states which represent
the pattern of stepping. These two states are fully
inter-connected in order to model the periodicity of
walking or running.

The last topology models short-time motions like
jumping and falling. This model is made up only of
transient states since there is neither a permanent ac-
tion nor a rhythmic movement (Figure 3).



E2	   E3	  E1	  

Figure 1: HMM topology for stationary activities.

E3	  E2	   E4	  E1	  

Figure 2: HMM topology for active movements.

3.1.2 Inter-Activity Dynamics

Once the models of each activity have been defined,
they can be concatenated by means of their transient
states (Figure 4) defining the transition probabilities
among activities. These transition probabilities model
human behavior; for example, the transition probabil-
ity from walking to standing is higher than the tran-
sition probability from walking to running. Never-
theless, if the activity recognition system is used to
monitor the elderly, the transition probability between
walking and running would be lower than that in the
case of monitoring children.

The result of the concatenation is a single HMM,
λF = (AF ,BF ,πF), with twenty-one states, corre-
sponding to all events of all activities as follows:
running (states 1-4), walking (5-8), standing (9-11),
sitting (12-14), lying (15-17), jumping (18-19) and
falling (20-21). The state transition probability ma-
trix of the final model, AF , is built up following the
steps below:

(i) Set the transition probability matrixes of the
sub-HMMs in the diagonal transition probabil-
ity matrix of the final HMM:

AF =

ARun 0 0 0 0 0 0
0 AWlk 0 0 0 0 0
0 0 AStd 0 0 0 0
0 0 0 ASit 0 0 0
0 0 0 0 ALie 0 0
0 0 0 0 0 AJmp 0
0 0 0 0 0 0 AFll


.

(7)

(ii) Connect the sub-HMMs. This step is straight-
forward, thanks to the definition of transient
states, since all the activities must begin at the
first state and end at the last state of their sub-
HMM. Thus, we set:

aF
i j = P(et+1 = S j|et = Si)

= P(actt+1 = Z′|actt = Z), (8)

E2	  E1	  

Figure 3: HMM topology for short-time motions.

for all i ̸= j which satisfy the condition that Si
is the last state of any activity, Z, and S j is the
first state of any other activity, Z′. For exam-
ple, to connect the sub-HMM of running to the
sub-HMM of walking, the value of the param-
eter aF

45 = P(et+1 = Ewalk
1 |et = Erun

4 ) of the fi-
nal HMM will be set to P(actt+1 = walk|actt =
run).

(iii) Reset the self-transition probabilities corre-
sponding to the last event of each activity,
i.e. set:

aF
j j = 1−

21

∑
m=1,m̸= j

aF
jm (9)

for each j which satisfies the condition, S j ∈
{Erun

4 ,Ewlk
4 ,EStd

3 ,ESit
3 ,ELie

3 ,EJmp
2 ,EFll

2 }
The emission probabilities of the final HMM, BF , are
the corresponding emission probabilities of each sub-
HMM, defined in the first stage of the learning pro-
cess.

Finally, the initial state distribution of the final
HMM, πF , is defined. In general, the value πF

j is set
to zero if S j does not correspond to the first event of
any sub-HMM. In this work, standing is always con-
sidered as the first position.

RUN	  

STANDING	  WALK	  

Figure 4: Concatenation of the HMMs.

4 TEST PROCEDURE

4.1 Database Description

In order to facilitate comparison of results with state-
of-the-art results, the database available in (Frank



et al., 2010) has been used for testing the proposed
method. This database consists of 4 hours and 30
minutes of activity data from 16 subjects (6 females
and 10 males) aged between 23 and 50 years. Data
were recorded in semi-naturalistic conditions. The
IMU was placed on a belt, either on the right or left
hip, providing 3-axis acceleration and 3-axis angular
velocity signals at a sampling rate of 100 Hz.

The activities labelled in the database are running,
walking, standing, sitting, lying, jumping, falling, as-
cending (from sitting to standing and from lying to
standing), descending, accelerating (from walking to
running) and decelerating (from running to walking).
In the database, there are both training sequences and
benchmark sequences. There are two benchmark se-
quences from two different subjects (Emil and Sinja).
Emil has the IMU placed on his right side and Sinja,
on her left side. These benchmark sequences consist
of a succession of activities. More details of the data
collection and labeling can be found in (Frank et al.,
2010).

4.2 Training

For the purposes of learning the model for each ac-
tivity, sequences corresponding to one single activ-
ity were extracted from the database, to be used as
training data. Therefore, for each activity there are a
different number of sequences with different lengths.
Each HMM learned its parameters using the Baum-
Welsh algorithm. The emission distributions were de-
fined as mixtures of two gaussian distributions with
diagonal covariance matrix.

4.3 Evaluation

The hierarchical dynamic model was tested, using
the benchmark sequences, which were decimated by
a factor of 4. This means that the model can be
used with acceleration and angular velocity signals
recorded at a sampling rate of 25 Hz, allowing the
sensor device to consume less battery. In order to
compute the most likely sequence of events given the
observation sequence, the Viterbi algorithm was used.
Using the knowledge of which set of events corre-
spond to each activity, finally, the sequence of activi-
ties was obtained.

5 RESULTS

5.1 Classification

Figure 5 shows the sequence of events for the bench-
mark sequence of Emil. The blue crosses correspond
to the events inferred by the Viterbi algorithm. Events
1 to 4 belong to the activity running, 5 to 8 to the ac-
tivity walking and so on, as listed in Section 3.1.2.
The red circles are the true, labelled activities and
they are aligned in the graph with the last event of
each activity. It should be remembered, here, that
the model proposed in this work does not consider
as activities, the “transition” activities labelled in the
database (i.e. ascending, descending, accelerating and
decelerating), since these events are inherently dealt
with by means of the transient events in the hierar-
chical dynamic model. It can be seen from Figure 5
that the transition activities have, indeed, been incor-
porated by the proposed algorithm into the inferred
intra-activity events. The figure shows good agree-
ment between true and inferred activities.
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Figure 5: Sequence of events inferred for Emil’s benchmark
sequence.

Tables 1 and 2 show the precision and recall values
of each activity for the benchmark sequences of Emil
and Sinja, respectively. The precision of activity, Z,
is measured as number of samples classified correctly
as activity, Z, divided by the total number of samples
with inferred label equal to Z. The recall parameter is
the number of samples correctly classified as activity,
Z, divided by the number of samples whose true label
is Z.

For comparison, Table 3 shows the performance
reported in (Frank et al., 2010), relative to which
the performance of the proposed algorithm is seen
to be competitive. The results obtained for Sinja are
lower than those for Emil because our model does not



deal specifically with the location of the sensor. The
number of training sequences recorded with the sen-
sor placed on the right side was greater than those
recorded on the left side, so the model has learned,
more accurately, the models for a sensor on the right.
In the case of Sinja, the sensor was on the left side.
Nevertheless, the results achieved are considered ac-
ceptable.

Table 1: Recall and precision for Emil’s benchmark se-
quence (IMU placed on the right side).

Activity Recall Precision
(%) (%)

Running 100 95
Walking 99 97
Standing 96 99
Sitting 100 100
Lying 99 100
Jump 72 96
Fall 100 60

Table 2: Recall and precision for Sinja’s benchmark se-
quence (IMU placed on the left side).

Activity Recall Precision
(%) (%)

Running 100 89
Walking 99 88
Standing 92 100
Sitting 100 100
Lying 100 96
Jump 34 100
Fall 59 82

Table 3: Recall and precision results reported by (Frank
et al., 2010).

Activity Recall Precision
(%) (%)

Running 93 100
Walking 100 98
Standing 98 100
Sitting 100 97
Lying 98 96
Jump 93 93
Fall 100 80

5.2 Intra-Activity Dynamics

In order to show, more clearly, the operation of the al-
gorithm in terms of intra-activity dynamics, Figure 6
shows the acceleration signals and the events inferred
during the activity of walking. The rhythmic transi-
tions between events 2 and 3 are seen to correspond

with the stepping pattern in the acceleration signals.
Not only has the definition of the hierarchical dy-
namic model proposed in this work allowed accurate
classification of activities without preprocessing of
the raw sensor signals, but the information regarding
the dynamics within the activity itself could also be
used to further characterise the subject’s behavioural
patterns and provide useful contextual awareness for
the monitoring system.
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Figure 6: Events inferred for walking and acceleration sig-
nals.

6 CONCLUSIONS AND FUTURE
WORK

This work has proposed a new approach to the
task of human daily activity recognition using wear-
able inertial sensors. The method presented has two
dynamic levels, augmenting the information provided
by activity classification alone, through the provision
of supplementary information regarding the dynamics
within the activity. In an activity such as walking, for
example, this level of dynamics could be analysed to
give postural patterns for use in rehabilitation science.

Additionally, our bypasses the typically used fea-
ture extraction process, which is a computational
bottleneck in current activity recognition methods.
Working directly with the raw signals from the IMU
sampled at a low sampling rate, the inherent dynamic
nature of human motion is exploited. With this novel
method, results with high precision and recall rates
have been obtained.

Future research plans include developing more so-
phisticated models to take into account variations in



sensor placement as well as implementing the algo-
rithm in real-time.
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Abstract—This work deals with the task of human daily
activity recognition using miniature inertial sensors. The pro-
posed method reduces sensitivity to the position and orientation
of the sensor on the body, which is inherent in traditional
methods, by transforming the observed signals to a “virtual”
sensor orientation. By means of this computationally low-cost
transform, the inputs to the classification algorithm are made
invariant to sensor orientation, despite the signals being recorded
from arbitrary sensor placements. Classification results show that
improved performance, in terms of both precision and recall, is
achieved with the transformed signals, relative to classification
using raw sensor signals, and the algorithm performs competi-
tively compared to the state-of-the-art. Activity recognition using
data from a sensor with completely unknown orientation is shown
to perform very well over a long term recording in a real-life
setting.

I. I NTRODUCTION

Human activity recognition has recently become a popular
topic of research interest due to the growth of applications
based on context-aware monitoring, including home-based
rehabilitation, independent living solutions for the elderly
and ambulatory monitoring of patients with psychiatric or
other disorders. Knowing the activity being carried out by
the patient throughout their day-to-day life provides context-
awareness for the physiological or other measurements that
are being monitored, allowing a more accurate analysis of the
measurements than in a stand-alone monitoring system.

The two main methods for human activity recognition
are vision-based, e.g. [1], and inertial sensor-based, e.g. [2].
Vision-based systems suffer from limitations such as only
being usable in a confined space, interfering with the pri-
vacy of the individual and producing an excessive amount
of information that is costly to process. On the other hand,
due to recent advances in sensor technologies, inertial sensor
devices have become compact and portable enough to be
unobtrusively attached to the human body. For this reason,
wearable miniature inertial sensors, incorporating accelerom-
eters and gyroscopes, have became the ideal platform for
human movement monitoring [2], falls detection [3], medical
diagnosis and treatment [4], and tele-rehabilitation [5].

Recently, the authors presented a novel algorithm for the
classification of human activities based on a hierarchical
dynamic model (HDM) [6]. This method was shown to give
competitive classification results, compared to state-of-the-
art methods, whilst avoiding the computational bottleneck of

traditional feature extraction methods, by basing the entire
algorithm on the raw signals measured by the sensors. One
drawback of this method, due, in part, to not extracting
features, is that the raw sensor signals are sensitive to the
placement of the sensor on the subject’s body, in terms of
position and orientation. For applications in real life situations,
control of the exact placement of the sensor is not feasible and
adverse effects of variations due to body shape, clothing and
other factors must be eliminated from classification algorithms.

This work proposes a novel transformation of sensor mea-
surements, before classification, which renders the collected
signals insensitive to the position and orientation of the sensor
on the subject’s body. The proposed algorithm allows the
sensor to be placed in any fixed location within a region
approximately bounded by a belt at the waist and a trouser
pocket, as illustrated in Fig. 1. The only restriction is that
the sensor should be fixed such that its movement during the
day is limited to a few millimeters. All measurements are
transformed to a ‘virtual’ sensor placement, defined at the
approximate center of mass of the subject’s body and with
a known orientation, with respect to the body in a standing
position, as illustrated in Fig. 1.
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Fig. 1. Allowable Sensor Placement and Virtual Sensor Position

This simple transformation, in conjunction with the HDM, is
shown to result in an improved classification performance (in
terms of both precision and recall) compared with the HDM
using raw sensor signals. These results are based on a database
available in [7]; as such, the authors have no information



regarding the sensor position and orientation for each subject,
other than the side of the hip on which it was placed, and this
information is not made available to the algorithm.

The rest of this paper is laid out as follows: in Section II, a
brief introduction to the background theory of inertial sensors,
coordinate systems and the HDM is provided. Section III
describes the proposed transform. The experimental procedure
is outlined in Section IV and classification results are presented
in Section V. These results are followed by a discussion
in Section VI and finally conclusions and future work are
outlined in Section VII.

II. BACKGROUND

A. Inertial Sensors

The inertial sensors used in this work are each equipped
with a triaxial accelerometer and triaxial gyroscope. The ac-
celerometers measure, in m/s2, the total inertial force acting on
the sensor. This inertial force includes both linear accelerations
in each of the three sensor axes and a gravitational force
component in each axis. The gyroscopes measure the angular
velocity of the sensor in rad/s.

The signals measured by the sensors can be modeled as
follows: the accelerometer measurement vector,αt, at time,t,
is given by:

αt = at + gt + µa,t, (1)

whereat is the linear acceleration component due to sensor
motion, gt is the component due to the Earth’s gravitational
force andµa,t is a noise term. Similarly, the gyroscope signal,
ωt, is given by:

ωt = wt + µw,t, (2)

wherewt is the angular rotation andµw,t is a noise term.
The measurement noise terms,µa,t andµw,t, are assumed to
be zero mean Gaussian random processes. Signals from both
accelerometers and gyroscopes also contain bias components
but, for the purposes of classification, these can be considered
negligible.

B. Coordinate Systems

The signals recorded by the inertial sensors are measured in
a three-dimensional coordinate system which is fixed to and
moves with the sensor, both linearly and rotationally. This
frame is referred to as the sensor frame (S) and is defined
by an orthogonal set of unit vectors,{

→

x S ,
→

y S ,
→

z S}. A
fixed frame (F ) can also be defined, in which the gravita-
tional component of the force of acceleration is constant; for
example, in the frame,{

→

x F ,
→

y F ,
→

z F } = {North, West,
Up}, acceleration due to gravity is given byGF ≈ [0, 0, 9.81]
m/s2.

During epochs of little or no linear acceleration (i.e.at ≈
0 for t1 ≤ t ≤ t2), comparing the mean of the measured
acceleration vector in the sensor frame,αS = mean(αS

t1:t2
),

to the gravitational vector in the fixed frame,GF , allows the
orientation of the sensor frame, relative to the fixed frame, to
be partially resolved. The inclination of the sensor, given by
the angles of roll,θx, (the angle between theyS-axis and the

xF -yF plane) and pitch,θy, (the angle between thexS-axis
and thexF -yF plane), can be estimated by means of ratios of
the gravitational acceleration component in each sensor axis
[8]:

θx = arctan

(

αS
y

αS
z

)

, (3)

θy = arcsin





−αS
x

√

(αS
x )

2 + (αS
y )

2 + (αS
z )

2



 . (4)

With just accelerometers and gyroscopes, there is not suf-
ficient information to resolve the angle of yaw,θz, (the angle
between the projection of thexS-axis onto thexF -yF plane
and thexF -axis), since the gravitational component in both
the xF - and yF -axes is zero, resulting in an infinite number
of possible solutions in the range{0, 2π}. Fortunately, for
the purposes of activity recognition, it is irrelevant whether
a subject is facing due North or in any other direction whilst
carrying out a particular activity and it will be seen in Section
III that a yaw estimate is not required for the proposed method.

The final coordinate system to be introduced is the body
frame (B), which is fixed to and moves with the center
of mass of the subject’s body (approximately located at the
waist). This is the frame of the virtual sensor to which
all of the sensor measurements will be transformed and is
shown in Fig. 1. The directions of each axis, relative to
the subject’s body in a standing position, can be described
as: {

→

x B,
→

y B,
→

z B} = {Forward, Left, Up}. It should
be remembered that as the subject changes position, these
directions will change with respect to the fixed frame; for
example, if the subject is lying down, thezB-axis will no
longer point upwards, but along thexF -yF plane. This is the
key to the operation of the transform.

C. Hierarchical Dynamic Model with HMM

In previous work by the authors [6], a Hierarchical Dynamic
Model (HDM) with HMM was proposed for the task of activ-
ity recognition. In that paper, the raw signals of the sensor were
directly used as the inputs of the activity recognition algorithm.
In order to evaluate the effectiveness of the transformation
proposed, the same model is used in this work, but in this case,
transforming the input signals. This section briefly reviews the
HDM with HMM, for details see [6].

The HDM with HMM constructs a model taking into ac-
count two levels of dynamics: inter-activity and intra-activity.
The inter-activity dynamics refer to the temporal dependency
among activities. This level of dynamics helps in the recog-
nition task because the current activity depends on which
activity the subject was doing in the previous time step. This
is modeled by transition probabilities among activities.

On the other hand, the amplitude of the signals and how
they evolve in time, both give valuable information for the
recognition of the activity. This level of dynamics is referred
to as intra-activity dynamics. This is modeled by constructing
a HMM for each of the activities. Various different dynamic



models are proposed, each with a different topology. For
example, for stationary activities like standing, sitting and
lying, a left-right model with three states is defined. The first
and the last states are transient states and the state in the
middle models the permanent state of, for example, being
seated. This can be seen within the activity “LYING” in Fig. 2.

The final result of the HDM is a single HMM built up of
“sub”-HMMs, one for each activity, which are interconnected
by means of their transient states according to the transition
probabilities defined by the inter-activity level. Fig. 2 shows
an example of these interconnections.
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Fig. 2. Example of HDM hierarchy with “sub”-HMMs.

I II. T RANSFORM

Knowledge of the orientation of a body segment can be very
useful for activity recognition, especially for distinguishing be-
tween different “low-motion” activities, such as standing still,
sitting and lying down. For all of these activities, the linear
acceleration and angular rotation are close to zero throughout
the activity and, so, the classification algorithm must rely on
only the acceleration due to gravity to recognize the activities
by determining the orientation or pose of the subject’s body.
The measurement of the gravitational acceleration component,
gSt , directly in the sensor frame, does not give any information
about the orientation of the subject’s body, relative to the
fixed frame, because it depends on the initial placement of
the sensor. This can be observed in Fig. 3a and 4a, which
show accelerometer observations recorded during two similar
sequences of activities, carried out by the same subject, but
with the sensor at different positions and orientations, namely,
attached to a belt at the left hip and in the right trouser
pocket. The activities are labelled above the signals (‘STD’
- standing, ‘SIT’ - sitting, ‘WLK’ - walking, ‘LYING’ - lying
down). The values of the acceleration in each axis in the sensor
frame, during, for example, standing, can be seen to be highly
dependent on sensor orientation and, thus, not comparable
across multiple sequences or epochs of the same activity.

Using the roll and pitch, estimated by (3) and (4), respec-
tively, and assuming a yaw of zero, a rotation matrix can be
defined to partially transform the measurements from the sen-
sor frame to the fixed frame, such that thez-component of the
transformed measurement is aligned with thezF -axis and the
xS-yS plane is aligned with thexF -yF plane. Once the initial
orientation has been calculated in this manner, the angular
velocity can be integrated over time to update the rotation

matrix between the sensor and the fixed frame at each time
instant. In this coordinate system, the gravitational component
of acceleration is independent of sensor orientation. However,
it is always contained in the same axis (zF ), regardless of
whether the subject is lying down, sitting, standing, etc. Thus,
always transforming the data to an Earth fixed frame does not
help to distinguish between the low-motion activities.

With this in mind, the virtual sensor in the body frame
is introduced. When the subject is in a standing position (a
duration of two seconds is sufficient), the roll and pitch are
estimated using (3) and (4) and the rotation matrix is calculated
once by:

R(θx, θy) =




cos(θy) sin(θx) sin(θy) cos(θx) sin(θy)
0 cos(θx) − sin(θx)

− sin(θy) sin(θx) cos(θy) cos(θx) cos(θy)



 . (5)

Using (5), the measured signals are all transformed by the
same constant rotation at each time instant, such that it appears
that all measurements have been recorded from the virtual
sensor position. The transformation of the acceleration, for
example, is given by:

αB′

t = R(θx, θy)α
S
t , (6)

where the frame,B′, denotes the body frame with an arbitrary
yaw angle. The gyroscope signals are transformed in the same
way. One of the benefits of using a constant rotation matrix is
that the transform is insensitive to the accumulation of biases
in the sensors as the orientation does not need to be updated
by integrating the gyroscope signals over time. Furthermore,
the computational load requirement for multiplication of the
signals by a constant matrix is low.

Fig. 3b and 4b show that thezB
′

-components of the trans-
formed acceleration signals are very similar despite the signifi-
cant differences in sensor placement and orientation, observed
in Fig. 3a and 4a. Clearly, there are some remaining variations
from one sequence to the next, which depend on the subject’s
exact behavior, whether they are seated upright or slouching,
whether they are lying face down or on their side, among many
other variable factors. ThexB′

- and yB
′

-components remain
dependent on the initial yaw. However, the modulus of the
acceleration in thexB′

-yB
′

plane,
√

(αB′

x )2 + (αB′

y )2, can be
seen to behave similarly for both sequences, i.e independently
of sensor orientation, suggesting that it may be a suitable
signal for classification.

In the body frame, the orientation of the gravitational
acceleration is the distinguishing signal characteristic for low-
motion activities, whilst specific periodic patterns in acceler-
ation and angular velocity characterize movement activities,
such as walking, running, jumping, etc. This periodicity can
be observed independently of the sensor orientation, as shown
in Fig. 3 and 4. More importantly, the modulus of thexB′

-
and yB

′

-components of acceleration and angular velocity
conserves the periodicity of the signals while making their
joint magnitude invariant to the yaw angle.
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(b) Transformed acceleration in body frame

Fig. 3. Sensor attached to belt at the left hip

IV. EXPERIMENTAL PROCEDURE

A. Database Description

In order to evaluate the effectiveness of the proposed
transformation, the results obtained with the transformed sig-
nals will be compared with the results obtained without any
transformation. For this purpose we use the same database as
was used in [6], which can be found in [7]. This database
consists of 4 hours and 30 minutes of activity data from 16
subjects (6 females and 10 males) aged between 23 and 50
years. The sensors used were Xsens MTx-28A53G25 inertial
measurement units (IMUs).

The IMU was placed on a belt, either on the right or
left hip, providing 3-axis acceleration and 3-axis angular
velocity signals at a sampling rate of 100 Hz. The activi-
ties labelled in the database are running, walking, standing,
sitting, lying, jumping, falling, and transient activities. In the
database, there are both training sequences and benchmark
sequences, recorded in semi-naturalistic conditions. There are
three benchmark sequences from three different subjects. Two
of the subjects have the IMU placed on the lefthand side of
the waist and the third, on the righthand side. More details of
the data collection and labeling can be found in [7].

In addition, to further test the generality of the method,
data was collected with an APDM [9] Opal sensor placed
at the subject’s waist, during their normal work day. More
than six hours of data were collected, including mainly the
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Fig. 4. Sensor in right trouser pocket

following activities: sitting, standing and walking. The subject
was requested to very roughly report their activities, in terms
of time of day and what they were doing (working at desk,
walking to a meeting, eating lunch, etc.) These data were
collected for the purposes of algorithm evaluation only and
were not used for training.

B. Training

As every training sequence in the database starts with the
activity, “standing”, the rotation matrix for transformation
was computed using the two first seconds of the acceleration
signals. Sequences corresponding to one single activity were
extracted from the database, to be used as training data for
that activity. Each HMM learned its parameters using the
Baum-Welsh algorithm [10]. The emission distributions were
defined as mixtures of two gaussian distributions with diagonal
covariance matrix. Training was carried out, in the same way,
for both transformed and raw data sequences, separately.

C. Evaluation

Activity estimates were calculated for each benchmark
sequence from [7], after resampling the signals to a frequency
of 25 Hz. Each benchmark sequence was evaluated using the
models for the HDM with HMM, obtained in the training
phase for both transformed and raw data. In the case of the
transformed model, acceleration and angular velocity signals
of the benchmark sequences were transformed using the same



process as described for training. In order to compute the most
likely sequence of activities, given the observation sequence,
the Viterbi algorithm [11] was used.

The algorithms reported by Frank et al. [7] produce activity
estimates at a rate of4 Hz. To provide a “like-with-like”
comparison, the final outputs of our system are given by the
mode of each set of6 consecutive activity estimates (i.e. at
4.17 Hz). The data from the APDM sensor were evaluated in
the same way, using the models trained by the Xsens sensor
data.

V. CLASSIFICATION RESULTS

Tables I and II show the recall and precision values of each
activity for the benchmark sequences of Emil, Sinja and Paula
from [7], with and without transformation. The average recall
and average precision are also shown in these tables. The
precision of activity,Z, is measured as the number of samples
classified correctly as activity,Z, divided by the total number
of samples with inferred label equal toZ. The recall parameter
is the number of samples correctly classified as activity,Z,
divided by the number of samples whose true label isZ.

TABLE I
RECALL RESULTS

Emil Sinja Paula
Transformation YES NO YES NO YES NO

Running 100% 100% 96% 100% 100% 100%
Walking 100% 99% 100% 100% 100% 99%
Standing 96% 96% 92% 92% 91% 90%
Sitting 100% 100% 100% 100% 85% 0%
Lying 100% 100% 100% 100% 100% 36%
Jump 75% 67% 39% 38% 73% 92%
Fall 100% 100% 60% 60% 75% 100%
Average 96% 95% 84% 84% 89% 74%

TABLE II
PRECISION RESULTS

Emil Sinja Paula
Transformation YES NO YES NO YES NO

Running 100% 96% 89% 84% 76% 90%
Walking 97% 97% 88% 89% 89% 87%
Standing 100% 100% 100% 100% 95% 97%
Sitting 100% 100% 100% 100% 100% 0%
Lying 100% 100% 97% 97% 94% 33%
Jump 100% 100% 100% 100% 100% 100%
Fall 100% 60% 100% 75% 100% 22%
Average 100% 93% 96% 92% 93% 61%

Fig. 5 shows the estimated activities obtained by evaluating
the long-term data collected with the APDM sensor. The figure
shows estimates obtained both with and without transforma-
tion. The time periods identified by the vertical lines on the
graph signify epochs labeled by the subject as follows:

1) Walking to canteen (includes descending stairs).
2) Heating lunch in microwaves (waiting on foot).
3) Sitting down to eat.
4) Returning to the lab (includes ascending stairs).
5) Sitting at desk discussing work with a colleague.

VI. D ISCUSSION

As Table I and II show, in every benchmark sequence we
have achieved equal or higher average recall and average
precision using transformed signals, compared to the raw
sensor signals. For activities, such as running, walking and
lying, the HDM with HMM, even without transformation,
was capable of achieving good results, especially for the
benchmark sequences of Emil and Sinja. However, sitting, for
example, suffered from a precision and recall of zero for Paula,
without transformation. With transformation, the average recall
and precision show an improvement, relative to the results
without transformation, of15% and 32%, respectively, for
Paula, and are equal or up to7% better for both Emil and
Sinja.

The result of transforming the signals to the virtual sensor
orientation was shown, in Section III, to improve the unifor-
mity of the signals prior to classification. With the original
training sequences, some of which were recorded on the
right side and some on the left, the classification algorithm
essentially has to learn two models for each activity. By
transforming the signals to the virtual sensor orientation, all
of the training sequences contribute to a single unified model,
hence providing better classification results.

It should be noted that the database used for the experiments
in this work contained only a small amount of data for the
short-term activities, jumping and falling. This may be part of
the reason why the classification of such activities performs
worse than the others. Another factor, which was taken into
account by [7], is human error in labeling, which will have a
more significant effect in activities with a very short duration.
However, it may also be the case that the models for short-term
activities need to be modified to better capture the dynamics
of the activities. This remains as future work.

To compare our results with those reported by Frank et al.,
the average precision and recall obtained by our method (with
transformation) for Emil and Sinja were calculated (results
for Paula were not included in the average, as results for this
subject were not mentioned in [7]). Overall average precision
for our method is98%, compared to95% in [7], whilst overall
average recall for our method is90%, compared to97.9% in
[7]. Thus, it can be seen that our method performs better,
in terms of precision, with some loss in recall performance. It
should also be remembered that our method is computationally
very fast, consisting of only a constant matrix multiplication
of each signal, whilst the feature extraction and dynamic
unrestricted Bayesian network recognition algorithm reported
by [7] will be computationally more expensive.

For the data collected using the ADPM sensor (Fig. 5), it
can be seen that the estimated activities with transformation
represent quite well the activities described by the subject. For
example, epoch 1 consists mainly of standing and walking, as
would be expected in this case. The jumping and running esti-
mates are thought to occur because the subject was descending
stairs. Similarly, during epoch 3, sitting is predominant with
some samples estimated as lying - possibly due to slouching in
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Fig. 5. Long-term activity estimation using APDM sensor: with and without transformation

the seat. Throughout the entire period shown in the figure, the
estimates without transformation have no relation to the labels,
as would be expected given that the sensor orientation was the
subject’s arbitrary choice, and not one of the options used in
the training sequences. These results are very promising as
they indicate invariance, not only to sensor orientation, but
also to the brand of sensor used.

The transformation proposed in this work can be used also
in approaches in which there is a previous stage of feature
extraction. One of the advantages of feature extraction is to
make the inputs of the recognition algorithm more robust, but
many commonly-used features are not invariant to the sensor
orientation, for example, the modulus of the acceleration and
angular velocity in the horizontal and in the vertical planes
of the sensor. In general, these planes correspond to different
frames in each subject, depending on the orientation of the
sensor. Calculating similar features using transformed signals
would ensure uniformity across subjects and, as such, produce
classifiers with a better generalization capability.

VII. C ONCLUSIONS ANDFUTURE WORK

In this work, in order to compare, fairly, the results using
transformed signals and non-transformed signals, exactly the
same classification model, the HDM with HMM, was used
for both sets of results. For this purpose each activity has
been modeled in the same way as in the previous work by
the authors [6], i.e. with the same number of states for each
activity and with emission distributions defined as mixtures
of two gaussians. Nevertheless, thanks to the transformation
proposed in this work, very similar signal amplitudes for
each particular activity, have been achieved, independently of
sensor orientation. With this in mind, it might be interesting
to identify more representative topologies for some activities,
modeling the emission distributions as a single Gaussian
distribution, instead of a mixture model.

Furthermore, in order to improve the estimation of inter-
activity dynamics in real life situations, a database will be
constructed by the authors. It is intended to collect data in
more naturalistic circumstances than in existing databases and

the database will contain data from a very large number of
subjects for both training and test purposes.
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suits might include a basic “get-me-down” suit for suborbital spaceflight, or a high performance pressurized pilot suit 
where arm mobility and field of vision are particularly important. Future Extravehicular Activities (EVA) will likely 
accommodate various spacesuit architectures including: a microgravity station/craft maintenance suit where hand 
dexterity is critical; a close proximity operation suit for asteroid missions where manoeuvrability and visibility are 
critical; and a planetary surface suit for the Moon or Mars where leg mobility is a key requirement. Spacesuit 
kinematics are currently measured using video motion capture or photographic analysis systems. Although these 
methods measure the external motion of the suit, they do not capture the physical body motions within the suit and in 
the case of motion capture, they are restricted to a laboratory setting with significant overhead for camera calibration 
and set-up. Inertial Measurement Units (IMUs) use accelerometers and gyroscopes to estimate relative translation 
and rotation. IMU systems are mobile, low-powered, and offer an economical and efficient kinematic tracking 
capability for use in a laboratory or in the field. In this study, we applied IMU sensors to study space-suited motion. 
To first validate the use of IMUs for motion tracking, we tracked knee flexion angle while walking using both IMUs 
and a Vicon motion-capture system, which is considered the industry gold standard for kinematic analysis. The IMU 
knee joint angle average root-mean-square error with respect to the Vicon system was 5.4 ± 2.4˚, demonstrating the 
potential of the new system. We then used the IMUs, in conjunction with a Contingency Hypobaric Astronaut 
Protective Suit (CHAPS), to measure elbow flexion/extension, shoulder flexion/extension, and shoulder 
abduction/adduction motions for unsuited, suited and unpressurized, and suited and pressurized conditions. Results 
from the elbow study demonstrate our ability to capture joint angles in a laboratory environment with the goal of 
being used in any environment. In general, the internal IMU angle on the subject’s body was approximately 25˚ 
larger than the external CHAPS IMU external angle measured. A brief discussion summarizes key findings and 
identifies limitations in the test configuration. Recommendations for future implementation and testing are outlined, 
and conclusions are drawn on the usability of IMUs to investigate astronaut mobility and to provide work envelope 
results. 

 
I. INTRODUCTION 

The new human spaceflight market in suborbital 
space tourism and research flights as well as new crew 
capabilities to the International Space Station (ISS) will 
mix customer needs with high-powered vehicles that 
lack extensive flight history. It is important to monitor 
passenger comfort and safety and inform future 
improvements to mission elements such as spacesuits, 
personal cabin space, and throttling profiles. The fast 
pace of commercial orbital vehicle development will 
benefit from novel mobility measurement techniques, 
especially if they can be taken within the vehicles 
during operational development. Inertial measurement 
units (IMUs), sensors that integrate data from 

orthogonal gyroscopes, accelerometers, and 
magnetometers, can aid in these assessments.  

The goal of this research is to develop novel 
applications for IMU technology in characterization of 
human motion, such as estimating orientation, 
acceleration, velocity, and position during restrained or 
natural movement. In particular, this work focuses on 
spacesuit mobility and how IMU data can be used to 
construct range of motion joint angles and eventually 
work envelope definitions in a realistic test 
environment. This data can aid in the development of 
future space suits and improve knowledge of current 
suit performance and limitations. 

Systems of inertial sensors may also have many 
terrestrial applications where enhanced monitoring of 
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human movement is beneficial. These areas include 
estimation of ambulatory joint kinematics1-4, injury 
rehabilitation5,6, assessment of neurological movement 
disorders7, and enhancement of athletic performance8,9. 

 
II. SPACESUIT MOBILITY TESTING 

BACKGROUND 
Pressure suits are worn by pilots and astronauts to 

protect them from a variety of hazards including low-
pressure environments and thermal extremes. Pressure 
suits worn inside the vehicle during dynamic phases of 
flight, such as launch, entry, and docking are primarily 
designed to protect the crewmember in the event of an 
emergency. During nominal unpressurized operations, 
the crewmember must be comfortable and have the 
mobility to perform mission tasks, such as ingressing 
the vehicle and performing flight operations. During an 
emergency, the suit must enable the crewmember to 
perform any operations necessary to return to safety 
while protecting the crewmember from hazards. To that 
end, launch and entry suits often incorporate bailout 
systems, fire protection, cold-water immersion 
protection and integrated flotation, which are all 
dependent on the requirements and interfaces of the 
vehicle10. The current set of requirements outlined by 
NASA for commercial vehicles is in the ISS Crew 
Transportation and Services Requirements Document 
CCT-REQ-1130. It does not specifically mandate a 
pressure suit, but the NASA Astronaut Office considers 
it mandatory11. 

Similarly, pressure suits for the emerging 
commercial spaceflight industry will be primarily worn 
unpressurized, but in the event of an emergency, the suit 
must ensure the crewmember survives and, if necessary, 
can continue to perform the necessary functions to 
return to safety. It is important to note though that 
pressure suit needs vary amongst the different mission 
profiles, as differing levels of mobility will be required 
of passengers in different vehicles. Even within a single 
vehicle, the mobility requirements are varied, as pilots 
must be able to continue to the fly the spacecraft while 
pressurized (in the event of a cabin depressurization), 
while suits for passengers must simply ensure their 
survival. 

Understanding and quantifying exactly how much 
mobility a crewmember needs to perform each task is 
critical to derive requirements that will not over 
constrain the design. It is important to recognize that 
increases in pressurized mobility often come at a cost, 
such as a mass penalty, detriment to unpressurized 
comfort, or increased development costs11,12. The 
mobility requirements therefore must not drive a design 
beyond that which is absolutely necessary, as other 
desirable characteristics of the suit may be sacrificed. 

Additionally, as NASA prepares for exploration 
missions outside of low earth orbit, it is increasingly 

important to be able to quantify, communicate, and 
validate, space suit mobility for suits worn outside the 
spacecraft. These suits are always worn pressurized, and 
as such pressurized mobility becomes far more critical. 
One of the long term goals of space suit design is to 
design suits that approach as close as possible to “shirt-
sleeve mobility”, such that an astronaut in a pressurized 
space suit could perform all the same tasks, with the 
same ease, as a geologist on earth in a t-shirt and shorts. 
Research at MIT in the Man-Vehicle Laboratory (MVL) 
has been moving towards this mobility goal with 
incremental subsystem design of a mechanical 
counterpressure BioSuitTM 13. In order to achieve this 
goal, the mobility enabled by various joint designs must 
be well understood and quantified. Improvements to the 
joints can then in turn be quantified, by measuring the 
reduction in mobility, and understanding the physical 
principles responsible for the reduction. Without 
continuous benchmarking and iteration, the suit 
designer cannot make progress towards a highly mobile 
joint. 

It is evident then that proper characterization of 
mobility requirements – how much mobility is needed 
to perform all mission tasks – as well as mobility 
capabilities – how much mobility a certain space suit 
enables – is absolutely essential for both government 
space programs and the commercial spaceflight 
industry. 
 
Spacesuit Environments: IVA and EVA 

There are essentially two key working environments 
that must be considered for suit mobility design. 
Intravehicular Activities (IVA) suits might include a 
basic “get-me-down” suit for suborbital spaceflight, or a 
high performance pressurized pilot suit where arm 
mobility and field of vision are particularly important. 
Future Extravehicular Activities (EVA) will likely 
accommodate various spacesuit architectures including: 
a microgravity station/craft maintenance suit where 
hand dexterity is critical; a close proximity operation 
suit for asteroid missions where manoeuvrability and 
visibility are critical; and a planetary surface suit for the 
Moon or Mars where leg mobility is a key requirement. 

 
Mobility Methodologies 

Several methodologies have been used to measure 
mobility, though two methods have emerged as the most 
common within the spacesuit community14. 
Unfortunately each has its drawbacks. Photogrammetry, 
the process of measuring joint angles from pictures of a 
subject in the suit at the extremes of a joint’s range, has 
been used to quantify pressure suit mobility dating back 
at least to the Apollo program15, and through various 
space suit development programs16,17 including the most 
recent prototype suits developed for NASA’s project 
Constellation12,18,19. This method only quantifies 
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isolated joint movements, making it difficult to properly 
characterize the suit’s mobility for complex tasks. 
Additionally, this method requires the subject to hold a 
joint at “maximum” angles, which can be very workload 
intensive, and as a result tends to underestimate a suit’s 
full range of mobility. 

The second method commonly used, developed 
more recently with advances in technology, involves 
three dimensional video motion capture technology. 
Subjects in suits are outfitted with reflective markers, 
and systems of multiple cameras are used to track the 
markers as the subject performs various functional 
tasks. The coordinates of the markers can be used to 
measure individual joint angles using inverse kinematics 
software. This method was used extensively for the 
derivation of requirements for project Constellation20. 
Motion capture methodology is advantageous as it 
captures mobility during functional movements and 
tasks, but it is costly both in terms of equipment needed 
and in post-processing time. Additionally, it requires 
line of sight for several (2-3 minimum) cameras on each 
marker at all times, restricting it to a laboratory 
environment and making it difficult to track motions 
within a mock-up. This drawback was at least partially 
alleviated in a 2011 study through the use of a 
somewhat transparent mock-up of the Orion vehicle21,22. 
The mock-up allowed the cameras to see “through” the 
vehicle, and motions could be tracked as subjects 
performed all the mission tasks, such as 
ingressing/egressing the vehicle, attaching the harnesses 
and umbilical, and other tasks. The mock-up was an 
innovative solution to the problems associated with 
motion capture using reflective markers and cameras, 
however it demonstrated the need for the ability to 
capture mobility data in non-laboratory environments, 
as it would have been ideal to use a higher fidelity 
mock-up of Orion. 

Recently, a new method of implementing IMUs has 
become feasible, which has the potential to enable 
mobility characterization during functional tasks in all 
environments, without the need for line of sight from 
expensive camera systems. Two initial studies have 
recently been performed23,24 demonstrating the potential 
for this methodology, which involves placing small 
inertial measurement units (IMUs) onto the subject. 
These trials have shown that data from the IMUs can be 
converted into joint angle measurements as a subject 
performs various tasks in various environments. This 
methodology enables mobility measurement outside the 
laboratory environment, captures motion data in three 
dimensions during functional tasks, and eliminates the 
need for additional vehicle mock-ups. 
 
Inertial Measurement Units (IMUs) 

In order to understand the motion of the human body 
within a relevant environment (spacecraft habitable area 

or spacesuit), IMUs are selected to demonstrate a novel 
way of collecting data. IMUs use accelerometers and 
gyroscopes to estimate relative translation and rotation. 
Desirable IMU characteristics include: 

• Sized to fit application (minimal mass or 
specific shape); 

• Low power consumption / long battery life; 
• Dynamic range, resolution, bandwidth, 

Sampling Rate, Noise, Sensitivity; 
• Connection to other recording infrastructure 

versus data logging / standalone; 
• Comfort and/or unobtrusiveness;  
• Long-term monitoring; and 
• Affordable price. 

 
This research effort has evolved from a lineage of 

projects at MIT’s MVL. In order to compare the use of 
IMUs for estimation of lower limb joint angles against 
the standard motion capture methodology and inverse 
kinematics software, a study was conducted using 
commercial IMUs to capture three-dimensional 
acceleration and angular velocity data generated during 
human walking. Preliminary results using an extended 
Kalman filter to estimate both knee and ankle joint 
angles were encouraging3. Collaborators at MIT and the 
Instituto Superior Técnico (Portugal) demonstrated the 
efficacy of IMUs as sensory systems for gait analysis 
replacing the standard motion capture camera method. 
Through the use of different processing tools and 
custom filtering, it was possible to improve the data 
provided by the IMUs to be used for prosthetic and 
orthotic devices to estimate joint kinematics during 
walking25,26. On-going research implements IMU joint 
kinematics in real-time for the design of ankle-foot 
smart orthotics27,28. 

For an array of experimental medical and space 
applications, the authors have selected IMUs that 
include a set of three magnetometers, gyroscopes, and 
accelerometers each. These IMUs (Opals™, APDM, 
Portland, OR) are low mass wristwatch-sized devices 
enabled by real-time wireless data capture or storage for 
later download (see Fig. 1). 

To assess IMU capabilities for human spaceflight 
applications, a pilot study was conducted in a car on a 
relatively smooth highway looking at constant velocity 
motion and acceleration profiles. The aims of the study 
were to examine ideal IMU positions and operational 
protocol for data collection using a car and seat 
interface as an analogue to suborbital spaceflight 
keystone events simulating a seated launch23. 
Preliminary results indicated that IMUs can be used to 
characterize the human body’s motion in an analogue 
situation and the vehicle’s vibrational environment. 
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Fig. 1: APDM IMUs are small wearable devices. Axes 

are shown for IMU body reference frame. 
 

III. PRELIMINARY VALIDATION OF IMUS VS. 
MOTION CAPTURE GOLD STANDARD 

To validate this data collection method we tested the 
accuracy of the APDM IMUs during normal walking. 
The IMUs were compared to the “gold standard” of 
kinematic data collection, the Vicon motion capture 
system in the Wyss Institute’s motion capture 
laboratory. This system uses an array of eight T-series 
cameras to track reflective markers illuminated by 
infrared light. 

IMUs were strapped to the subject’s legs and a 
plaque labelled with reflective markers was attached 
(Fig. 2). 

The locations of the reflective markers aligned with 
the Y and X axis of the IMU and enabled the 8-camera 
Vicon motion capture system in interpret the rotation of 
the IMUs strapped to the lateral side of the upper and 
lower leg. The subject was instructed to walk the length 
of the motion capture volume. Limb segment rotation in 
the sagittal plane was recorded with the Vicon and 
APDM IMU system. Knee rotation was determined by 
subtracting the rotation of the lower leg from the 
reference rotation of the upper leg. A representative trial 
is shown in Fig. 3. 
 

 
Fig. 2: IMU placement and reflective marker locations. 
 

 
Fig. 3: IMU-Vicon Knee walking comparison. 
 

Areas in Fig. 3 where the Vicon data disappears 
from the plot is where the subject stepped outside the 
collection volume. Data was collected for 13 trials. The 
average RMS error (relative to the Vicon system) 
throughout the samples was 5.4 degrees with a standard 
deviation of 2.4 degrees. This analysis shows that the 
IMUs can be used as a substitute for a Vicon motion 
capture system when an optical system is unavailable. It 
also demonstrates potential advantages of the IMU 
approach: freedom of movement without the restriction 
of a specific motion capture volume. 

El-Gohary et al. (2011)29 investigated the use of 
APDM IMUs for estimating joint angles of a multi-
segment limb using a custom unscented Kalman filter 
algorithms and compared data to an optical tracking 
system (Eagle Analog System, Norwood, MA). All 
elbow and shoulder motions analysed were found to 
have IMU data correlate with greater than 0.9 to the 
motion tracking system, and all cases were statistically 
significant for both normal (rate not specified) and fast 
(as fast as user could bend elbow) speed motions. 

Another study found the APDM IMU system to 
have a high Pearson's R correlation while compared to a 
Vicon system (R > 0.90) for gait cadence, head rate of 
rotation, and torso rate of rotation. These measurements 
are typically used to test patients with mild traumatic 
brain injury30. 
 

IV. CHAPS MEASUREMENT METHODOLOGY 
Testing at David Clark Company 

The APDM IMU system was brought to the David 
Clark Company (Worchester, MA) to test basic mobility 
in the Contingency Hypobaric Astronaut Protective Suit 
(CHAPS). Before testing, it was decided to focus on the 
elbow joint motion. The motion of the entire arm could 
potentially be used to generate a point cloud of tracking 
data to generate a work envelope, which is further 
explored in the recommendations in section VII. 

IMUs were placed on the forearm and bicep both 
directly on the subject’s body and on the external 
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surface of the CHAPS (two external IMUs are indicated 
on Fig. 4 on the CHAPS). Additional IMUs were placed 
on the fingertips (outside of glove) and on a fixed 
position on the wall. Three sets of motion were recorded 
including: elbow flexion/extension; shoulder 
flexion/extension; and shoulder abduction/adduction. 
The IMUs were used to data log the motion for both 
scenarios of the suit unpressurized and with the suit 
pressurized to 1 psig. Two different methods were 
examined for conducting the motion. The first method 
had the subject tap the fixed wall IMU before each arm 
motion (tap), and the second method had the subject 
move in a continuous motion (continuous). For every 
trial, three complete arm motions were conducted and 
the trials were repeated twice for all sixteen scenarios 
(the two methods were only used for the elbow motion). 

The elbow starting position of a straight arm 
(locked) of 0˚ was used in every elbow trial (see Fig. 4 
“zero angle”). Flexion, or elbow bend, was considered 
positive rotation according to the Standardization and 
Terminology Committee of the International Society of 
Biomechanics31. 

A similar study at the University of Maryland Space 
Systems Laboratory24, investigated outfitting IMUs 
internal to a spacesuit, using the CHAPS as a 
demonstration of the technology. The Body Pose 
Measurement System (BPMS) uses 18 IMUs on a 
conformal garment worn under the suit to track body 
motion by measuring the attitude of the major long 
bones. 
 

 
Fig. 4: IMU Placement on CHAPS with elbow flexion 

measurement (used with Permission from David 
Clark Company). 

 

Results: Euler Angle Calculations 
The following is an overview of the code developed 

in MATLAB (The Mathworks, Natick, MA) to reduce 
the acquired IMU data and find the final three Euler 
angles for a pair of IMUs about a given body joint. The 
basic approach is to calculate a rotation matrix that 
transforms one IMU frame into another IMU frame, and 
then determine the Euler angles for that rotation matrix, 
which represent the 3dof rotations of the joint between 
the two IMU frames. In more detail, the approach is: 
 
1. Import data from IMU csv file to Matlab 
2. Convert Quaternions to Euler Angles using 

Matlab’s “quat2angle” (Aerospace tool box) 
• Angles are in body reference frame X, Y, 

Z with respect to North, West, Up (NWU) 
world frame that the IMUs use. 

3. Generate rotation matrices for both IMUs in joint 
angle couple, from Bong Wie Equation 5.13 on 
31132: 

R
B
A ≡ R1 θ1( )R2 θ2( )R3 θ3( )

=

c2c3 c2s3 −s2
s1s2c3 − c1s33 s1s2s3 + c1c33 s1c2
c1s2c3 + s1s33 c1s2s3 − s1c33 c1c2
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where, 
RB/A is the rotation matrix to B (NWU frame) 
from A (body frame of individual IMU – A1 
and A2 are used in this paper to illustrate the 
two matrices for a joint angle couple as 
described below) 
Ri are rotation matrices about Euler angles θ1, 
θ2, and θ3 that are not shown in this summary. 
ci = cosθi 
si = sinθi 

4. Rotate the first IMU to NWU frame and then to 
second IMU body reference frame using two 
rotation matrices. This is done by the following 
matrix chain-rule multiplication of the transpose 
(inverse) of IMU-A1: 

R
B
A1 =  rotation matrix from A1 to NWU

R
B
A2 =  rotation matrix from A2 to NWU

R
A1
A2 = R

B
A2 R

B
A1( )

−1

 

5. Compute the final three Euler angles from the 
double rotation (RA1/A2) using methodology such as 
G.G. Slabaugh’s white paper33. The pseudo code to 
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find both possible solutions* for each angle is as 
follows33: 

 
 
where, 
θ1, ψ1, Φ1 and θ2, ψ2, Φ2 are the two Euler angle 
solutions for the double rotation 
Ri,j is the element in the ith row and jth column 
of the 9x9 RA1/A2 matrix. 

6. Data may jump from π to –π in the solution space 
so “unwrap” is recommended in Matlab. 

7. Zero the starting point if necessary for given joint 
angle set. 

8. Plot rotation about primary axis (in the case of the 
elbow, this was the Z axis of the IMU body frame 
or Φ from the double rotation to A2 reference 
frame). 

 
V. RESULTS: CHAPS ELBOW JOINT ANGLE  

The data from the four IMUs measuring the elbow 
flexion inside the suit on the body and on the outside of 
the CHAPS were calculated and the final z-axis Euler 
angle was analysed for trends. A typical output plot is 
shown in Fig. 5 that shows the internal angles of the 
elbow flexion with larger values than the CHAPS. This 
sample plot is from the elbow in continuous motion 
with the CHAPS pressurized to 1 psig. Fig. 6 is a cross-
sectional rendering of the CHAPS and human subject, 
which was developed to visually demonstrate the 
angular differences. 

 
                                                             
*There are two solutions because of properties where 

sin(π - θ) = sin(θ) and cos(θ) ≠ 0. Slabaugh explains 
how to handle these in his paper. 

 
Fig. 5: Elbow flexion data showing internal angle of 

subject’s motion larger than motion of the CHAPS. 
 

 
Fig. 6: Rendering of the CHAPS and human user 

showing approximate differences in elbow joint 
values. 

 
Assuming the arm started in a perfectly straight 

position before every elbow flexion, the peak-to-valley 
difference was measured for both internal (on the 
subject’s body) and external (on the CHAPS) angles. 
These maximum movement values were subtracted to 
find a final difference value. Video data was also used 
to compare the CHAPS external data and was found to 
be similar within a few degrees (see Fig. 1 for snapshots 
of elbow straight and fully bent under 1 psig conditions 
from video). Video was not shot of all trials so it was 
not statistically analysed. The CHAPS maximum angle 
lags the internal body, but these values were not 
investigated in this study. 

Table 1 summarizes the statistical tests that 
compared the different methodologies and suit pressure 
results. If a scenario has a P value of less than 5% it is 
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considered significant (* denotes value is significant), 
meaning that the data closely match. For example, it 
was found from the measurement of the internal angle, 
that the two methodologies of tap versus continuous 
yielded similar results (P=0.005) and that the 
measurements were similar regardless of the CHAPS 
pressure (P=0.002). This was not true for the external 
angle, as the results of the methodology differed enough 
to be not significant (P=0.128). However, the final 
values of angle differences were found to be similar 
regardless of method (P=0.000), but dependent on suit 
pressure (P=0.349).  

 
Table 1: Statistical P-Values calculated to investigate 

spacesuit pressure and test methodology significance 
 Method 

(Tap/Continuous) 
Suit Pressure 

(0/1 psig) 
Internal 
Body Angle 0.005** 0.002** 

External 
Suit Angle 0.128 0.001** 

Difference 
of Angles 0.000** 0.349 

**Significant value 
 
To distinguish some of the calculated averages of all 

of these cases, values are presented in Table 2. Since the 
method for the final angle data is significant (not much 
difference between two methods) we can look at final 
results and standard deviations by averaging all of the 
unpressurized (26.2 ± 6.7˚) versus pressurized values 
(24.2 ± 7.1˚). We see that the pressurization of the suit 
leads to slightly reduced angle values of the overall 
elbow flexion. The final results also show a different 
story, that the continuous motion led to bigger angle 
differences regardless of pressure. 

 
Table 2: Peak angles calculated to investigate spacesuit 

pressure and test methodology significance 

 
Internal 

Body Angle 
(˚) 

External 
Suit Angle 

(˚) 

Difference 
of Angles 

(˚) 
Tap 
0 psig 152.1 ± 5.5 130.1 ± 4.2 22.0 ± 3.6 

Tap 
1 psig 158.0 ± 3.5 138.4 ± 1.3 19.5 ± 3.5 

Continuous 
0 psig 157.3 ± 4.5 126.8 ± 7.3 30.5 ± 6.4 

Continuous 
1 psig 163.8 ± 3.6 134.9 ± 6.8 28.8 ± 6.9 

 
Some key observations from this data are that the 

internal angle of the human body is always larger than 
the CHAPS angle (total average of all tests was 25.2 ± 
6.8˚) as seen in Fig. 6; larger internal and external 

angles were observed in the pressurization data versus 
unpressurized; and the continuous method had larger 
angles for the internal angle and smaller for the external. 
 

VI. LIMITATIONS OF IMUS 
IMU systems have limitations and the optimal 

system must be selected for the right job. Typical 
limitations are in g-range, sensitivity, lag, filtering, and 
accuracy. A few issues were identified with the selected 
APDM system for this application and are described in 
this section. 

The investigators found that the magnetometers 
were susceptible to magnetic interference, even from 
metal tabletops, which changes the orientation of the 
NWU coordinate frame. For the CHAPS testing there 
was little magnetic interference, but this should be 
monitored in all testing environments and can be 
displayed with custom Matlab code to show the data in 
real time. A study by Bachmann et al. in 2004 
developed a guideline that errors can be avoided by 
maintaining an approximate distance of two feet from 
any source of disturbance29. 

For the elbow joint, the positioning of the IMUs was 
closely matched internally and externally, but as seen in 
Fig. 1, the IMUs are not exactly on the rotation axes of 
the arm. For this reason, it was desired to find the final 
three Euler angles before reducing any data. The final 
rotation axis data may therefore have some twist 
associated with the values and this data should be used 
as a proof of concept. 

The CHAPS was not sized specifically for the 
subject in this test, and the suit is designed to be used 
nominally in the seated position. Had the experiments 
been performed with a perfectly fitting suit in the seated 
position, it is possible that the internal and external 
measurements would be more similar. 

Dead reckoning is a technological issue for IMUs as 
they do not know their exact positions at any given 
time. This is why the “tap” methodology was tested, to 
try and have a reset point in physical space. The 
advancement of this technique is further explored in the 
next section. A common indicator of the difficultly of 
position tracking is from the occurrence of drift. 

Pseudo markers can be estimated from video 
analysis. However, in future testing it would be ideal to 
have arm markers for validation in photos or videos. 

 
VII. RECOMMENDATIONS FOR FUTURE 

SPACESUIT TESTING 
The following are recommendations for future 

improved data acquisition testing with IMU systems for 
applications like spacesuit mobility. 

IMU data could be verified by constructing a simple 
non-ferrous rig to test one degree of freedom at a time 
with known angles and potentially known rotation rates 
(motor activated). 
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Real time acquisition of Euler angles can be 
generated with Matlab code. The signal will be slightly 
lagged, but the instant validation of motion would be 
useful and more insightful. This could also be used for 
real time monitoring of a variety of spacesuit joints. 

Position estimation would be a valuable addition to 
the capabilities of the IMU. The performance of the 
ADPM IMUs is marginal for position estimation, due to 
drift, without regular position fixes. ADPM has 
unreleased code that uses frequent position fixes (every 
5 seconds) and velocity nulling to track IMU position; 
performance figures have not been released but a 
comparison of the estimate to video of an IMU is 
compelling. We attempted some trials using arm motion 
in which position fixes were provided using a tap 
between two IMUs. These events can be identified and 
used as position fixes. Analysis of these trials is on-
going. If adequate performance can be demonstrated, 
either through position fixes and careful software 
correction, or via future hardware improvements, IMU 
position estimation would enable a variety of 
applications such as: 
• Generating a point cloud that maps out space suit 

workspace envelopes using natural motions. 
• Tracking displacement in all directions for 

standardized tasks such as using a tool, useful for 
tool and task optimization. 

• Enabling more general motion capture without the 
cost and constraints of a vision-based system. 

It is also recommended that future work in spacesuit 
motion tracking incorporate El-Gohary et al.’s (2011) 
linkage method. 

 
VIII. CONCLUSIONS 

This proof of concept research met the goal of 
demonstrating that measurements of the human body 
within a spacesuit can be taken in a novel method using 
inertial measurement units (IMUs). With IMUs it is 
possible to track internal versus external angles to figure 
out optimal spacesuit fit, energy expenditure, and work 
envelope. Refinement of the method should prove to be 
valuable while testing in analogue environments or out 
in the field without the need for a visual motion capture 
system. Future data could be collected during 
spaceflight and lead to improved spacesuit design. 
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INTRODUCTION 

Despite the high rejection rate of upper limb 
prostheses (Biddiss & Chau, 2007), few studies have 
attempted to distinguish between upper limb 
prosthetic wear time and usage during manipulative 
tasks. Therefore, in this preliminary study, a wearable 
sensor was used to collect acceleration data in order 
to differentiate between a non-manipulative task and 
a manipulative task. The ability to monitor the task-
related usage of an upper limb prosthesis will provide 
a better representation of its usage and may lead to 
improved prosthetic design and training practices 
(Bouwsema et al, 2010).  

METHOD 

Subjects: One healthy female subject 23 years old. 

Apparatus: A wearable Opal sensor (APDM Inc., 
Portland, OR), the size of a wristwatch, was placed on 
the subject’s right wrist. The Opal sensor includes a 
triaxial accelerometer, a triaxial gyroscope and a 
triaxial magnetometer, but only the accelerometer 
component was used in this study.  One major benefit 
of the Opal sensor is that it can collect data for an 
entire day on one charge and store up to 28 days 
worth of data. Therefore, it can be used outside of a 
laboratory setting and during a person’s normal 
activities of daily living.  

Procedures: The subject was asked to walk at a 
comfortable speed for 20 seconds. The subject was 
also asked to sit in a chair with their arm resting on a 
table while holding a glass, and to drink from the 
glass every 10 seconds, for a total of 50 seconds. 
Both tasks were repeated 5 times. 

Data Analysis: The data from the Opal sensors was 
exported into MATLAB (MathWorks, Natick, MA). A 
program was used to filter the raw data with a moving 
weighted average digital filter, plot the acceleration in 
the x-direction (which corresponds to anterior-
posterior for walking and up and down for drinking) 
and count the number of actions (tasks) above a 
threshold acceleration of 6 m/s2. 

RESULTS 

An example of the results from one trial is shown in 
Figures 1 and 2. During walking (Figure 1), all 
acceleration values were below the threshold and the 
program did not detect any manipulative tasks. During 
the drinking task, the program detected five 

manipulative tasks as shown by the number of peaks 
above the threshold in Figure 2. These results 
accurately corresponded to the actual tasks 
performed by the subject. 

 
Figure 1 x-acceleration during walking 

 
Figure 2: x-acceleration while drinking from a glass 

DISCUSSION 

The accelerations during walking were all significantly 
below the threshold and did not yield any false 
positive readings. Each of the manipulative tasks was 
well above the threshold and correctly identified by 
the MATLAB program. Future work will involve more 
subjects, additional manipulative tasks, prosthetic 
users and monitoring outside of a laboratory setting. 

CONCLUSION 

The preliminary results provided a clear differentiation 
between the manipulative and non-manipulative 
tasks, demonstrating the effectiveness of a wearable 
Opal sensor in monitoring the usage of an upper limb 
prosthesis for manipulative tasks. 
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INTRODUCTION 
 
Wearable sensor systems comprised of 
accelerometers and/or gyroscopes have gained 
popularity in recent years as a means of collecting 
physical activity and gait data in real-world 
environments [1,2]. Such systems open up a whole 
realm of possibilities for better understanding and 
determining true patient abilities and habits without 
the constraints associated with traditional motion 
analysis evaluations [1,2]. Though these systems 
have great promise, there is believed to be some 
trade-off in accuracy for the benefits of real-world 
monitoring [1,2]. Validation of such systems is 
paramount to ensure that the data collected 
appropriately reflects the subject’s true gait.  
 
Of particular interest is the validation of turn-key 
systems developed with clinical user-friendliness in 
mind. Unlike basic sensors, where raw 
accelerometer or gyroscope data can be manipulated 
and processed according to the user’s expertise, 
many of these turn-key systems automate the post-
processing of the data, showing only the ultimate 
outcome measures. If such systems produce highly 
accurate results, this has the potential to change 
practice as clinicians of all backgrounds would be 
able to utilize motion capture-type data. 
Unfortunately research to validate such systems has 
shown mixed results as related to their accuracy 
[e.g. 3,4]. The purpose of this study was therefore to 
validate one such commercially available wearable 
sensor system (MiniSun IDEEA) in outdoor 
environments over a span of age ranges.   
 
METHODS 
 
A total of 32 subjects participated in this study: 16 
comprising the younger adult group (ages 18 – 38, 
mean age: 21.6 ± 2.3) and 16 comprising the 

middle-aged adult group (ages 45 – 65, mean age: 
53.6 ± 5.0). All subjects were free of any injury, 
disease, or disorder that would affect their ability to 
walk. Subjects gave written informed consent and 
all procedures were approved by the university’s 
IRB.  
 
Each subject performed six 50 meter walking trials 
in an outdoor park: 3 on a paved, well maintained 
path and 3 across an area of mown grass to replicate 
uneven terrain that might be encountered during 
daily ambulation. Subjects were encouraged to walk 
at their natural pace and to wear their normal, 
comfortable walking or tennis shoes.  
 
Data for each trial was collected with two systems: 
the commercially available wearable sensor system 
of interest (Intelligent Device for Energy 
Expenditure and Physical Activity (IDEEA), 
MiniSun LLC) and an inertial measurement system 
(Opal IMU, APDM Inc.) used for comparison. The 
IDEEA system consists of five bi-axial 
accelerometers placed on the feet, thighs, and 
sternum wired together to a data logger worn on the 
subject’s waistband. The Opal IMU was placed on 
the L3 spinal process with an elastic belt and the tri-
axial accelerometer feature was utilized for data 
collection.  
 
The data from the IDEEA system was processed 
using the system’s proprietary software. The data 
from the Opal IMU accelerometer was processed 
according to a published algorithm proposed by 
Moe-Nilssen [5], which has been used successfully 
to study gait, including in outdoor environments. 
Paired t-tests were performed to investigate the 
differences between the mean values of gait speed, 
cadence, step length, and gait duration obtained 
from the tri-axial accelerometer and the MiniSun 



IDEEA for each age group, walking upon each 
surface (p<0.05).  
 
RESULTS AND DISCUSSION 
 
Statistically significant differences (p<0.05) were 
found between the systems for gait speed, cadence, 
and step length in both age groups and for both the 
even, paved path and the uneven terrain. In all cases 
the commercially available system underestimated 
the gait parameters as compared to standard raw 
accelerometer method. Table 1 provides the results 
for the trials occurring on the uneven terrain.  
 
These results suggest that there is an accuracy trade-
off using this system and its’ automated proprietary 
post-processing software. Others who have 
investigated the validity of the IDEEA have 
reported similar underestimations, even when other 
gold standard comparisons are used [e.g. 3, 6]. 
However, these studies have been done over shorter 
distances, and it was hoped that better validity 
would be found when the distances better matched 
typical ambulation tasks. This was not the case, and 
as such researchers and clinicians should be 
cautious in extracting gait parameters from this 
particular system.  
 
In contrast, however, gait cycle duration showed no 
statistically significant differences in any condition, 
suggesting good accuracy of this particular measure. 
If the IDEEA uses this information to calculate gait 
speed and cadence, similar to the estimation of gait 
parameters done using the raw acceleration data 
from the Opal, it would make sense for the IDEEA 
to be more accurate in calculating these parameters 
than it was. Though the proprietary nature of the 
IDEEA post-processing software prevents 
identification of why these values may be 

underestimated, this finding does suggest that there 
may be a refinement that can be done to the IDEEA 
algorithm to improve the device’s accuracy.  
 
There is a need to similarly examine other 
commercially available systems, particularly those 
like the IDEEA whose turn-key nature prevent 
comprehensive understanding of how the system 
functions. This will provide insight into which 
systems might be most ideal for clinical real-world 
monitoring of gait. 

 
CONCLUSIONS 
 
It was found that though easy to use, the 
commercially available MiniSun IDEEA wearable 
sensor system consistently underestimated measures 
of gait, other than cycle duration. This suggests it 
may not have the accuracy needed for motion 
analysis studies.  
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Table 1: Summary of Mean ± Standard Deviation Gait Parameters for Uneven Terrain, ** p<0.01, ***p<0.001 

Age Group                    18-38                     45-65 

Parameter 
     Tri-axial 
Accelerometer 

IDEEA 
     Tri-axial 
Accelerometer 

IDEEA 

Gait Speed (m/s) 1.32 ± 0.15 1.17 ± 0.12***  1.52 ± 0.21 1.36 ± 0.20***  
Cadence (step/min) 104.93 ± 6.09 104.38 ± 6.24**  117.10 ± 9.98 115.71 ± 9.85***  
Step Length (m) 0.76 ± 0.07 0.69 ± 0.05*** 0.76 ± 0.06 0.72 ± 0.06**  
Gait Cycle Duration (s) 1.14 ± 0.07 1.15 ± 0.07 1.03 ± 0.09 1.03 ± 0.09 



Abstract— Using inertial measurement unit (IMU) to 

measure human body kinematics has gained popularity 

because of its low-cost and ease of handling, compared to 

optoelectronic and electromagnetic systems. However, its usage 

has to be supported by post-processing protocols that integrate 

the data with reliable kinematic model to improve the 

accuracy. In this paper, a method to calculate the rotation axes 

and angles of the elbow joint from IMU data is presented. The 

method makes use of product of exponential (POE) 

representation and an optimization process to decompose the 

rotation matrix into angles along the two rotation axes without 

introducing the carrying angle and assuming orthogonality of 

the two axes. Using the method, the estimated errors of the 

calculated axes of rotation are comparable to published results, 

and the rotation angles yield an orientational deviation of less 

than 1.5º. 

Keywords—kinematics; IMU; elbow; optimization 

I. INTRODUCTION 

The recent advancements in the development of IMU 
make these sensors a serious contender against the widely 
used optoelectronic and electromagnetic systems in capturing 
motion data in vivo. It is cheaper, portable, less cumbersome 
to setup, and can be used in a non-laboratory environment 
[1]. The data captured can be used in biomechanical models 
that provide musculoskeletal information. This is especially 
attractive to clinicians and therapists working in the field of 
rehabilitation, where operations are constrained by costs and 
manpower. One drawback is, however, its accuracy 
compared to the optoelectronic and electromagnetic systems 
which have many protocols proven to be effective [2]. The 
solution to this is to develop algorithms that can apply the 
information captured by the IMUs onto accurate models of 
the human anatomy. One useful and illustrative example is 
using IMUs to estimate the elbow flex/extension and 
pro/supination axes and angles. 

The methods to find the elbow rotation axes described in 
[3-5] required the precise locations of several bony 
landmarks with respect to a reference. These landmarks were 
either located using cadaver data or in vivo by using 
electromagnetic tracking devices with proper palpation 
techniques. The electromagnetic systems are too expensive 
and cumbersome for practical use of the kinematic data in a 
clinic or rehabilitation facility. And proper palpation requires 
the skills of trained therapists, which may not be readily 
available. The discrepancy in the definitions of palpated 

locations of the landmark among different therapists is also a 
problem.     

In general, the flex/extension axis, SFE, is not orthogonal 
to the longitudinal axis of the humerus, yH. SFE and the 
pro/supination axis, SPS, are also non-intersecting and not 
orthogonal to each other [5, 6]. This introduces a third angle, 
the carrying angle, when we want to obtain the rotation 
angles in SFE and SPS from decomposing the rotation matrix 
of the forearm relative to the upper arm. The definition of the 
carry angle is inconsistent [2], but in this context it is viewed 
as the angular offset between the orthogonal of SFE and SPS. 
For the ease of finding the rotation angles in SFE and SPS, the 
two axes are often taken to be orthogonal and the carrying 
angle is often conveniently regarded as a constant [1, 7]. 
However, the carrying angle varies significantly among 
individuals [8], and it is dependent on the two elbow rotation 
angles [9]. In this study, we propose a method to decompose 
the rotation angles, obtained from the data captured by 
IMUs, in SFE and SPS directly using product of exponentials 
(POE) and optimization without making any assumption on 
the carrying angle and the orthogonality of SFE and SPS. 

II. METHODS 

A. Measurement Device 

The APDM Opal™ wireless inertial measurement units 
system is used in this study (APDM Inc., Portland, OR, 
USA). It has an accelerometer, a gyroscope, and a 
magnetometer all encased into a small unit of 48.4 x 36.5 x 
13.4 mm, and weighs 22 g. The static and dynamic accuracy 
of the measured angle is 1.5º and 2.8º respectively. It is 
shown to correlate well with optical sensors[10]. The device 
local coordinate system, with x-axis pointing downwards, y-
axis pointing to the side, and z-axis pointing forwards, is 
with respect to an earth-based global coordinate system. The 
system calculates and gives the quaternion representation of 
the orientation as the output. In this study, data was acquired 
at 128 Hz. 

B. Subjects and Experimental Set-up 

Four healthy male subjects (mean age 26.5 years, with 
SD 2.65 years) volunteered for the experiment after informed 
consent was obtained from them. All subjects do not have 
any known upper limb disorder. 

Three IMUs were attached to the subject’s body. The first 
is positioned at the sternum, just below the neck, using 
double sided tape, with the IMU frame (x1, y1, z1) shown in 
Fig. 1. This IMU is used to measure the orientation of the 
thorax (which is expected to have very small changes 
throughout the experiment). The second and third IMUs are 
strapped to the centre of the right upper arm, and to the right 
lower arm near the wrist, respectively, using elastic straps. 
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The frames of the two IMUs (x2, y2, z2) and (x3, y3, z3) are 
shown in Fig. 1. 

There were two sets of experiment done in this study. 
The first was to find the two axes of rotation of the forearm 
(SFE, flexion-extension, and SPS, pronation-supination) with 
respect to the humerus frame. As the sensors were wireless, 
the subjects were able to stand at a clearing in the lab, away 
from any metallic objects that might affect the 
measurements. To find SFE, the subject stood upright with 
both arms resting naturally by the sides. During the 
experiment, the subject flexed the forearm completely at a 
controlled speed, and then extended back to the initial 
position. To find SPS, the subject fully pronated the forearm 
from the initial position, and then supinated the forearm fully 
at a controlled speed. Both motions were performed three 
times by the subjects.  

The second experiment was designed to test the accuracy 
of the methods proposed in this study. The subjects stood 
upright with their arms resting naturally by the sides. Then 
they performed the following two motions: (1) raising the 
whole arm in the sagittal plane to above the head at a 
controlled speed; (2) moving the hand towards the mouth as 
if drinking water from a cup and returned to the initial 
position.  

C. Estimation of the Rotation Axes of the Forearm 

The global coordinate system is defined as: XG – north, 
YG – east, and ZG – down. The local coordinate systems of 
the thorax, humerus and forearm when the arm is resting are 
defined as: xT, xH, xF – left, yT, yH, yF – up, and zT, zH, zF – 
front. With the help of a compass, the initial local z-axes 
were aligned with the north during the experiments, so that 
the orientations of the local systems are known with respect 
to global. Unlike in [7, 11], we do not assume that the thorax 
frame to be stationary, and the local coordinate systems are 
independent of the positions and orientations of the IMUs, so 
that the kinematic data can be compared among subjects and 
used without ambiguity. 

To find SFE with respect to the humerus frame, the 
orientations of the IMUs strapped to the upper and lower arm 
between two consecutive positions were calculated. The 
orientation of the lower arm IMU in the upper arm IMU 
frame at the current (initial) position and the next (final) 
position are given by [12, 13] 

4ÎÅ
Ü = k4ÀÎÜ o

Í
4ÀÅ
Ü                                   (1) 

4ÎÅ
Ù

= k4ÀÎ
Ù o

Í
4ÀÅ
Ù

                                  (2) 

where the superscripts i and f denote initial and final 
positions; the subscripts G, U and L denote global, upper arm 
IMU and lower arm IMU frames respectively. The rotation 
matrix RXY represents orientation of frame Y in frame X. The 
rotation matrix of the final position relative to the initial 
position in the lower arm IMU frame is 

4Å
ÜÙ

= k4ÀÅÜ o
Í
4ÀÅ
Ù

                                  (3) 

The skew-symmetric matrix, 9Å
ÜÙ , that represents the 

rotation axis of 4Å
ÜÙ is [14] 

9Å
ÜÙ

= 4Å
ÜÙ F k4Å

ÜÙo
Í
                              (4) 

 

  Fig. 1. The IMU frames, global frame and the local frames. 

The rotation axis in the lower arm IMU frame is 
calculated as 

5Å = [S5,S6,S7]Í ¥S56 +S6
6 + S7

6¤                (5) 

where w1, w2, and w3 are the independent components of 
9Å

ÜÙ. 

The rotation axis can be represented in the upper arm 
IMU frame using 

5Î = 4ÎÅ
Ü 5Å                                       (6) 

And the rotation axis, when represented in the humerus 
frame, H, is 

5¿¾ = k4ÀÁÜ o
Í
4ÀÎ
Ü 5Î                               (7) 

The procedures to find SPS is exactly the same. In the first 
experiment, both SFE and SPS were calculated for ten times 
for the duration of the experiment. These axes are the 
Instantaneous Helical Axes (IHA) [15] during the motion of 
the elbow. The optimal axes were then calculated closest to 
the IHAs using least-squared method as 

Minimize ,k5âãço, where 

,k5âãço = Ã .5âãç F 5Ü.54
Ü@5                          (8) 

where Si are the IHAs in either flexion/extension or 
pronation/supination motions.  

D. Decomposition of Joint Angles at the Elbow 

After finding the orientations of the rotation axes of the 

forearm relative to the humerus, we can make use of the 

IMU data during arm motion to estimate the 

flexion/extension and pronation/supination angles of the 

elbow at each time-step. 

The orientations of the humerus frame in the upper arm 

IMU frame and the forearm frame in the lower arm IMU 

frame are constant matrices, given as 

4ÎÁ
4 = (4ÀÎ

4 )Í4ÀÁ
4                                   (9) 

4Å¿
4 = (4ÀÅ

4 )Í4À¿
4                                   (10) 

where the superscript 0 denotes initial position when the 

arm is resting by the side. The orientations of the humerus 

y1 

x1 z1 

y2 

x2 

z2 

y3 

IMU 1 

IMU 2 

YG 

XG 
ZG 

yF 

xF 

zF 
z3 

x3 

IMU 3 

yT 

xT 

zT 

yH 

xH 

zH 

Approximate directions 

of SFE and SPS 

757



and the forearm in the global frame at time-step n can be 

calculated as 

4ÀÁ
á = 4ÀÎ

á 4ÎÁ
4                                   (11) 

4À¿
á = 4ÀÅ

á 4Å¿
4                                   (12) 

Next, we can calculate the orientation of the forearm 

frame in the humerus frame as 

4Á¿
á = (4ÀÁ

á )Í4À¿
á                                (13) 

The rotation matrix that represents the transformation of 

the forearm frame at time-step n relative to n-1 in the 

humerus frame is 

 4Á
á?5,á

= (4Á¿
á?5)Í4Á¿

á                             (14) 

The rigid body rotation about a fixed axis, 4 Ð SO(3), 

where SO(3) = {4 Ð 87×7:44Í = +, det 4 = 1}  [14]. The 

skew-symmetric matrix that corresponds to the axis of 

rotation is 

9á = 4 F 4Í = N 0 FSí Sì

Sí 0 FSë
FSì Së 0

O             (15) 

In the exponential form, 4 = AÐ
á ä , where M Ð 8  is the 

angle of rotation. In a more explicit form [16], 

4 = AÐ
á ä = + + sin M

Ðá

!Ð!
+ (1F cosM)

Ðá .

!Ð!.
         (16) 

In the context of the elbow joint which has two DOF, the 

joint motion can be represented by two consecutive 

rotations, one about SFE axis, followed by one about SPS 

axis: 

 

4elbow = AÐ
á ·¶ä·¶AÐ

áÁÄäÁÄ                         (17) 

where 9á¿¾  and 9áÉÌ  are the skew-symmetric matrices that 

correspond to SFE and SPS respectively; qFE and qPS are the 

respective rotation angles. 

The rotation matrices 4Á
á?5,á and 4elbow describe the same 

motion at the elbow if qFE and qPS are the change in angle 

about the respective axes from time-step n-1 to n. To 

calculate qFE and qPS from the rotation matrices without 

having to induce a third non-DOF angle (the carrying 

angle), we introduce an optimization routine: 

Minimize ,(M¿¾ ,MÉÌ), where 

,(M¿¾ ,MÉÌ) = Ã !AÜ × NÜ!
67

Ü@5                          (18) 

where ri and ei are the i
th column of 4Á

á?5,á  and 4elbow 

respectively. The optimization routine ensures the respective 

column vectors of 4Á
á?5,á and 4elbow are optimally in the same 

directions. We do not attempt to match all nine components 

of the matrices because it may cause convergence issues in 

the optimization process. The routine is implemented in 

Matlab® using the function fsolve with the ‘trust-region-

dogleg’ algorithm.  

By adding a third IMU at the thorax, the humerus frame 

can be represented in the thorax frame. This permits an 

extension to the usage of the methods described in this paper 

to provide the humerothoracic motion information for the 

purpose of modeling the whole arm.    

III. RESULTS 

A. Results for Experiment 1 

The calculated SFE and SPS of one subject are shown in 
Fig. 2. The dashed lines show the axes of rotation of the 
twenty segments throughout the duration of the experiment. 
The solid lines are the optimal axes. The view is presented in 
the frontal plane where the relative orientation between SFE 
and SPS is most apparent. The results of all four subjects are 
shown in Table 1. The error estimations of the optimal axes 
are calculated as [4]: 

AÌ =
5

Ç
Ã cos?5k5âãç � 5ÜoÇ
Ü@5                      (19) 

where Si are the IHAs in either flexion/extension or 
pronation/supination motions, and Sopt is the optimal axes. 

The average optimal axes and error estimations of SFE 
and SPS of all the subjects in the humerus frame are [0.967, -
0.180, -0.097] and 6.37º, and [0.198, 0.974, -0.084] and 3.05º 
respectively. The results from [4] and [15] are included for 
comparison. The axes calculated and the corresponding 
errors in this study are very similar to that published in [4]. 
The axes calculated in [15] are closer to the axes in the 
humerus frame. This may be due to the fact that the results 
were calculated from cadaveric data where the sensors were 
fixed directly to the bones. Whereas in living subjects there 
are always some disturbances caused by soft tissue 
movements and involuntary motions from other parts of the 
body, there are no such issues in cadavers. 

B. Results for Experiment 2 

The trajectories of the flexion/extension angle, qFE and 
the pronation/supination angle, qPS of a subject performing 
the arm motions are presented in Fig. 3. For Fig. 3a and 3b, 
the subject flexed his arm fully from initial position. The qFE 
started from 0° and decreased steadily to -118°. 

 

Fig. 2. The calculated SFE and SPS of one subject shown in the frontal plane. 
The dashed lines are the axes calculated between two consecutive positions. 
The solid lines are the optimal axes. The axes are dimensionless as only the 
directions of the axes are plotted. 
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TABLE I. CALCULATED SFE AND SPS 

aStokdijk et al. [4] only provided results for SFE. 

As the subject was told to flex the arm naturally, the 
forearm supinated slightly during theflexion.  

The subject pro/supinated the forearm from the initial 
natural resting position in the second motion, and the angles 
are shown in Fig. 3c and 3d. The range of the qPS is from -50º 
to 50º. As no external constraint was used on the subject’s 
body during the experiment, the arm flexed slightly during 
movement. The subject raised his arm from initial position to 
above his head. As expected, both angles have only small 
variations during this movement, as shown in Fig. 3e and 3f. 
In the last movement, the subject was told to pick up a bottle 
from a table in front of him, drink from it, and put it back. 
The qFE nearly reached its maximum at about -100º as shown 
in Fig. 3g. It is apparent from Fig. 3h that the movement 
invoked mainly pronation.  

All subjects have similar ranges and patterns in qFE and qPS 
in the first three movements, but not in the drinking motion, 
as shown in Fig. 4. This is due to the differences in the 
trajectory taken by each subject in more complicated 
movements. 

The accuracy of obtaining the flexion/extension angle, 
qFE and the pronation/supination angle, qPS using the 
optimization method with respect to the measurements by the 
sensors is tested by an error estimation [16]. We define the 
logarithm of a rotation matrix, 4 Ð SO(3), as 

log[4] =
%

6 qgl%
(4 F 4Í)                         (20) 

where 2cosö = trace(4) F 1 , and log[R] is skew-
symmetric. The average quantified orientational deviations 
between the calculated and measured poses is defined as 

�4 =
5

à
Ã !log(4àÜ

?54ÖÜ)
é!à

Ü@5                         (21) 

where m is the number of time-steps, 4à  is the measured 
rotation matrix (in this case 4Á

á?5,á), and 4Ö is the calculated 
matrix (in this case 4elbow). The notation (	)é refers to the 87 
vector that represents log[R]. The results of ¿4  of each 
subject performing each movement are shown in Table 2. It 
can be seen that the deviations are small, and this means that 
the optimization gives reliable results. 

 

 

 

IV. DISCUSSION 

Many of the methods developed to make use of the 
kinematic data of human body captured by sensors thus far 
require careful palpation of the bony landmarks or 
sophisticated protocols and setups [2]. The former has to be 
done by trained therapists, and small therapist to patient ratio 
in many ageing societies poses a challenge in making 
rehabilitation cheaper and more accessible. The reliability 
and repeatability of palpation is also a concern [17]. The 
expensive and cumbersome setups in the latter are often only 
possible in laboratories, and this is also a hindrance in 
promoting rehabilitation. 

The method described in this paper demonstrates that 
finding elbow rotation angles using IMUs can be performed 
easily and with accuracy comparable to protocols that 
requires palpation and more expensive devices. It also avoids 
complex and costly minimization computations that involve 
partial derivatives and integrals [18]. Comparing the errors in 
the calculations of SFE and SPS with [4] and [15], we see that 
the proposed method yields reasonably accurate results. 
Although attaching IMUs to the arm and body is susceptible 
to the problems faced by every non-invasive methods [2], 
like measurement noise and noise caused by soft tissue 
movements and involuntary rotations of other body joints by 
the subjects during experiments, the results can be made 
more reliable by  low-pass filtering the raw IMU data before 
processing. 

The mean angle between SFE and SPS among the four 
subjects is 88.6º with a standard deviation of 3.67º. This 
justifies our choice of not using Euler decomposition which 
assumes orthogonality of the two axes to find qFE and qPS. 
The effect of the non-orthogonality of SFE and SPS will be 
more apparent if the method is used in a whole arm model 
that aims to estimate muscle strengths. In these types of 
complex musculoskeletal model, the lines of action of the 
muscles with respect to the joints are very important. The 
assumption of orthogonality will compromise the accuracy in 
these models. 

 

 

 

Subject 
SFE SPS 

xopt yopt zopt eS (º) xopt yopt zopt eS (º) 

1 0.968 -0.229 -0.103 5.45 0.274 0.957 -0.097 4.39 

2 0.918 -0.251 -0.307 6.00 0.240 0.968 -0.073 3.45 

3 0.996 -0.087 -0.035 8.77 0.176 0.984 -0.034 2.09 

4 0.987 -0.151 0.058 5.24 0.103 0.985 -0.132 2.28 

Mean (sd) 0.967 (0.035) 
-0.180 

(0.075) 

-0.097 

(0.155) 
6.37 (1.64) 0.198 (0.075) 0.974 (0.014) 

-0.084 

(0.041) 
3.05 (1.08) 

Ref [4]
a
 0.965 (0.035) 

-0.134 

(0.032) 

-0.212 

(0.118) 
4.12 (0.670)     

Ref [15] 0.992 (0.007) 
-0.084 

(0.066) 

-0.018 

(0.083) 
4.72 (0.073) 0.02 (0.088) 0.996 (0.004) 

-0.022 

(0.027) 
4.59 (0.039) 
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TABLE II. 2ULHQWDWLRQDO�'HYLDWLRQ�%HWZHHQ�7KH�&DOFXODWHG�$QG�0HDVXUHG�3RVHV��¨R 

Subject 
4R (º) 

Flexion Pro/Supination Raise Arm Drinking 

1 0.756 0.344 0.141 0.250 

2 2.05 0.412 0.303 0.604 

3 2.26 0.571 0.603 0.557 

4 0.622 0.101 0.194 0.527 

Mean (sd) 1.42 (0.853) 0.357 (0.195) 0.310 (0.207) 0.485 (0.160) 

 

Fig. 3. The plot of the trajectories of qFE (left column) and qPS (right 
column) versus the percent of movement cycle of one subject: (a) & (b) 
flexion; (c) & (d) supination/pronation ; (e) & (f) arm raised in the sagittal 
plane; and (g) & (h) drinking water. 

 

Fig. 4. Comparison of (a) qFE and (b) qPS during the drinking movement 
among subjects.  

 

Notwithstanding the accuracy issues of the IMU itself, 
the optimization routine used in calculating qFE and qPS 
yields results that have very small deviation from the 
measured data. The cost of computation is low since there 
are only two variables. This eliminates the need to 
introduce the carrying angle which is not a DOF at the 
elbow. 

The third IMU attached to the thorax was not used in 
the computations of the results in this study. However, it 
was to illustrate that the motions of the forearm and the 
humerus can be represented more accurately with respect 
to the thorax instead of the global frame, since the torso of 
a subject will inevitably move during any arm movements. 
In a more complete arm model, qFE and qPS calculated 
using the method can be viewed as the joint angles of the 
elbow which can be modeled by two revolute joints. 

The ease of use of the method is an advantage but it is 
also its limitation. Without making references to bony 
landmarks, the angles calculated are presented in the initial 
frame of the humerus, which in turns is referenced to the 
global frame. To improve the accuracy of the method when 
used in a more complete and comprehensive model, one 
should establish a relationship between the humerus frame 
to anatomic landmarks. This can be done by palpation 
(which we have tried to avoid) or by using published 
anatomic data that can be scaled according to the subject’s 
measureable parameters [19]. 

 

V. CONCLUSION 

The advantages of using IMU over the more popular 
sensor systems in capturing kinematics of human body lie 
in its low-cost and ease of handling. However, it has to be 
supported by reliable algorithms and protocols to increase 
its accuracy.  

In this study, the rotation axes and angles of the elbow 
joint were calculated from the IMU data of the forearm and 
the humerus, using a novel method of decomposing the 
rotation matrix by a POE representation and an 
optimization process. Results have shown that the accuracy 
of the method is comparable to those using more expensive 
sensor systems. It also has the characteristic of not having 
to introduce the carrying angle and assume orthogonality 
of the two DOFs at the elbow. However, since locating 
bony landmarks as references was not done, one has to be 
cautious when integrating the method into a comprehensive 
musculoskeletal arm model. 
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Fig. 1.

Fig. 2.

botulinum toxin was alwais combined with appropriate intensive
physiotherapy (90 min per session, 5 times/wk). Gait analysis and
a clinical and functional evaluation were carried out on two occa-
sions: at inclusion and 1 month after botulinum toxin injection.

Results: Post-BTX-A there was a significant improvement of 9◦

in maximum swing phase knee flexion and 7◦ in total range of knee
motion (Fig. 1). Average peak hip flexion in swing phase signifi-
cantly increased by 8. Post-BTX-A the maximum negative of knee
joint power reached at the end of the stance phase increased sig-
nificantly (Fig. 2).

Dynamic electromyography recorded slightly decreasing vas-
tus medialis activity, whereas those of the vastus lateralis, rectus
femoris, biceps femoris and soleus were more markedly reduced.

Discussion: As a result of BTX-A treatment, elimination of high
rectus femoris activity led to large increases in peak knee flexion.
The knee extension moment, which is influenced by rectus femoris
activity, prior to toe-off, rather than after toe-off, may be a more
prevalent contributor to stiff-knee gait.

The gait analysis data have shown that BTX-A treatment facili-
tates more normal swing pattern in patients post-stroke [2].

This study confirm the importance of the rectus femoris in the
physiopathology of stiff knee gait, suggesting that rectus femoris
overactivity should decrease knee flexion.

We believe that the BTX-A treatment provides a “window of nor-
mal tone” of opportunity to retrain the rehabilitative program. We
suggest that perhaps a combination of botulinum toxin injection
and specific physiotherapy would have yielded more significant
results regarding the functional benefit of the therapy in patients
with a stiff-knee gait after stroke, particularly with some flexion [3].
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A longitudinal study to evaluate the development of inde-
pendent walking in infants using inertial sensors: Preliminary
results

M.C. Bisi, R. Stagni

DEIS, University of Bologna, Italy

Introduction: Many studies have been observing infants at the
onset of walking in order to evaluate the development of different
strategies and coordination [1–3]. These studies regard most of the
times small groups (<10) and only few studies observed longitu-
dinally the evolution of independent walking (on 2 or 5 subjects)
[4,5]. To the author knowledge, these observations were always
made using optoelectronic or video-based data. The use of wireless
inertial sensors is more practical when aiming at the measurements
of large populations. Moreover, inertial sensors can be worn under
the clothes facilitating the experiments with infants who are not
distracted by markers and can freely walk in any environment. The
aim of the present study is to observe longitudinally a large group of
infants using inertial sensors over a 6-month period after onset of
independent walking (period in which the most dramatic changes
of maturation of many gait parameters occurs [6]). This database
will allow evaluating the changes in gait temporal parameters, pos-
tural stability and coordination at the beginning of independent
walking.

Methods: Twenty healthy infants (77 ± 2 cm, 9.3 ± 0.8 kg, 13 ± 2
months) were included in the study. All of the infants had no known
developmental delays. The tests were scheduled once a month
after the onset of independent walking for three months, and one
after six months. When possible, a test was performed during the
very first week of independent walking. Three tri-axial wireless
inertial sensors (OPALS, Apdm, USA) were mounted on the lower
back and on the right and left legs, respectively. The participants
were asked to walk straight in the room. Heel-strike and toe-off
instants were estimated from the angular velocity of the lower
limbs [7]. Median stride (strT), swing (swT), stance (stanceT) and
double support (dsT) times were calculated. Step-, stride-regularity
(stepR and strR) and step symmetry (stepS) were evaluated using
trunk vertical acceleration [8]. Up to now only five infants com-
pleted all the scheduled tests, thus the presented results are
preliminary.

Results: Up to now no significant trends were shown in the eval-
uated parameters even if, generally, the swT showed and increase
with months of experience. In Table 1, median (and 25th-, 75th

Table 1
Median, 25th and 75th percentiles of evaluated gait parameters for each tested period of gait maturation.

1st week 1st month 2nd month 3rd month 6th month

Median 25th perc 75th perc Median 25th perc 75th perc Median 25th perc 75th perc Median 25th perc 75th perc Median 25th perc 75th perc

strT 0.81 0.75 1.06 0.71 0.65 0.72 0.68 0.66 0.71 0.71 0.71 0.75 0.75 0.67 0.79
swT 0.31 0.30 0.34 0.33 0.31 0.33 0.35 0.34 0.35 0.36 0.34 0.37 0.36 0.34 0.37
stanceT 0.42 0.41 0.70 0.38 0.33 0.39 0.34 0.32 0.37 0.38 0.34 0.38 0.39 0.32 0.42
dsT 0.35 0.35 0.35 0.33 0.33 0.34 0.34 0.33 0.35 0.35 0.34 0.37 0.38 0.37 0.38
stepR 0.48 0.31 0.50 0.34 0.33 0.38 0.26 0.21 0.33 0.39 0.28 0.41 0.36 0.33 0.39
strP 0.29 0.20 0.29 0.33 0.25 0.38 0.37 0.32 0.40 0.31 0.24 0.35 0.29 0.26 0.32
stepS 1.66 1.44 1.72 1.43 0.90 1.48 0.95 0.55 1.57 0.96 0.93 1.52 1.19 1.09 1.40

dx.doi.org/10.1016/j.gaitpost.2012.12.021
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percentile) strT, swT, stanceT, dsT, stepR, strR, stepS, calculated on
the five infants are shown for each tested period of gait maturation.

Discussion: The increased swT with months of experience
evidenced the fear of falling of the infants during the beginning
of independent walking. Gait regularity was low in all the infants,
as expected. StepS is higher than 1, showing high symmetry but it
is calculated as stepR/strideR, which values are close to 0, therefore
it is not a reliable value.
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Quantitative gait analysis in parkin disease
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Reggiori 1, A. Albanese 2,3

1 Istituto Neurologico Carlo Besta, Milan, Italy
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3 Università Cattolica del Sacro Cuore, Milan, Italy

Introduction: The typical clinical phenotype of parkin disease
(PARK2, OMIM 602544) shows early onset of parkinsonian fea-
tures, benign clinical course, often dystonia at onset. Multifactorial
recording of gait analysis has been already used to investigate gait
disturbances in Parkinson Disease (PD) in comparison with normal
subjects [1–3]. However, PARK2 differs from idiopathic PD because
of early onset, associated dystonia and other motor differences. No
information is yet available on gait parameters for PARK2. The aim
of the study is to compare gait parameters in parkin disease during
the off (OFF) and on-phase (ON) of oral medication with those of
healthy age-matched control subjects.

Methods: We performed a group-comparison study in the gait
analysis laboratory of our movement disorder unit. Ten PARK2
patients and ten healthy controls (HC) performed 5 walking trials
at a self-selected speed. Main outcome measures were spatiotem-
poral, kinematic, and kinetic gait parameters acquired with an
integrated system (SMART-D, BTS bioengineering, Italy). Data col-
lection was performed over two sessions, in the ON and OFF
condition. The parameters were computed bilaterally for each par-
ticipant and the mean and standard deviation values of all indexes
were calculated for each group (PARK2-ON, PARK2-OFF and HC).
We used the Kruskal–Wallis test to assess the more-affected side for
each subject and the Mann–Whitney U-test for comparing PARK2-
ON/PARK2-OFF and HC. A statistically significant difference was
accepted as p < 0.05 (STATISTICA 6.0, StatSoft).

Results: The PARK2 group gait spatial and temporal data showed
a significant reduction of walking velocity, stride length, increased
step width in OFF and ON compared with controls. Cadence was
reduced and the duration of gait cycle was increased only in OFF
condition. In the kinematics, the main features of the PARK2 group
were: at the knee an increased flexion at the initial contact and load-
ing response in OFF and ON, increased ROM in stance and flexion
in swing; at hip increased flexion at the initial contact and terminal
swing; reduced extension in stance and at toe-off in OFF; at pelvis
increased antiversion. Kinetics data showed increased knee and hip

power generation in stance in OFF and ON and reduced ankle power
generation and absorption in ON.

Discussion: PARK2 patients have an abnormal gait patterns that
partially differs from that of PD, patients. Whereas ROM is usually
reduced in all joints in PD, PARK2 patients have increased ROM
at the knee and hip in the sagittal plane. There is not a significant
typical kinematic pattern at the ankle as seen in PD patients (reduc-
tion of plantarflexion at push off, reduction of ROM in stance and
swing). These features are likely related to the variability of the dys-
tonic component. Kinetic data show increased power generation at
hip in OFF and ON in comparison with controls which is, on the
contrary, reduced in PD patients; also increased power generation
at knee in OFF and ON and ankle power absorbtion and generation
are reduced in ON like is described in PD patients.

References

[1] Ferrarin M, Carpinella I, Rabuffetti M, Calabrese E, Mazzoleni P, Nemni R. Loco-
motor disorders in patients at early stages of Parkinson’s disease: a quantitative
analysis. Conf Proc IEEE Eng Med Biol Soc 2006;1:1224–7.

[2] Sofuwa O, Nieuwboer A, Desloovere K, Willems AM, Chavret F, Jonkers I. Quan-
titative gait analysis in Parkinson’s disease: comparison with a healthy control
group. Arch Phys Med Rehabil 2005;86(5):1007–13.

[3] Morris ME, McGinley J, Huxham F, Collier J, Iansek R. Constraints on the kinetic,
kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum
Mov Sci 1999;18:461–83.

http://dx.doi.org/10.1016/j.gaitpost.2012.12.023

C6

Achilles tendon percutaneous repair with tenolig: Quantitative
analysis of postural control and gait pattern
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Introduction: Surgical approach in Achilles tendon rupture has
involved during the last years becoming safer and less invasive
as possible. Lots of studies investigate the outcomes of the mini-
invasive technique with Tenolig proving its good results [1,2], but
never in a long-term period. Our study wants to emphasize the
effectiveness of this surgical approach exploring the postural and
gait patterns in a 24 months follow up.

Materials and methods: We enrolled as volunteers 22 patients
(21 male and 1 female) aged 42.81 (±7.91), with a average body
weight of 81.75 ± 10.61 kg (BMI of 25.31 ± 2.95), and average height
(1.80 ± 0.05 m), treated with percutaneous technique with Teno-
lig in the previous two years. In the postoperative period, patients
did not undergo to a specific rehabilitation program but only to
a specific self training exercises finalized to the gait cycle and
postural control where triceps surae muscle has its greatest impli-
cation. The clinical sample was compared to a control group of 19
healthy volunteers matched by age (40.31 ± 6.12), physical consti-
tution (average body weight 77.5 ± 7.51, BMI 23.4 ± 1.88, height
1.80 m ± 2.1), and sport activities. After a clinical examination, we
did an instrumental analysis including a measurement on baromet-
ric footboard and an optokinetic gait analysis. This study used an
experimental scheme, where both limbs of each group were mea-
sured and the results were compared between the limbs of the
case group (injured and uninjured) and the control group (difference
between limbs).

Results: Clinical measures show a significantly increased ROM
in ankle’s dorsal flexion in the case group (p = 0.006). Gait analy-
sis data show no differences with control group in time-distance
parameters, despite an altered propulsion phase data, confirmed
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Abstract
Recent studies have demonstrated decoding of lower extremity limb kinematics from noninvasive
electroencephalography (EEG), showing feasibility for development of an EEG-based brain-
machine interface (BMI) to restore mobility following paralysis. Here, we present a new technique
that preserves the statistical richness of EEG data to classify movement state from time-embedded
low frequency EEG signals. We tested this new classifier, using cross-validation procedures,
during sit-to-stand and stand-to-sit activity in 10 subjects and found decoding accuracy of greater
than 95% on average. These results suggest that this classification technique could be used in a
BMI system that, when combined with a robotic exoskeleton, can restore functional movement to
individuals with paralysis.

I. Introduction
Electroencephalography (EEG) is a method for imaging brain activity by measuring the
electrical activity of pyramidal neurons in the superficial layers of the brain from electrodes
placed on the scalp. While EEG recordings possess high temporal resolution, the potentials
are a linear combination of many current sources, resulting in poor spatial resolution
(volume conduction). Yet, the noninvasive nature of scalp EEG makes it an attractive
candidate for use in brain-machine interfaces (BMIs). BMIs have been the subject of
intensifying research over the past decade [1–3] and have been deployed in a wide range of
applications, including control of computer cursors, powered wheelchairs, and assistive
robots. BMIs are incorporated into rehabilitation therapy to either train the central nervous
system to produce more normal activity, or to control a device that assists movement thereby
producing sensory input that induces plasticity to restore motor control [2]. Finally, BMIs
can be used to control prosthetic limbs or powered exoskeletons to restore functional
mobility to amputees or individuals with paralysis.

The key component of a BMI for restoration of movement is the algorithm that translates
brain signals into useful commands. One approach is to infer limb movement from the
recorded neural signals. Many techniques have been investigated for this decoding task [4]
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including the Weiner filter, Kalman Filter, unscented Kalman filter, particle filter, artificial
neural networks, and finite state approaches. A majority of these studies have applied these
techniques to decoding motion of the upper extremity, such as reaching and grasping, from
invasive neural recording such as electrocorticographic (ECoG) or local field potentials [5–
7], while some studies demonstrate the feasibility of utilizing noninvasive EEG for these
purposes in humans [8,9]. Extension of noninvasive neural decoding to the lower extremity
offers great potential to BMIs for rehabilitation, since recovery of independent mobility after
paralysis can greatly improve quality of life. Recent work has demonstrated the ability to
decode lower extremity limb motion from scalp EEG [10,11]. While such decoding is useful
for rehabilitation and motor recovery, individuals with paralysis or amputations could
benefit from methods that classify the desired action in a more discrete fashion. For
example, a BMI for controlling a robotic exoskeleton that restores walking mobility need
not decode the exact desired trajectory of the limb; instead, the BMI must only decode the
intent of the user (e.g., stand, walk, turn, stop, etc.). Once intent is established, internal
controls of the exoskeleton can execute the desired movement.

Here we present a new strategy for EEG classification to infer user action from brain activity
during sit-to-stand and stand-to-sit tasks. We employ a locality preserving dimensionality
reduction technique coupled with a statistical classifier to determine the current state of the
user from offline analysis of scalp EEG recordings.

II. Methods
A. Classifier Algorithm

A Gaussian mixture model (GMM) seeks to represent arbitrary statistical distributions in the
feature space via a summation of multiple Gaussian distributions, termed components or
modes. The shape of the resulting probability density function depends on the number of
mixture components (K), and the mixing weight, mean, and covariance matrix of each
component. The determination of K is critical to successful implementation of GMMs for
classification. The Bayes information criterion (BIC) has been reported as an effective
metric for determining K [12]. Once the value of K has been determined, the other
parameters of the GMM can be estimated by the expectation-maximization algorithm [13].

One drawback for use of GMMs is the size of the parameter space that must be learned,
which can be calculated as K*(1 + d*(d − 1)/2) + K*d, where d is the dimensionality of the
data to be fit. It is common to include 10 lags of past EEG data in the feature matrix for
neural decoding [10,11]. To fit a GMM with K = 10 components to a feature matrix
constructed from 32 channels of EEG requires learning a parameter space of dimension 6.2
× 105, a task which is often impractical given the limited time and training data available
from EEG studies. Many techniques for dimensionality reduction have been evaluated in
BMI, with the most popular being genetic algorithm (GA), principal component analysis
(PCA) and linear discriminant analysis (LDA) [4]. These methods have shown promising
results, however these data reduction techniques have some limitations. In the case of PCA
and LDA, the underlying assumption is that class-conditional data are Gaussian. Yet, scalp
recorded EEG data represent a mixture of millions of neural inputs. Thus, it is likely that
EEG data recorded for the purpose of determining user intent (e.g. sit or stand) will be
contaminated by other neural activity. Therefore, we hypothesize that the statistical
distribution of a given class will be multimodal, and thus, classifiers such as GMMs are well
suited to classify user intent from EEG data. Evidence from prior studies indicates that
utilization of a locality preserving dimensionality reduction, such as local Fisher’s
discriminant analysis (LFDA), improves performance of GMMs compared to traditional
data reduction techniques [12]. LFDA combines LDA with a linear manifold learning
technique to obtain between-class separation in the reduced dimension projection space
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while preserving the within class structure found in the original space. LFDA seeks to find a
projection that preserves local neighborhood information, thereby ensuring that the
underlying structure of the data distribution is preserved in a lower dimensional subspace.
This is accomplished by deploying local between-class and within-class scatter matrices
which are scaled by the distance between a given data point and its knn-nearest neighbor (the
value of knn must be optimized for a given data set). These local scatter matrices are used to
define Fisher’s ratio. The transformation matrix Tlfda, which projects the original data set
into the reduced dimensional space, is then found by maximizing a modified form of Fishers
ratio as in [12].

B. Experimental Setup and Data Collection
Ten healthy adults (6 male, 4 female) with no history of neurological disease participated in
the study after giving informed consent. This study protocol was approved by the
Institutional Review Board at the University of Houston. Participants were asked to
complete sit-to-stand and stand-to-sit tasks as follows. Participants were asked to stand
quietly in an upright posture for 15 seconds. Next, an audio cue (beep) was given at which
point the participant transitioned from the standing to a seated posture. The seated posture
was held for a period ranging from 3–10 seconds, after which a second audio cue was given
to initiate the transition from sit-to-stand. The standing posture was held for 3–10 second
interval, at which point the process was repeated until 20 transitions (10 of each) were
completed.

Time-locked kinematic, electromyography (EMG), and EEG data were collected
simultaneously using a previously developed data collection system [14]. Inertial sensing
units (APDM, Inc., Portland, OR) containing triaxial magnetometers, accelerometers, and
gyroscopes sampled at 128 Hz were mounted bilaterally on the foot, shank, and thigh, and
on the lower back, sternum, and head. Surface EMG (Biometrics, Ltd, Ladysmith, VA) was
recorded at 1000 Hz bilaterally from the tibialis anterior, gastrocnemius, biceps femoris, and
vastus lateralis. Whole scalp, active electrode, 64-channel EEG (Brain Products, GmbH,
Morrisville, NC) were collected at 1000 Hz and labeled by the 10–20 international system.

C. Signal Preprocessing
All data analysis, classifier optimization and evaluation were performed off-line using
custom software in Matlab (Mathworks, Natick, MA). Peripheral EEG channels susceptible
to eye blinks and facial/cranial muscle activity were removed for offline analysis (all
channels labeled Fp, AF, FT, T, TP, O, and P7–8, PO7–10). Time traces of the remaining
channels were visually inspected to assure no irregularities were present. EEG signals were
decimated to 100 Hz and then band pass filtered with a zero phase, 3rd order Butterworth
filter from 0.1–2 Hz. The EEG data were then standardized by channel by subtracting the
mean and dividing by the standard deviation. Finally, a time-embedded feature matrix was
constructed from 10 lags, corresponding to 100 ms in the past, of EEG data. The embedded
time interval was chosen based on previous studies demonstrating accurate decoding of
lower extremity kinematics from EEG [10,11]. The feature vector for each time point was
constructed by concatenating the 11 lags (the current time point plus the 10 prior) for each
channel into a single vector of length 11 × N, where N is the number of EEG channels. To
avoid the problem of missing data, the feature matrix was constructed starting at the 11th

EEG sample of the trial.

EEG data are used to classify the current motor activity of the participant into one of three
classes: quiet, stand-to-sit, or sit-to-stand. The true state of the participant was assessed from
the linear envelope of the lower extremity EMG. To attain the envelope the EMG data was
detrended, band pass filtered (15 – 300 Hz), rectified, and low pass filtered (3 Hz). A simple
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threshold detection algorithm identified the class as 0 (quiet), 1 (stand-to-sit), or 2 (sit-to-
stand) based on the linear envelope. Classes 1 and 2 were identified as time periods when
the linear envelope value exceeded three standard deviations from the mean of the quiet
phase value.

D. Classifier Optimization
The parameters of the LFDA-GMM classifier (knn and the dimensionality of the projected
subspace (r)) were optimized for each subject using a set of training and testing data
randomly selected from each class. This optimization was performed using a grid search
technique while varying the values of knn and r from 1–99 and 1–100, respectively.
Mutually exclusive training and testing data sets for optimization were randomly selected
from each class. For the optimization, the number of samples selected from each class was
equal for both training and testing (50% of the least populated class). The LFDA-GMM
classifier was then trained and tested at all points of the parameter space for knn and r. The
optimal parameter set for each subject was selected as the one that produced the highest
overall accuracy from the testing data set.

D. Classifier Performance
The performance of the LFDA-GMM classifier with the optimal parameter set was analyzed
for each subject by randomly selecting a subset of data points to serve as the training set.
The number of samples in the training subset was equal to 20% of the least populated class.
After training, the LFDA-GMM classifier was then tested on all data remaining in the set for
that given subject. To avoid training bias, the experiment was repeated 20 times and the
accuracy reported is the average classification accuracy. We also investigated the effect of
the size of the training data set by varying the size of the training set between 10%–90% of
the least populated class.

III. Results
A representative optimization surface of overall classifier accuracy as a function of
parameters knn and r is given in Fig. 1. The contour was similar for all subjects. Accuracy
plateaus at moderate r values (~15–40). In some subjects, accuracy remained nearly constant
for increasing values of r while in other cases accuracy dipped slightly as r increased beyond
40. Generally, the value of knn had little impact on accuracy beyond a peak at ~11. The
optimized LFDA-GMM parameters for each subject are given in Table I. The number of
components (K), estimated from BIC, demonstrate that stand-to-sit (class 1) and sit-to-stand
(class 2) distributions are multi-modal for at least half of the participants.

Fig. 2 shows the average classification accuracy with the optimal parameter set for each
subject. The mean accuracy across the ten subjects was 95.2 ± 1.3%. Fig. 3 shows a
representative example of the LFDA-GMM classifier performance for 65 seconds of the sit-
to-stand and stand-to-sit experimental protocol, including the true class, predicted class, and
EMG envelope of the left vastus lateralis.

IV. Discussion
Previous studies have shown promising results for decoding of lower extremity kinematics
during walking activity [10,11]. These studies and others from upper extremity [6–9]
demonstrate that critical information pertaining to limb motion can be extracted from
smooth amplitude modulated brain waves in the delta band (0.1 – 4 Hz). Collectively, these
studies show that limb motion can be reconstructed from EEG. Such reconstruction could be
used as a control signal for a noninvasive BMI for restoration of movement. However, we
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postulate that state-based EEG classifiers, serving as a BMI with a robotic exoskeleton or
other assistive device, can provide functional recovery of movement to impaired individuals.
This study shows that time-domain EEG signals from the lower delta band can be
effectively used to classify movement state in healthy individuals with a very high level of
accuracy, providing impetus for its use in a BMI.

Our underlying hypothesis for this study was that because spatially coarse EEG signals are
combinations of many neural sources, the within-class statistical distribution of data can be
multi-modal, and thus a classification scheme that can handle such non-Gaussian
distributions will accurately classify the movement state. The results presented support this
hypothesis. Optimization of classifier parameters for each subject is critical. For every
subject peak accuracy was attained in a reduced dimensional space of less than 25% of the
original, indicating LFDA was able to significantly reduce dimensionality while preserving
the statistical features necessary for accurate classification. Furthermore, the GMMs for the
stand-to-sit (class 1) and sit-to-stand (class 2) classes contain more than one mixture
component for over half the subjects, supporting our assumption of multi-modal within class
data.

In a similar manner as previous studies [15], we introduced a control group during classifier
optimization to strengthen our conclusion regarding classification accuracy. The control
group was created by randomly shuffling original EEG data within each channel for each
subject. The highest overall accuracy for LFDA-GMM optimization was significantly higher
for original EEG than control (p < 10−6). Across subjects, the maximum accuracy during
optimization for the control EEG was 35.5 ± 5.8 %, which does not compare favorably to
chance value of 33%.

We also found that training set size had little impact on classifier performance. Even when
trained using a set of length equal to 10% of the least populated class (comprising
approximately 2% of the total data set), mean accuracy was 88.7 ± 6.4 % across subjects.
The length of the 10% training set was 7.8N on average, where N is the size of the original
feature space (number of EEG channels). This finding agrees with previous studies of
LFDA-GMM classifiers that found similar accuracy levels at the same training abundance
[12]. Furthermore, these high accuracies with relatively low number of training samples
demonstrate robustness of the LFDA-GMM classifier to EEG artifacts since the training
data are taken randomly in time from each class.

In this study, LFDA-GMM demonstrated high accuracy for prediction of current motor state
during one experimental session. For real time application, within-class statistical data
distribution can be expected to vary between sessions, and thus the classifier may need to be
optimized before each use. Despite feature reduction by LFDA, the optimal parameter set
(Table I) can still result in a relatively large learning space for the GMMs as described in
section II. This is a potential hindrance for real-time deployment of this classifier. However,
careful examination of subject specific surfaces like the one in Fig. 2 shows that gains in
accuracy level-off at values of approximately 20 and 11 for r and knn, respectively, with
only small gains in accuracy for parameters exceeding these levels. These results suggest
online application of the LFDA-GMM classifier to be reasonable. Future work will focus on
its implementation in combination with a robotic exoskeleton [16].
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Fig. 1.
A representative example (S5) of overall LFDA-GMM accuracy for optimization of
parameters r and knn.
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Fig. 2.
Average (n = 20) LFDA-GMM classifier accuracy across subjects.
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Fig. 3.
Representative example of LFDA-GMM classification of user action from EEG: quiet (0),
stand-to-sit (1), or sit-to-stand (2). Predicted and true states of the participant are shown with
the EMG of left vastus lateralis (VL) as a reference.
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INTRODUCTION 

The purpose of this paper is to summarize current motion analysis 
techniques and described their role in biomedical engineering 
education as well as in interdisciplinary research. At the University of 
South Florida (USF), various methods of motion analysis are used for 
collaborative research in fields such as prosthetics, robotics, 
rehabilitation, and injury prevention. The motion analysis laboratory is 
also used in course work in a variety of fields promoting 
interdisciplinary exchanges among students and faculty. 
 

MOTION ANALYSIS 

Analyzing motion has a long history and has evolved since Eadweard 
Muybridge captured horse motion in 1878 using multiple cameras 
There are currently many techniques for studying motion including 
image based analysis, active and passive marker systems, inertial 
measurement units (IMU), as well as two and three dimensional type 
systems. The motion analysis laboratory that is part of the University 
of South Florida’s Center for Assistive, Rehabilitation and Robotics 
Technologies has several modes of motion capture and analysis 
capabilities.   
 
Video based optical motion analysis systems have recently been used 
to study athletes[1], to compare gait in 
patients with anterior cruciate ligaments 
problems [2] and squat performance of 
physical therapists[3]. The main motion 
analysis system at USF consists of an 8 
camera Vicon optical passive marker 
based system. These cameras offer high 
speed (up to 690 Hz.), high resolution (2 
megapixel) and accuracy (0.5 mm).   Each camera has powerful 
infrared strobe lights that allows for smaller markers to be identified 
over a large capture volume. Passive reflective markers are placed on 
landmarks to capture movement data (Figure 1).  The USF motion 

analysis laboratory also has two force platforms (AMTI, Watertown, 
MA) and a 6 degree of freedom ATI (Apex, NC) force transducer that 
can be integrated with the Vicon system to collect and analyze kinetic 
data.  
 

IMUs another popular method of motion analysis have recently been 
used to study baseball pitches[4] and fall risks[5]. The motion analysis 
laboratory at USF also has 6 IMUs (Opal sensors, APDM, Inc. 
Portland, OR) that each include a triaxial accelerometer, gyroscope, 
and magnetometer. A watch-like size, a 22 g weight, a battery life of 
16 hours, and 16 GB of on-board storage enable these Opal sensors to 
provide wearable, unobtrusive sensing. For real-time data access, a 
wireless access point can connect up to eight sensors with a computer 
for integrated data collection.  
 
The Micosoft Kinect for Windows (Microsoft, Redmond, WA) can 
also be used as a motion capture system. The Kinect device includes a 
standard RGB camera, a multi-array microphone, and a depth sensor. 
It captures 30 frames per second at a distance of 0.8 to 4 meters in 
front of the camera.   
 
EDUCATION 

The motion analysis laboratory is used as an educational tool across 
disciplines at USF. Students that experience the laboratory learn that 
the various methods of data collection and analysis differ and part of 
the process is to determine which technique is appropriate for which 
application. As part of the physical therapy doctoral program, in the 
Movement Science III course, students learn about analyzing 
movement in a “hands on” setting in the motion analysis laboratory.  
Students study gait deviations, sports injuries, exercises (Fig. 2), injury 
prevention techniques and various rehabilitation methods. Engineering 
students work together with physical therapy students to collect and 
analyze data while comparing it to current literature. 
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The Human Factors, an industrial 
engineering required course, first 
learns about motion capture through 
lectures, and then also spends time in 
the laboratory experiencing data 
collection and analysis to help with 
human factors based design projects. 
 
The students from the Dance 
Kinesiology course, from the College 
of the Arts are also exposed to the 
motion analysis laboratory. 
Various dance movements are collected and analyzed and the students 
learn about injury prevention and how motion analysis can be used to 
study rehabilitation programs.  This also allows engineering students 
and performing artists to interact and learn from each other. 
 
The motion analysis laboratory is also used for outreach purposes by 
exposing K-12 students to this movement technology.  The authors 
often take the wearable sensors and Kinect to schools around the 
community demonstrating the purpose of motion analysis.  The 
various methods of motion capture are presented in hands on exhibits 
at the Engineering Expo on campus, a free event that educates K-12 
students on the importance of math, science, engineering and 
technology.  The “Minds for Design” week long summer day camp for 
girls in Grades 6-12 sponsored by the Girl Scouts of West Central 
Florida also incorporates the technology of the motion analysis 
laboratory.  Members of the laboratory also work with the Museum of 
Science and Industry to promote science education and help develop 
interactive exhibits. 
 
 
INTERDISCPLINARY RESEARCH 

The motion analysis laboratory at USF provides a creative center for 
researchers from multiple disciplines to develop projects. Recent 
projects have allowed biomedical and mechanical engineers to 
collaborate with computer scientists, physical therapists, musicians, 
dancers, and psychologists.  Having a laboratory with several options 
for motion capture allows for many different research opportunities.  
 
In collaboration with the School of Physical Therapy, the gait, sit to 
stand motions, and upper limb activities of daily living of persons 
using a prosthesis have been studied [6-8].  A robotic human body 
model (RHBM) to predict human upper motion and compensatory 
motion of prosthetic users has been developed with the collaboration 
of biomedical, mechanical and electrical engineers, computer 
scientists, physical therapists, prothetists and amputees as well as 
movement data collected and analyzed in the laboratory [9].  The 
kinematics of instrumentalists before and after an intervention 
program have also been analyzed at USF’s motion analysis lab [10]. 
 
Recently in the motion analysis lab, data were collected from a 
biomorphic quadrupedic robot to determine the optimal control 
algorithms.  Motion data were collected on board a modified Boeing 
727 (Zero-G) during parabolic arcs creating a weightless environment 
using a Microsoft Kinect. During the flight, a task sequence was 
completed for 1 parabola representing Martian gravity, 2 parabolas 
representing lunar gravity and 23 parabolas in zero gravity. A project 
looking at the practice techniques of dancers in order to prevent injury 
is currently under way (Figure 3).  A testing protocol for the analysis 
of softball pitching in the typical outdoor game setting is in 
development.  Marker placements to compare tortoise movement to 

the motion of a new robot are being researched.    

.      
Figure 3. Dance movements 

 
CONCLUSION 

Motion analysis technologies are important educational and research 
tools for biomedical engineers as well as other professionals.  The 
many methods of motion analysis at USF’s laboratory have been used 
to enrich coursework on campus, encourage K-12 STEM learning, and 
for development of interdisciplinary research projects.  We plan to add 
electromyography and virtual reality components to the lab in the near 
future. The laboratory also encourages collaboration between different 
levels of students and professionals as well as communication across 
disciplines allowing for creative innovation.  The people of USF 
motion laboratory continue to work on campus, around the community 
and across the country to further develop the role of motion analysis in 
biomedical engineering education and interdisciplinary research. 
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SUMMARY 

Wearable inertial and magnetic measurement units 
(IMMUs) have recently gained much attention in 
investigations approaching human kinematic analysis in 
sports scenario. Running, tennis, baseball, snowboarding, 
rowing, and swimming are some examples of sports already 
approached. In swimming, many studies proposed several 
methods to identify the temporal phases of a single 
swimming stroke or the swimming style. However, this 
temporal information alone does not provide any joint 
kinematic data like joint angles. Therefore, the present 
study aimed to verify the accuracy of a protocol, previously 
developed for ambulatory joint kinematic analysis through 
IMMUs, in measure the shoulder kinematics during 
swimming strokes simulation. A stereo-photogrammetric 
system was considered the gold standard. Three trained 
swimmers realized 3 trials of breaststrokes simulation and 3 
trials of front-crawl strokes simulation in dry condition. As 
first verification, the relative motion of both the segments 
thorax and arm with respect to the first-synchronized frame 
(automatically detected by an ad-hoc algorithm) was 
compared by means of root mean square error (RMSE) and 
correlation coefficient (r) between the two systems. The 
RMSE was 5° and 7°, and the r was 0.85 and 0.91 for 
breaststroke and front-crawl stroke, respectively, indicating 
a good relationship between both methods in measuring the 
body segments’ orientation. As second verification, the 
shoulder flexion/extension, abduction/adduction and 
internal/external rotation angles were computed, and no 
significant difference was found (p<0.05) between both 
systems. In conclusion, a protocol previously implemented 
for joint measurement in ambulatory settings is also 
suitable and accurate to estimate the shoulder kinematics 
during swimming strokes simulation when using wearable 
inertial and magnetic measurement units. 

INTRODUCTION 
The use of technology in swimming played an important 
role in acquiring reliable performance data to provide 
greater understanding of the swimming biomechanics and 
enable swimmers to perform to their highest potential.  

Recently, several authors examined the difference of 
movement patterns and the evaluation of the athlete's 
technique using sensors composed by accelerometers, 
gyroscopes and magnetometers, also known as IMMUs, 
covering a large range of disciplines, including: ambulatory 
measurements, physical activity, gait analysis, and 
improvement of the athlete’s performance [1]. Thus, the use 
of IMMUs has been presented as a useful tool for 
monitoring human movement kinematics. 

In swimming, wearable IMMUs were used to measure 
several variables regarding athletes’ performance including 
lap time, stroke identification, stroke count, stroke rate, 
stroke length, wall push off, forward speed, swimmer's 
proficiency, energy expenditure, and swimming velocity [2, 
3]. However, to the knowledge of the present authors, no 
previous investigation performed a three-dimensional 
kinematic analysis of the shoulder joint, that is, by far, the 
most demanded joint during swimming [4]. As a 
consequence, investigations approaching the shoulder 
kinematics analysis can aid coaches and therapists in 
identifying risk factors for injuries as well as in planning 
injuries prevention programs. Therefore, the aim of this 
study was to verify the suitability and accuracy of a 
protocol previously developed for the shoulder joint 
kinematic analysis through IMMUs in ambulatory settings 
in measure the shoulder joint kinematics during swimming.   

METHODS 
The protocol implemented was described and validated by 
Cutti and co-workers [5]. Whereas the protocol was 
developed to measure the upper-limbs kinematics in 
ambulatory settings, the present work proposes to verify its 
applicability also in swimming.  

From a biomechanical point of view, the shoulder joint was 
modeled as an open kinematic chain composed by 2 rigid 
segments (thorax and arm), with 3 degrees of freedom. Two 
clusters composed of one IMMU and four retro-reflexive 
passive markers fixed on a wooden plate (15x15x1cm) 
were used, one placed on the right arm and the other on the 
thorax. Basically the protocol consisted in positioning the 
clusters on the body segments and in calculating joint 
angles according to the appropriate Euler’s convections.  



The evaluation of the IMMUs’ estimation of the orientation 
was performed during swimming strokes simulation on a 
bench in dry condition. A wireless IMMUs system (APDM, 
Opal, USA, 2 nodes, 128Hz) and a stereo-photogrammetric 
system (BTS Smart DX, Italy, 8 cameras, 200Hz) recorded 
the trials. Data from both systems were posteriorly 
synchronized and resampled at the IMMUs’ frequency rate. 
Three trained swimmers were laid facing down on a bench 
and their lower-limbs were hold tight by a person. Each 
subject performed 2 trials (one breaststroke and one front-
crawl stroke) during 10s, trying to simulate the movements 
in the swimming pool. The relative motion of the segments 
thorax and arm with respect to the first-synchronized frame 
was compared by means of root mean square error (RMSE) 
and correlation coefficient (r) between the two methods. 

RESULTS AND DISCUSSION 

The goal of the present study was to verify the accuracy of 
a protocol previously developed for ambulatory joint 
kinematic analysis through IMMUs in measure the shoulder 
kinematics during swimming strokes simulation in 
comparison with a gold standard system. The results of the 
first verification are presented in table 1.  

Table 1: Root mean square error and correlation coefficient 
for both measurement systems. 

 

 

Breaststroke Front-Crawl 

RMSE (°) r RMSE (°) r 
Mean 5 0,85 7 0.91 

Minimum 3 0.76 5 0.82 
Maximum 8 0,97 10 0.97 

The mean RMSE was 5° and 7° for the breaststroke trials 
and for the front-crawl stroke trials, respectively, in 
accordance with other investigations that performed human 
joint angle measurement. In addition, the mean r was 0.85 
for the breaststroke trials and 0.91 for the front-crawl stroke 
trials indicating a good relationship between both systems 
in estimating the body segments’ orientation with respect to 
the first frame.  

Figure 1 shows the three shoulder angles for one subject’s 
trial representative of all trials. Five strokes normalized by 

its percentage of the duration were plotted overlapped. No 
significant difference was found (p<0.05) between both 
systems in the estimation of the shoulder flexion/extension, 
abduction/adduction and internal/external rotation angles. 
Nonetheless, these values are comparable to the three-
dimensional joint kinematics estimated using underwater 
kinematics video analysis [6].  

For our analysis, only the shoulder was considered because 
it is the most demanded joint during swimming. Further 
investigations in other joints such as elbow, wrist, hip, knee 
and ankle can be addressed in order to get a full body 
kinematic analysis during swimming.  

In this work we intended to perform shoulder kinematic 
analysis in dry condition because the protocol proposed by 
Cutti and co-workers [5] was implemented in an 
ambulatory environment. The dry condition has two main 
advantages: 1) the stereo-photogrammetric system is more 
accurate with respect to the underwater one, and 2) the 
whole swimming stroke cycle can be analyzed: the aerial 
phase (recovery) as well as the “underwater” phases. 
Finally, the joint kinematic analysis in real condition (i.e. 
underwater) during swimming will be aimed in the next 
future. 

CONCLUSIONS 

The protocol implemented previously for joint 
measurement in ambulatory settings is also suitable and 
accurate to estimate the shoulder kinematics during 
swimming strokes simulation using wearable inertial and 
magnetic measurement units. 
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Figure 1: Shoulder flexion/extension, abduction/adduction and internal/external rotation. Lines green for the                    

stereo-photogrammetric system (BTS) and lines black for the inertial and magnetic measurement units (Opal). 
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ABSTRACT 
 
 
 
 

A Wearable Motion Analysis System (WMAS) was developed to evaluate gait, 

particularly parameters that are indicative of mild traumatic brain injury.  The WMAS consisted 

on six Opal IMUs attached on the sternum, waist, left and right thigh and left and right shank.  

Algorithms were developed to calculate the knee flexion angle, stride length and cadence 

parameters during slow, normal and fast gait speeds. The WMAS was validated for repeatability 

using a robotic arm and accuracy using the Vicon motion capture system, the gold standard for 

gait analysis.  The WMAS calculated the gait parameters to within a clinically acceptable range 

and is a powerful tool for gait analysis and potential concussion diagnosis outside of a laboratory 

setting.
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CHAPTER 1: INTRODUCTION 
 
 
 
 

 Current methods of measuring gait parameters involve expensive optical motion capture 

systems, time intensive setup, wires, complicated filtering techniques, and a laboratory setting.  

A wearable and wireless motion analysis system would allow gait analysis to be performed 

outside of a laboratory setting during activities of daily living, in a clinical setting or on a 

football field or battlefield.  Mild traumatic brain injury (mTBI), or concussion, and traumatic 

brain injury (TBI) have become a major problem in both the sports and military as well as the 

general population from car accidents and other traumatic events.  There is a major need for a 

quick and accurate method to diagnose mTBI and TBI, and other gait deviations outside of a 

laboratory setting. 

A review paper by Bergmann and McGregor investigated both clinicians and users’ 

preferences about wearable sensors.  Both clinicians and users stated that wearable sensors must 

be “compact (light and small), available alongside the work of health professionals, and simple 

to operate and maintain. User’s also wanted wearable sensors that were “low-invasive and that 

did not affect normal daily behavior,” while clinicians wanted sensors that “have real-time data 

function, minimal time to familiarize with the device, follow/monitor a patient’s progress, low 

cost, simple interface, long battery life, large storage capacity and are not restricted to one 

location or room.” [1] These preferences were considered in both the selection of a sensor and 

the development of the wearable motion analysis system (WMAS). 
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 The Opal sensor by APDM (APDM Inc., Portland OR) is an inertial measurement unit 

(IMU) that consists of a tri-axial accelerometer, tri-axial gyroscope and tri-axial magnetometer.  

Each Opal sensor is about the size of a wristwatch and weighs less than 22 grams.  One major 

benefit of the Opal sensor is it can collect data for an entire day (up to 16 hours) on one charge 

and store up to 28 days worth of data [2].  Therefore the Opal sensor is small and compact, has a 

long battery life and large storage capacity, and thus can be used outside of a motion analysis 

laboratory setting and during a person’s activities of daily living.  Wireless streaming, and 

visualization of real-time data is also possible with the Opal sensor.  Since the Opal sensor 

meets both the user and clinician’s preferences, it was selected as the wearable sensor for the 

WMAS. 

 The goal of this project was to continue to develop and validate a wearable motion 

analysis system (WMAS) that can provide clinically relevant information for researchers, 

physical therapists and physicians. The parameters stride length, cadence and knee flexion were 

collected.  The WMAS knee flexion angles must have less than 5 degrees of error relative to the 

Vicon system.  The stride length calculations also need to be improved from Simoes [3].  As a 

result, the WMAS could be used to detect gait deviations, particularly indicators of mild 

traumatic brain injury (mTBI); provide instant feedback on a person’s gait; and as an evaluation 

tool for rehabilitation plans and outcomes.    

 Data were collected from ten healthy subjects.  The WMAS consisted of six Opal IMU 

sensors located on the sternum, waist, right and left thigh and right and left shank. There was 

also simultaneous data collection with the Vicon motion analysis system using the Plug in Gait 

marker set [4].  The subjects performed a timed up and go test (TUG): sit in a chair, stand up, 

walk to the end, turn around, walk back to the chair and sit down.  Each subject performed 
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fifteen trials: five at a normal (comfortable) speed, five at a very slow speed, and five at a fast 

speed. 

 The WMAS data from the Opal sensors were processed and analyzed in MATLAB, 

while the Vicon data were processed in Visual 3D.  The parameters that were analyzed were 

stride length, cadence and knee flexion.  The WMAS data was compared to the Vicon data in 

order to validate the WMAS. Root mean square error (RMSE), Pearson’s R correlation and 

Bland Altman plots were used to compare the WMAS to the Vicon system. 
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CHAPTER 2: BACKGROUND 
 
 
 
 

2.1 Gait 

 Gait is a cyclic, repetitive motion.  There are many parameters that can affect a person’s 

gait from a disease to their footwear.  A gait cycle is the movement of one limb from heel-strike 

of one foot to successive heel strike of the same foot.  The gait cycle is divided into two phases: 

stance and swing. The stance phase occurs when the foot is touching the ground and begins at 

heel-strike, while the swing phase begins at toe-off and occurs when the foot is moving forward 

not touching the ground.  Double support is also part of the gait cycle and occurs when both feet 

are in contact with the ground [5].  Step length and stride length are gait parameters that are 

often confused or used interchangeable but are two different measurements.   Step length is the 

distance between heel-strike of the one foot to the heel-strike of the opposite foot.  Whereas 

stride length is the distance between heel-strikes of the same foot [5].  Cadence is another gait 

parameter that is the measure of the number of steps per minute.  During gait analysis, 

kinematic parameters such as stride length; cadence and joint angles are calculated.  

2.2 Traumatic Brain Injury 

A traumatic brain injury (TBI) can occur from a battlefield trauma, fall, car accident, or 

other illnesses, and is one of the leading causes of disability [6, 7].  The Center for Disease 

Control (CDC) defines a traumatic brain injury (TBI) as: 
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 “A TBI is caused by a bump, blow or jolt to the head or a penetrating 
injury that disrupts the function of the brain. The severity of a TBI may 
range from ‘mild’ (a brief change in mental status or consciousness) to 
‘severe’ (an extended period of consciousness or amnesia after the 
injury).”  [8] 

TBI can result in behavioral, cognitive and physical disabilities.  A mild traumatic brain injury 

can also occur and may go undiagnosed [9].   

2.2.1 Mild Traumatic Brain Injury 

Mild traumatic brain injuries (mTBI), also known as concussions, are a major focus in 

both the military and sports communities.  Similar to TBI, mTBI can result in behavioral, 

cognitive and physical disabilities.  Furthermore, mTBI can affect a person’s ability to walk or 

gait, as well as their activities of daily living [9].  

2.2.2 Prevalence and Statistics of TBI and mTBI 

According to the CDC, every year approximately 1.7 million people are diagnosed with 

TBI, of which 75% are classified as mild [10].  Sports-related brain injuries are also especially 

prevalent accounting for at least 1.6 million concussions annually [11].  In addition to having a 

major impact on the civilian population, TBI and mTBI are among the most common injuries to 

members of the military.  The Department of Defense (DoD) reported that from 2000-2012 

service members have sustained approximately 266,810 TBI, of which 82.4% were classified as 

mTBI. Last year alone, the DoD diagnosed 29,668 service members with TBI, of which 85.5% 

were classified as mTBI [12].  

In order to address the growing number of mTBI, the National Football League (NFL) 

provided $30 million in funding for traumatic brain injury research to the National Institutes of 

Health [13].  Similarly, the Department of Defense and Veterans Affairs provided $100 million 
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to research new methods to identify and evaluate mTBI [14].  The military and NFL have also 

partnered together to combat mTBI in their players and soldiers [15].  Dr. Jonathan Woodson 

depicts the importance of mTBI research, 

“PTSD and mTBI are two of the most-prevalent injuries suffered by our 
war fighters in Iraq and Afghanistan, and identifying better treatments 
for those impacted is critical.” -Dr. Jonathan Woodson, Assistant 
Secretary of Defense for Health Affairs  [14] 

2.2.3 Effect on Gait and Balance 

Many researchers have shown there are several parameters that often occur during the 

gait of a person with TBI and mTBI when compared to a healthy individual.  The most common 

abnormalities are reduced stride length and cadence [7, 9, 16-20] and slower gait speed [9, 16-

19, 21-23].  Other gait parameters that affected by TBI include: wider base of support [16], 

stiff-legged gait [24-26]  and increased double support time [19, 27].  TBI also has a significant 

effect on the trunk, pelvis and lower limbs [16, 28].  The center of mass (COM), hip, knee and 

ankle are the most affected parts of the body and these abnormalities are summarized in Figure 

1. 
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Figure 1 Abnormalities That Occur During the Gait of a Person with a TBI 

 
 

• Less Anterior/Posterior motion   [7, 9, 17, 22] 
• More Medial/Lateral displacement [7, 9, 16-17, 21-

22, 33] 

Center of Mass 
(COM) 

• Greater power generation at pre-swing and terminal 
stance [6, 21] 

• Increased flexion [6, 16, 18-19, 24] 
• Constant flexion throughout stance [6] 

Hip 

• Increased flexion at initial contact [16, 27-28] 
• Hyperextension during Stance [6, 27-28] 
• Decreased flexion during Swing [6, 16, 24-26] 
• Stiff  [24-26, 28] 
• Lack of extension during late swing and early stance 

[28] 

Knee 

• Decreased power generation at push-off [6, 21, 27] 
• Inversion and plantarflexion during stance [6, 27-28] 
• Limited dorsiflexion during stance, pre-swing and 

midswing [6, 28] 
• Equinovarus deformity [6, 28] 

Ankle 
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The vestibular system, which is responsible for balance control, head movement and 

maintaining posture, can also be affected by TBI.  Imbalance, dizziness, and vertigo can all be 

consequences of TBI [9, 22, 25, 29-33].  It has also been shown that at high head rotation 

speeds the vestibular-ocular reflex (VOR), used to stabilize gaze, does not work properly, 

causing issues with gait and balance in a person with TBI [3, 34]. 

2.2.4 Current Diagnostics 

Several methods are used to diagnose and determine the severity of a TBI.  The Glasgow 

Coma Scale (GCS) is one of the common diagnostic tests used to determine the severity of TBI 

and is particularly useful for determining the presence of a severe brain injury.  The scale ranges 

from 3-15, where the low end of the scale represents a severe brain injury and 14-15 a mild 

brain injury.  The GCS involves a combination of motor, eye and verbal tests to determine a 

person’s consciousness [11].  The most common method for diagnosing sports-related mTBI is 

the Sports Concussion Assessment Tool (SCAT2), which involves motor and visual tests, a set 

of questions relating to memory or orientation, balance testing and a symptom checklist.  

However, the SCAT2 and other concussion tests are mostly subjective and rely on the evaluator 

(coach, trainer, etc.) to make the ultimate decision of whether to take the player or soldier off 

the field.  The results are also often dependent on honest responses by the injured person, who is 

likely to represent their symptoms as better than they are in order to return to action [11].  

Currently there is not a standardized test or method that is used universally to identify mTBI, 

especially in the field.  There is a significant need for an accurate, simple, fast and objective 

method to identify and diagnose mTBI [11].   
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Current technology, such as the Vicon motion analysis system, used to evaluate gait 

parameters that are indicative of TBI is expensive, limited to a laboratory setting and time-

consuming [9].  Previous work by Simoes analyzed parameters that are present during TBI 

including cadence, stride length, torso and head rotation using two systems: an industry 

standard optical tracking system and a wearable motion analysis system containing five inertial 

measurement units (IMUs) (APDM, Portland, OR). Correlations for cadence, head rate of 

rotation and torso rate of rotation were high between both systems [35].   

2.2.5 What’s Missing in TBI Research/Diagnosis? 

TBI and mTBI research is lacking a quick, accurate and easy diagnostic test that can be 

performed outside of a laboratory setting.  According to Dziemianowicz et al,  

 “While each test can be helpful in diagnosis or management, a single test that 
can reliably detect the presence of a concussion or complete recovery from a 
concussion has not been developed…There still is a need for further research 
into a quick and reliable test validated by scientific investigation.” [11] 

There is a need for a test that can evaluate a TBI outside of a laboratory setting because 

someone may walk well in a confined environment where their only focus is on the task 

of walking, but when other factors are added such as a curb, lots of people around or 

other distractions the issues may arise [36]. 

2.3 Gait Analysis Methods 

Gait analysis is the study of how a person walks. It can be as simple as how fast they 

walk or as complicated kinematic and kinetic parameters.  There are two main methods of gait 

analysis: optical systems and inertial measurement units.  Another method for gait analysis 

include the GAITRite mat, which uses pressure sensors in the walkway to determine gait 

parameters [37].   
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2.3.1 Optical System 

The gold standard for gait analysis is optical motion capture systems.  Optical motion 

capture systems use infrared cameras to track the motion of passive reflective or active light 

emitting markers in 3D space.  While optical motion capture systems have high accuracy, they 

are very expensive and must be confined to a small laboratory setting.   

2.3.2 Inertial Measurement Unit 

In order to address the problems with optical motion capture systems for gait analysis, 

inertial measurement units (IMUs) have recently been a popular alternative for gait analysis.  

Gait parameters such as stride length, cadence, center of mass movement, range of motion, joint 

angles, and gait speed to name a few have been investigated [38-41]. 

An IMU typically consists of two sensors: an accelerometer, and a gyroscope.  The 

accelerometer is used to measure acceleration or how fast something moves and the gyroscope 

is used to measure angular velocity rate of rotation.  IMUs can also contain a magnetometer.  

The magnetometer is used to measure the orientation relative to the earth’s magnetic field. 

These three components are combined to track the motion of an object [41, 42].  

2.3.2.1 Previous Work 

Many studies have used inertial measurement units (IMUs) or other sensors to measure 

knee, hip or ankle flexion angle, as well as other gait parameters such as stride length, gait 

speed, stance time, etc.    

Guo et al. used two sets of IMUs on the thigh, shank and foot to calculate knee and foot 

flexion and differentiate between hemiplegia and healthy subjects.  The subjects walked for five 

meters at their own comfortable pace and were recorded by a video camera. The angles were 

calculated using quaternions and a Kalman filter.  The knee flexion angle was calculated using 



11 

the inverse of the quaternion from the shank sensor multiplied by the quaternion from the thigh 

sensor.  While the results between the sets were accurate relative to a video camera based 

analysis, the data were not validated by an optical motion capture system [43]. 

Another study by Toffola et al. involved a wearable knee sleeve with an 

electrogoniometer and accelerometer to monitor knee flexion. This study involved one subject 

walking on a treadmill and compared the data from the sleeve to a Vicon system with a RMSE 

of 2.1 degrees [44].  

Schiefer et al. used accelerometers and gyroscopes to calculate knee flexion during 

several activities of daily living, however not during gait, and compared the data to an optical 

camera system with a RMSE between 4.6 and 7.1 degrees [45]. 

Watanabe et al. used an IMU based system to calculate stride length and knee angles 

during treadmill and walking for several meters.  This study used 7 IMUs with accelerometer 

and gyroscope components.  Knee angles were calculated from the integration of the angular 

velocity from the thigh and shank gyroscopes. A Kalman filter was also applied to the data.  An 

IMU on the foot was used to calculate the stride length using the accelerometer.  An optical 

motion capture system was used to assess the accuracy of the data calculated from the IMUs.  

The data were reported with and without the Kalman filter.  The average RMSE for the knee 

angle calculations was between 4 and 5 degrees.  However, the average RMSE for the knee 

angle without the Kalman filter was 7 degrees and between 8 and 14 degrees for the several 

meter walking and treadmill walking respectively.  The stride length calculations from the IMU 

on the foot were within 7% error relative to the optical system for slow walking, 8% error for 

normal walking and 5% error for fast walking [46]. 
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Cloete and Scheffer evaluated the Xsens Moven full body inertial suit, which consisted 

of 16 IMUs.  The IMUs have wires but communicate with a laptop via a wireless connection.  

The accuracy of the suit was validated using the Vicon motion capture system.  The eight 

subjects walked and ran at several different speeds.  The Xsens software, similar to the APDM 

software, exports a quaternion for each of the sensors.  Knee angles were calculated by 

multiplying the quaternion from the shank by the complex conjugate of the quaternion from the 

thigh and then the resulting quaternion was converted to an Euler angle.  Pearson’s R 

correlations were 0.9 between the Xsens and Vicon systems for the knee flexion angle at normal 

speed.  Even though the R correlation was high, the RMSE was 9.58 degrees for the right knee 

and 13.47 degrees for the left knee.  The knee angles were also filtered and the bias was 

removed which resulted in knee flexion angle RMSE of 7.61 and 9.53 degrees for the right and 

left knees.  The authors suggested that high RMSE may have been caused by movement of the 

suit during testing [47].   

Another study by Pochappan et al. used 5 IMUs called Orient Specks, which contain 

accelerometers, gyroscopes and magnetometers.  The IMUs were placed on the feet, shanks, 

thighs and the lower back.  Knee flexions were calculated using a Latent Space Algorithm and 

the accelerometer data was used to identify gait events.  The testing involved several trials in 

which the subjects walked 30 meters, however the analysis only looked at a few trials in which 

only one gait cycle was analyzed per trial.  The data from the IMUs were compared to a Vicon 

system.  The RMSE for the knee flexion angle was 9.12 degrees with a R correlation of 0.86.  

The error between the Vicon and IMU system for stride length was 0.17 meters.  The authors 

suggested that the force plates on the floor may have interfered with the magnetometer signals 

and resulted in errors in the calculations [48]. 
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Chen et al. used TEMPO inertial sensors, which contain an accelerometer and gyroscope 

component, to calculate the knee angle during treadmill walking.  The tilt angle of the thigh and 

shank was calculated from the acceleration data.  The angular velocity was integrated to 

calculate the knee angle during walking.  Several different calibration methods and high pass 

filtering were used to remove error and drift.  During slow, medium and fast walking on the 

treadmill the RMSE for the knee angle with the linear calibration method were 2.75, 3.03 and 

3.15 degrees.  The RMSE with the piecewise calibration method were 3.59, 3.88 and 4.01 

degrees for the slow, medium and fast speeds [49]. 

Kun et al. and Lui et al. used a physical sensor and virtual sensor difference method in 

which the shank rotational acceleration was subtracted from the thigh rotational acceleration.  

This method did not involve integration of the accelerometer or gyroscope signals [50, 51].  The 

average RMSE reported by Kun et al. was 2.52 degrees [50].  Liu et al. reported an average 

RMSE of 3.07 degrees for the knee flexion angle during walking trials [51].  However, both of 

these studies used wired systems [50, 51].   

Favre et al. conducted several studies that investigated the calibration, alignment and 

calculation of knee angles using IMUs [52-55].  The IMUs contained accelerometer and 

gyroscope components.  The method used quaternions to calculate the knee angle and combined 

both the integration of the angular velocity from the gyroscope and the acceleration data from 

the accelerometer [53].  Several alignment procedures were also used to calibrate the IMUs and 

drift was filtered out [54].  The knee angle from the IMUs was compared to a magnetic tracking 

system during level walking with a RMSE less than 2 degrees and a high R correlation near 1 

[52]. 
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  Dejnabadi et al. used filtered gyroscope and accelerometer data to calculate knee angles 

during treadmill walking.  The IMUs were attached to metal plates and attached to the shank 

and thigh.  The knee angle calculated by the IMUs was compared to an ultrasound motion 

capture system.  At slow, medium and fast speeds the RMSE was 1.1, 1.25 and 1.6 degrees [56]. 

Bergmann et al. used Xsens MTx IMUs to investigate the knee flexion angle while 

walking up and down stairs.  This is a wired system that calculates the knee angle using the 

rotation matrices from the thigh and shank IMUs.  The data from the Xsens system was 

compared to an active marker Codamotion system with a RMSE of 4 degrees and a standard 

deviation of 3 degrees [57].   

Schulze et al. calculated the knee angle by integrating the filtered angular velocity from 

the gyroscope.  The IMUs were placed on the outer thigh and inner shank during treadmill 

walking at three different speeds.  The knee angle calculated from the IMUs was compared to a 

video camera based analysis method.  This study involved only one subject.  The RMSE was 

2.6 degrees for slow speed, 1 degree for normal speed and 6.3 degrees for fast speed [58]. 

Cooper et al used wired IMUs and a treadmill to calculate knee flexion angle from 

gyroscope and accelerometer signals.  The IMU data were compared to an optical motion 

capture system.  The authors reported a low RMSE of between 0.7 degrees for the slow speed 

and 4.1 degrees for the fast speed [59].   

Takeda et al. used accelerometers and gyroscopes to calculate the knee flexion angle 

during gait.  The system contained a data logger connected via wires to the IMUs.  The 

inclination angle of the thigh and shank were calculated by the accelerometer, which was 

combined with the integrated angular velocity to calculate the knee angle.  The average RMSE 

reported was 6.79 degrees, while the correlation coefficient was 0.93 [60]. 
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Saito et al. also used accelerometers and gyroscopes to calculate the knee flexion angle 

during treadmill and 4-meter walk tests.  In addition to using the accelerometer to determine 

inclination and the integrated angular velocity from the gyroscope, a Kalman filter was used.  

The data from the IMUs were compared to an optical motion capture system.  The RMSE for 

the 4-meter walk tests with the Kalman filter was 2.98 degrees and without the Kalman filter 

was 5 degrees.  The RMSE with the Kalman filter for the treadmill walking was 4.19 degrees 

[61]. 

 Miyazaki et al. used a simplified gait model and a single gyroscope on the thigh to 

calculate the stride length and velocity during walking.   The angular velocity from the 

gyroscope was integrated to get the angle of the thigh.  The angle of the thigh and leg length 

was used to calculate the stride length.  The error for the stride length calculation was 15% [62]. 

Aminian et al. compared spatio-temporal parameters from footswitches and a gyroscope 

system.  The footswitches were placed under the heel and toe in order to detect heel-strike and 

toe-off gait events.  The angular velocity measured by the gyroscope on the shank was used to 

identify the heel-strike and toe-off events.  Sharp negative peaks in the angular velocity signal 

were shown to represent the heel-strike and toe-off events.  A double pendulum and inverted 

double pendulum gait model was used to calculate the spatio-temporal parameters from the 

gyroscope system.  The RMSE for stride length was 0.07 meters or 7.2% for the footswitch and 

gyroscope gait model [38]. 

Salarian et al. also used gyroscopes to calculate gait parameters. The gyroscope on the 

shank was used to calculate the gait events and temporal parameters.  A data logger was 

connected with wires to the gyroscopes.  The angular velocity signal was integrated to calculate 

the angle of the shank segment and the signal was filtered.  The gait events were detected 
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similar to Aminian et al. [38].    However, a different peak detection algorithm was used to 

identify the maximum or mid-swing peaks and used and interval of 1.5 seconds to identify the 

local minimum peaks or gait events.  A double and inverse pendulum model were used to 

calculate stride length, similar to Aminian et al [38].  A timed up and go (TUG) test was used 

for the gait trials.  The error for the stride length calculations between the reference system and 

gyroscope algorithm was 3.5 centimeters [39].  

Doheny et al. also used a single gyroscope to calculate gait parameters relative to the 

GAITRite electronic walkway.  The angular velocity and detection of gait events were similar to 

Salarian et al [39].  The stride length was calculated using a scale factor, the height of the 

subject and the range of the shank angle.  Data were collected at slow, normal and fast speeds.  

Stride length had a RMSE of 0.09 meters and an R correlation of 0.84 relative to the GAITRite 

walkway [63].  

Previous work by Simoes analyzed cadence, stride length, torso and head rotation 

between two systems: an industry standard optical tracking system and a wearable motion 

analysis system containing five IMUs (APDM, Portland, OR).  The gait parameters were 

calculated using APDM’s iTUG plug in which is based on work by Aminian et al. [38] and 

Salarian et al. [39].  Cadence, head rate of rotation and torso rate of rotation had high Pearson’s 

R correlation values.  The R correlation values for stride length were 0.776, 0.8 and 0.817 for 

normal, fast and slow speeds, with an overall correlation of 0.86 [3, 35]. 

 Shanshan et al. used IMUs to calculate stride length and gait speed.  The angular 

velocity of the shank from the gyroscope signal was integrated to determine the angle of the 

shank.  The angular velocity was low pass filtered and a peak detection algorithm was used to 

detect the gait events. The range of rotation of the shank during the gait cycle was used to 
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calculate stride length by a compass gait model.  A refined model was also used, which added 

the range of rotation of the thigh in addition to the range of rotation of the shank [64].   

Zexi et al. used gyroscopes to calculate step length and distance travelled.  The angular 

velocity was integrated to determine the angle of the leg.  The law of cosines was then used to 

calculate the step length based on the angle of the leg and the leg length.  The distance travelled 

was calculated using three methods, the waist gyroscope, the thigh gyroscope, and the 

gyroscope on the foot.  The error was lowest using the gyroscope on the thigh to calculate the 

step length and distance travelled [65]. 
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CHAPTER 3: METHODS 
 
 
 
 

3.1 WMAS Testing 

3.1.1 Institutional Review Board Approval 

This research study “Feasibility of Wearable Sensors to Determine Gait Parameters” 

was approved by the University of South Florida (USF) Institutional Review Board (IRB) as an 

adult minimal risk research study #Pro00003205 (see Appendix D).  The principal investigator 

of the study was Dr. Stephanie Carey, and the research staff included Amanda Martori and Matt 

Wernke.  Before participating in the study, each participant was briefed about the following 

using the IRB informed consent form: the purpose of the study, procedures, benefits, risks, 

disclosures, privacy, how the information will be used, their rights and how to withdraw from 

the study.  After the briefing and participant’s questions were answered, the participant and the 

research staff member both signed the informed consent form. 

3.1.2 Participants 

Ten participants, eight men and two women (average age 27) were recruited to 

participate in the study.  All of the participants were over the age of 18 and healthy, with no 

known pathologies that would affect their gait.  The subject identification number, age, height 

and weight of each subject is listed in Table 1. 

  



19 

Table 1 Subject Information 

Subject ID Age Height (m)  Weight (kg) 
WMAS01 22 1.815 76 
WMAS02 22 1.81 83 
WMAS03 25 1.845 102 
WMAS04 28 1.79 74.5 
WMAS05 22 1.86 72.4 
WMAS06 21 1.695 59.5 
WMAS07 54 1.74 92.3 
WMAS08 24 1.83 85.2 
WMAS09 25 1.63 76 
WMAS10 22 1.89 95 

 

3.1.3 WMAS Instrumentation 

The Wearable Motion Analysis System (WMAS) was composed of six Opal inertial 

measurement units (APDM Inc., Portland, OR).  Each wearable Opal IMU sensor includes a 

triaxial accelerometer, a triaxial gyroscope and a triaxial magnetometer.  The Opal sensors also 

include precision temperature calibration and a docking station. Each sensor is about the size of 

a wristwatch and weighs 22 grams, has a battery life of 16 hours, wireless connectivity, latency 

recovery and 16 GB of on-board storage. The APDM system can utilize up to eight sensors 

transmitting data to a computer or the sensors can record data directly onboard.  The real-time 

data can then be viewed once a wireless connection is detected and the on board data can be 

accessed once the sensors are connected to the docking station.  In this study, the sensors 

transmitted real time data to a laptop via a wireless access point.  Motion Studio software 

(APDM Inc., Portland, OR) was used to view the IMU data in real-time and save the data as 

comma separated value files (CSV). 
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The APDM instrumentation includes a Macbook Pro laptop, Motion Studio software, 

docking station, access point, two USB cables, an external power adapter, six Opal IMUs, a 

chest harness, belt, and two small Velcro straps.  The external power adapter was used to plug 

the docking station into a power outlet.  The access point and docking station were both plugged 

into the laptop. Each Opal IMU sensor was plugged into a separate dock on the docking station.    

The setup during sensor configuration (prior to data collection) is shown in Figure 2.   

 

Figure 2 APDM Instrumentation Setup 

The Motion Studio software was used to calibrate and configure the sensors.  The 

sensors were calibrated according to the manufacturer’s specifications.  During configuration, 

the accelerometer with a range of ±6g, gyroscope and magnetometer sensors were enabled, the 

sampling rate was set to 128 Hertz and the recording configuration was “Robust Synchronized 

Streaming.” After the configuration was complete, the sensors were removed from the docking 

station and attached to the subject.   
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3.1.3.1 Sensor Locations 

The sensors were attached to the subject using the manufacturer’s chest harness, belt, 

and small Velcro straps.  In order to reduce the movement of the thigh sensors during walking, 

the sensors were attached with Velcro to two Neoprene sleeves that were then wrapped tightly 

around each thigh.  The locations of the six sensors were the sternum, lower back, right thigh 

(RThigh), left thigh (LThigh), right shank (RShank) and left Shank (LShank) as shown in 

Figure 3.   

 
Figure 3 Sensor Locations 

3.1.4 Vicon Instrumentation 

A Vicon optical motion analysis system consisting of eight infrared cameras was used to 

track the motion of passive reflective markers placed on the subject.  Vicon Workstation was 

used to calibrate the cameras, auto label the model, collect and check the gait trials.  In addition, 

a Canon digital camcorder was used to simultaneously record each trial. 
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3.1.4.1 Reflective Marker Locations 

Prior to data collection, thirty-five spherical reflective markers 14 millimeters in 

diameter were placed on subjects’ skin at key bony landmarks, according to the Vicon Plug-In 

Gait marker set [4].  The marker labels, anatomical locations and descriptions for the Plug-In 

Gait marker set are listed in Table 2.  Each body segment requires three markers to define its 

three-dimensional local coordinate system. 

Table 2 Plug-In Gait Marker Set  

 

Body Segment Marker Label Anatomical Location Description of Location

C7 7th Cervical Vertebrae Spinous process of the 7th cervical vertebrae on back of neck
T10 10th Thoracic Vertebrae Spinous process of the 10th thoracic vertebrae

CLAV Clavicle Jugular notch where the clavicle meets the sternum, below 
base of neck and between the collar bones

STRN Sternum On the bone above the Xiphoid process in the middle of the 
ribcage

RBAK Right Back Right scapula, assymetrical, used for labeling purposes
RSHO Right Shoulder Right acromio-clavicular joint 
RUPA Right Upper Arm Right upper arm in between the shoulder and elbow markers
RFRA Right Forearm Right forearm between the eblow and wrist markers
RELB Right Elbow Right lateral epicondyle, approximating the elbow joint axis
RWRA Right Wrist A Thumb side of the right wrist
RWRB Right Wrist B Pinkie side of the right wrist
RFIN Right Finger On the dorsum of the right hand below the third metacarpal
LSHO Left Shoulder Left acromio-clavicular joint

LUPA Left Upper Arm Left upper arm in between the shoulder and elbow markers, 
assymetrical from the RUPA

LFRA Left Forearm Left forearm between the elbow and wrist markers, 
assymetrical from the RFRA

LELB Left Elbow Left lateral epicondyle, approximating the elbow joint axis
LWRA Left Wrist A Thumb side of the left wrist
LWRB Left Wrist B Pinkie side of the left wrist
LFIN Left Finger On the dorsum of the left hand below the third metacarpal
RASI Right Anterior Illiac Spine
LASI Left Anterior Illiac Spine
RPSI Right Posterior Illiac Spine
LPSI Left Posterior Illiac Spine
RTHI Right Thigh Lower 1/3 of the lateral surface of right thigh
RKNE Right Knee Lateral epicondyle of the right knee
RTIB Right Tibia Lower 1/3 of the lateral surface of the right shank

RANK Right Ankle Lateral malleolus on the right foot
RTOE Right Toe Second metatarsal head on the right foot
RHEE Right Heel Right calcaneous, height is level with the right toe marker
LTHI Left Thigh Lower 1/3 of the lateral surface of left thigh

LKNE Left Knee Lateral epicondyle of the left knee
LTIB Left Tibia Lower 1/3 of the lateral surface of left shank

LANK Left Ankle Lateral malleolus on the left foot 
LTOE Left Toe Second metatarsal head on the left foot
LHEE Left Heel Left calcaneous, height is level with the left toe marker

On top of the bony locations where the spine joins the pelvis

On top of the anterior illiac spine

Torso

Right Arm

Left Arm

Pelvis

Right Leg

Left Leg
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3.1.4.2 Subject Measurements 

The Vicon Plug-In Gait model requires several anatomical measurements for each 

subject; these are listed in Table 3.  The subject’s height and weight was measured using a 

professional scale, in centimeters (cm) and kilograms (kg) respectively.  The other 

measurements were taken by hand using a cloth measuring tape, and recorded in cm. 

Table 3 Subject Measurements Required for Plug-In Gait 

Measurement Description Units 
Mass Weight of the subject kg 

Height Height of the subject cm 
ASIS Distance Distance between RASI and LASI markers cm 

Leg Length Distance from ASIS narker to medial malleolus cm 
Knee Width Medio-lateral knee width about flexion axis cm 
Ankle Width Distance between the lateral and medial malleolus cm 
Elbow Width Distance between the lateral and medial epicondyle cm 
Wrist Width Distance between the two wrist markers cm 

Hand 
Thickness Thickness between the dorsum and palm of hand cm 
Shoulder 

Offset Vertical distance between the SHO marker and shoulder joint center cm 
 

3.1.4.3 Camera Calibration 

An L-frame with four passive reflective markers (shown in Figure 4) was used for 

calibration of the Vicon cameras. It was placed on the floor at the corner of the first force plate 

and was used to define the laboratory’s global coordinate system, axes and the location of the 

origin.   The data collection volume was also defined by moving a wand with two reflective 

markers (shown in Figure 4) in various directions over the entire walkway.   
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Figure 4 Vicon Calibration L-Frame and Wand 

After the static and dynamic camera calibration was completed, a static trial was 

collected in which the participant was asked to stand still on the force plates in a T-pose (shown 

in Figure 5) in order to define and label the locations of the reflective markers. 

 

Figure 5 Vicon Static Trial T-Pose 
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3.1.5 Testing Protocol 

This study was conducted in the Rehabilitation Robotics & Prosthetics Testbed (RRT) 

motion analysis laboratory at the University of South Florida.  The eight Vicon cameras were 

focused on a 3-meter wooden walkway with two AMTI force platforms.  A chair was placed at 

the beginning of the walkway.  Both the WMAS and Vicon systems were configured and 

calibrated per the manufacturer’s instructions prior to the beginning of the testing as described 

previously and in more detail in Appendix B.  After the configuration of both systems, data 

were collected simultaneously from the WMAS and Vicon systems during the gait trials.  One 

member of the research staff was needed to run the WMAS, and another staff member was 

needed to run the Vicon system.  The start of the recording for each trial was coordinated 

verbally by one of the staff members. 

3.1.5.1 WMAS 

The Motion Studio software was used to record the data from the WMAS during the gait 

trials.  After the sensors were configured in “Robust Synchronized Streaming Mode” at 128 

hertz and removed from the docking stations, the stream button was pressed and a new window 

popped up on the screen as shown in Figure 6.  The data from the WMAS was streamed to the 

laptop via the wireless access point and displayed in a real time strip chart from each of the 

sensors.  The strip chart displayed the accelerometer, gyroscope and magnetometer readings, 

shown on the left hand side of Figure 6.  Before each trial, the research staff member 

responsible for the WMAS was required to select the record duration as indeterminate, the file 

format as CSV and name the trial according to the format “Subject ID_Type of Trial_Trial 

Number.”  For each trial, the record button was pressed to begin the trial and the stop button 
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was pressed at the end of the trial.  For detailed instructions on how the Motion Studio program 

was used see Appendix B. 

 

Figure 6 Motion Studio Screen During Streaming Prior to Data Collection 

 

3.1.5.2 Vicon Motion Analysis System 

The Vicon Workstation software was used to collect data from the Vicon optical motion 

analysis system.  The static trial described previous was used to label each of the markers 

according the plug-in gait marker set (Table 2) and define an auto label pipeline.  When the 

model was completed a stick figure of the subject was created based on the position of the 

markers and the defined segments (shown in Figure 5).  The auto labeling was used to 

automatically define the stick figure for each of the trials, however due to occasional marker 

dropout it did not always work properly. As a result, after the data collection each trial needed 

to be checked to make sure all the markers were labeled properly and all the markers were 

present.  Before the start of the each trial, the new trial icon was selected and named according 

to the WMAS data collection checklist (Appendix A).  The start and stop buttons were used to 
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capture each trial.  Each gait trial was checked briefly to make sure all the markers were present 

and there were no issues prior to the start of the next trial.  

3.1.5.3 Timed Up and Go Test 

A timed up and go (TUG) test [66] was used for all gait trials in this study.  A TUG test 

is a common test used during gait analysis and physical therapy evaluation. The TUG test began 

with the subject sitting in a chair at one end of the walkway with their knees bent to 

approximately 90 degrees and hands on their lap.  When asked to go, the subject stood up, 

walked to the other end of the walkway and when they reached a line on the floor, turned 

around, walked back to the chair and sat back down .  The subjects were asked to walk at three 

different speeds: normal, slow and fast. Each subject completed five trials at each of the three 

speeds. The slow speed was used to correspond to mTBI patients. 

3.2 Verification Testing 

Three different verification tests were performed with the WMAS and APDM IMUs: 

  1. Movement analysis using a robotic motion. 

 2.  Range of motion  

3.  Sit to stand 

In the movement analysis testing, a wheelchair mounted robotic arm (WMRA) was used 

to provide a repeatable movement at varying speeds, with the sensors securely attached in order 

to investigate the accuracy of the APDM Opal IMUs for kinematic analysis relative to an 

optical motion analysis system without any filtering and to identify the sources of error.  The 

range of motion and sit to stand movements were used to determine the accuracy of the knee 

angle calculation algorithm.   
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3.2.1 Movement Analysis Using a Programmed Robotic Motion 

In order to verify the accuracy of the WMAS and its algorithms, the joint angles and 

velocities measured with the wearable IMU sensors were compared to measurements from a 

Vicon optical motion-tracking system while a robotic arm completed various predetermined 

paths.   The robotic arm was used to test the repeatability of the measurements as it could 

provide the same movement over and over again for longer trials than is possible with human 

subject testing.  The sensors were also running for a much longer period of time with the robotic 

arm testing than with the human subject testing.  A 7 Degree of Freedom wheelchair mounted 

robotic arm (WMRA), developed at the University of South Florida was used. The robotic arm 

uses incremental encoders at each joint to measure and calculate its Cartesian motion relative to 

a reference frame using inverse kinematics [67].  Motion profiles of the robotic arm were 

tracked using an eight-camera Vicon motion-tracking system with passive retro-reflective 

markers, and four wearable APDM IMUs.  In order to better isolate various types of 

contributing errors, linear, planar, and 3-dimensional robot motions were used. Data were 

collected from the sensors over several hours, which provided insight into time-based effects as 

well as management of large amounts of data for future long-term tracking applications. In 

addition, acquisition errors with high-speed gaits were found previously, thus robotic arm 

trajectories of varying velocities were used to provide further insight into these rate-based 

effects.  Angular velocity and joint angles were compared for the Vicon and APDM systems 

and used to investigate the accuracy of the IMUs and algorithms during motion tracking.  

Effects on IMU performance due to the application of filtering algorithms were not investigated.   
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3.2.1.1 Instrumentation 

The WMRA is shown in Figure 7, where the circles indicate the locations of the joints, 

the lines indicate the links or segments and the boxes indicate the locations of the sensors.  The 

robotic arm was used to represent a person’s leg, where joints 1 and 3 represent the “hip” joint, 

link 1 represents the “thigh” segment, joint 4 represents the “knee” joint and link 2 represents 

the “shank” segment. Two APDM sensors were placed on the “knee” joint, and one sensor was 

placed on each segment or link connected to the “knee” joint. 

 

 

Figure 7 Wheelchair Mounted Robot Arm (WMRA) 
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Four Opal IMU units were placed on the robotic arm as shown by the red boxes in 

Figure 7 and Figure 8: one on link 1 (L1), one on link 2 (L2) and two on joint 4 coaxially.  

 

Figure 8 Locations of IMUs on WMRA 

 
An eight-camera Vicon optical motion analysis system was also used simultaneously to 

capture the movement of the robotic arm by tracking the position of passive reflective markers.  

A total of 16 spherical reflective markers were placed on the robotic arm (Figure 9).  Each 

segment requires three markers to define its 3-dimensional local coordinate system. Redundant 

markers were used to avoid marker dropout due to the wheelchair blocking cameras from seeing 

markers. 
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Figure 9 Reflective Markers and IMUs on WMRA 

 

3.2.1.2 Testing Protocol 

The robotic arm was programmed to complete range of motion movements at particular 

joints and a 3-dimensional motion of all three joints.  Data from each movement (trial) were 

collected from the APDM Opal sensors and the Vicon motion analysis system simultaneously. 

The following movements were recorded:  

Joint 1: Hip flexion and extension 

Joint 3: Hip internal and external rotation 

Joint 4: Knee flexion and extension 

The flexion and extension linear movements were collected at three different speeds, and 

the internal and external rotation movements were collected at two different speeds.  The 

robotic arm was then programmed to continue simultaneous three-dimensional movement of all 

three joints for five complete cycles.  A total of eighteen trials were recorded over the course of 
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several hours. The starting position of the WMRA for the flexion and internal rotation 

movements, and the ending position of the WMRA for the extension and external rotation 

movements was defined as zero degrees for the Vicon and APDM systems. 

3.2.1.3 Data Analysis 

The Vicon data were analyzed using Visual3D (C-Motion Inc., Germantown, MD). A 

model was created in Visual3D that used the positions of the reflective markers to define 

segments for link 1 (“thigh”) and link 2 (“shank”).  The joint angles were calculated from the 

model using the rotation of one segment relative to a reference segment (in some cases the 

laboratory coordinate frame) and followed by an X-Y-Z Euler sequence.  

MATLAB was used to process and analyze the data from the APDM sensors.  An 

algorithm was created to calculate the angle between link 1 and link 2 (joint 4) or “knee” angle 

between the two APDM sensors.  Anatomically the knee angle is calculated using Equation 1 

but an algorithm was used to calculate the knee angle from the sensors.  This algorithm 

identified the quaternion “q” (Equation 2), which comes from the APDM sensors. The 

quaternion provides the orientation of the sensor and is calculated from a combination of the 

accelerometer, gyroscope and magnetometer readings as well as the temperature correction 

feature of the IMUs [68].  After the quaternion was identified, the norm of the quaternion was 

calculated (Equation 3). Next the quaternion was normalized using “w, x, y and z” (Equation 4). 

The knee angle quaternion was calculated by using Equation 5, in which the inverse of the 

shank quaternion was multiplied by the normalized thigh quaternion.   Lastly, the knee angle 

quaternion was then converted into Y-X-Z Euler angles (Equation 6). This process was used to 

obtain the flexion angle for both the “thigh and “shank” sensors, which represent Link 1 and 



33 

Link 2 respectively. The Y-X-Z rotation is the sensor equivalent to the Vicon X-Y-Z rotation 

[10, 43, 69, 70]. 
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For the two sensors located directly on joint 4 and to calculate joint angles 1 and 3, 

which represent the “hip” angle, Equation 1 and Equation 2 were used to identify and normalize 

the quaternion. Then the quaternion was converted directly to Euler angles.  The joint angle 

calculated by the sensor located directly on the joint was compared to the joint angle calculated 

by the two-sensor algorithm (Equations 1-5).   

In order to compare the Vicon and APDM systems, the joint angles were calculated 

from for each trial and were plotted in degrees versus time in seconds on the same graph. The 

Vicon and APDM systems collected data at 120 Hz and 128 Hz respectively. Therefore in order 

to compare the two systems, the data were down-sampled. The root mean square error (RMSE) 

and Pearson’s R correlation were calculated in order to compare the joint angles from the Vicon 

and APDM sensors.   The angles calculated by the two-sensor algorithm and the Vicon system 

were also compared to the angles calculated by the sensors located directly on joint 4 using the 
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RMSE.  The average angular velocities for each trial were also compared in degrees per second 

for all three systems. The angular velocity measured by the APDM sensor’s gyroscopes was 

compared to the calculated angular velocity from both the Vicon and WMRA systems. 

3.2.2 Range of Motion 

The range of motion tests were performed using the WMAS and Vicon motion analysis 

systems simultaneously in order to validate the knee angle algorithm created in Matlab for the 

WMAS.  Both the WMAS and Vicon motion analysis systems were set up and calibrated 

according to methods previously discussed in sections 3.1.3 and 3.1.4.  For all of the tests the 

subject was seated and asked to flex and extend their leg.  Several tests were performed 

including knee extension from 90 degrees to 45 degrees (shown in the top two pictures of 

Figure 10), knee flexion from 45 degrees to 90 degrees, full knee flexion and extension (shown 

in the bottom two pictures of Figure 10).   

 

Figure 10 Range of Motion Tests 
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3.2.3 Sit to Stand 

 Sit to stand tests (shown in Figure 11) were performed using the same procedures as the 

range of motion testing.  For these trials subject began in a seated position and was asked to 

stand up, and sit back down.  These trials were also used to validate the knee angle calculation 

algorithm of the WMAS.  

 

Figure 11 Sit to Stand Test 
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CHAPTER 4: DATA ANALYSIS 
 
 
 
 

4.1 WMAS 

The WMAS analysis was performed in Matlab.  Algorithms were developed and 

adapted from previous work with quaternions [69, 70] to calculate knee flexion angle, stride 

length and cadence.    

4.1.1 Knee Angle 

 The knee angle was calculated from the previously mentioned Equations 2-6 (also 

shown below) in Matlab.  Before the calculations were performed, the csv file was imported 

into Matlab as column vectors with headings “RTQScalar, RTQX, RTQY, RTQZ, RSQScalar, 

RSQX, RSQY, RSQZ, LTQScalar, LTQX, LTQY, LTQZ, LSQScalar, LSQX, LSQY and 

LSQZ,” representing the quaternion components of the right thigh, right shank, left thigh and 

left shank respectively.   Equations 2-4 were performed for each of the four sensors: right thigh, 

right shank, left thigh and left shank.  Equations 2-4 was used to define the quaternion calculate 

the norm of the quaternion, and to normalize the quaternion (Equation 4).  Equation 5 was used 

to calculate the knee angle quaternion by multiplying the inverse of the shank quaternion by the 

thigh quaternion.  Equation 6 was then used to convert the knee angle quaternion to Euler 

angles.  The Y-X-Z rotation is the sensor equivalent to the Vicon X-Y-Z rotation, where angle 1 

corresponds to flexion/extension, angle 2 corresponds to internal/external rotation and angle 3 

corresponds to abduction/adduction [10, 43, 69-71]. 
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4.1.2 Stride Length 

Aminian et al. found that the heel-strike and toe-off events can be identified using the 

angular velocity signal from the shank sensor.  The toe-off and heel-strike events are evident in 

the minimum peaks of the shank angular velocity signal on either side of the maximum peaks 

(greater than 100 deg/s). The rectangles and circles in Figure 12 represent the toe-off and heel-

strike gait events during one of the slow gait trials [38]. 

 
Figure 12 Shank Angular Velocity & Toe-Off (Rectangle) and Heel-Strike (Circle) Events 
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The toe-off and heel strike events were detected from the angular velocity signal using a 

peak detection algorithm in Matlab that located the minimum and maximum peaks of the signal 

[72].  Prior to stride length calculation the events were checked to make sure the points were the 

actual heel-strike and toe-off events and not a peak due to noise in the signal. 

 Stride length was calculated using the law of cosines, similar to the Zexi et al 

calculation of step length [65].  The stride length was equal to the sum of the right and left step. 

This consists of the sum of the distance from right heel-strike to left heel-strike and the distance 

from left heel-strike to subsequent right heel-strike.  According to the law of cosines, if you 

have two sides of a triangle and the angle between them you can calculate the length of the third 

side [73].  As shown by s1 in Figure 13, the right step (RHS to LHS) includes the two sides or 

leg lengths and the angles of the right shank and left shank at heel-strike. These two angles are 

then added together to determine the angle between the right and left leg. The first step (s1) in 

Figure 13 is from right heel-strike to the left heel-strike, and the second step (s2) is from left 

heel-strike to the subsequent right heel-strike.  

 

Figure 13 Parameters for Stride Length Calculation 
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Equation 7 was used to determine step length (s) based on the law of cosines [73].  

Equation 8 was used to calculate the stride length by adding s1 and s2. 

           √  (   (                ))    (7) 

                         (8)   

4.1.3 Cadence 

Cadence or number of steps per minute was calculated using Equation 9.  The heel-

strike events were used to determine each step as defined previously.   The number of steps 

before the turn and the total time from the beginning of the first step to the end of the last step 

was used in the calculation.  This process was also repeated for the steps that occurred after the 

turn.  The cadence before the turn and after the turn was averaged to determine the cadence for 

that trial. 
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4.1.4 Graphical User Interface Development 

 A graphical user interface was developed in Matlab using the GUIDE tool.  The 

graphical user interface will allow the user to view the knee angle calculations and results by 

simply loading the CSV file from the sensors and running the program.  The GUI needs to be 

easy to use and run by a clinician.  The GUI was partially developed in this study, future work 

will involve adding the other gait parameters and the ability to collect and analyze the data 

directly rather than using another software program for data collection. 
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4.2 Vicon 

The data from the Vicon system was first inspected using the BodyBuilder software, and 

was then exported into Visual 3D (C-Motion, Germantown, MD) software for further analysis. 

4.2.1 Visual 3D Model 

In Visual 3D, a model was created that identified the locations of the reflective markers 

and defined the bone segments based on the plug in gait marker set, static trial and subject 

measurements.  The model was based on the C-Motion Visual 3D Tutorial: Building a 

Conventional Gait Model [74] and is shown in Figure 14.   

 

Figure 14 V3D Model 

4.2.2 Visual 3D Pipeline 

A pipeline was created in Visual 3D (V3D) to calculate the knee joint angle [75] and 

stride length [76, 77] (See Appendix C).  The thigh and shank segments were used to calculate 

the angle of the shank relative to the thigh, or the knee flexion angle during the gait trials [75].  

The position of the heel with respect to the pelvis was used to determine the heel-strike events. 
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4.3 Statistics 

Three types of statistics were used to compare the WMAS and Vicon systems: Pearson’s 

R Correlation, Root Mean Square Error (RMSE) and Bland Altman plots.  Pearson’s R 

Correlation was calculated using Equation 10 [78].  RMSE was calculated using Equation 11 

[79].  In both Equations 10 and 11, X was the results from the WMAS system, Y was the results 

from the Vicon system and n is the number of samples.     
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Pearson’s R Correlation is used to compare two variables by determining on a scale of 

positive to negative 1 the strength of their linear relationship.  The closer the value is to 1, the 

stronger the correlation.  If the value is close to zero, there is a weak linear relationship between 

the two variables [78].  Root mean square error (RMSE) is often used to compare two methods 

of measurement, or a model to a reference measurement.  The RMSE is a measure of fit 

between two methods [79].  Another way to compare two measurement techniques is with a 

Bland Altman plot.  The average of the two methods is the x-axis of the plot and the difference 

between the two methods is the y-axis of the plot.  The center dashed line on the plot is the 

mean and the upper and lower dashed lines are the mean +/- two standard deviations.  The upper 

and lower dashed lines are called the limits of agreement, and are used to determine if the two 

methods are similar.  If the limits of agreement are within an acceptable range of error then the 

two methods are similar.  The advantage of a Bland Altman plot is the outliers, bias and 

similarities between the two methods are easy to identify [80, 81].  Bland Altman plots were 
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used in addition to R correlation values because an R correlation assumes a linear relationship, 

and it is possible for two methods to have a linear relationship but not be similar.  
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CHAPTER 5: RESULTS 
 
 
 
 

5.1 Verification Tests 

5.1.1 Movement Analysis Using a Robotic Motion 

There were six trials recorded during the movement of joint 1.  The hip flexion and hip 

extension angles calculated by the Vicon and APDM systems at speeds A, B and C are shown in 

the following graphs in degrees versus time in seconds.  The Vicon system is shown in the plots 

by the blue lines and the red lines show the APDM system. Figure 15 shows the angles for both 

the Vicon and APDM system during the movement of joint 1, representative of hip flexion at 

speed A.  Joint 1 hip flexion B and joint 1 hip flexion C are shown in Figure 16 and Figure 17.  

 

Figure 15 Joint 1 Hip Flexion A 
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Figure 16 Joint 1 Hip Flexion B 

 

 

Figure 17 Joint 1 Hip Flexion C 

 
The comparison of the angle measured by the Vicon system and the APDM system for joint 1 

hip extension A is shown in Figure 18.  The movement of joint 1 hip extension B is shown in 

Figure 19.  The movement of joint 1 hip extension at speed C is shown in Figure 20.  
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Figure 18 Joint 1 Hip Extension A 

 

 

Figure 19 Joint 1 Hip Extension B 
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Figure 20 Joint 1 Hip Extension C 
 

Four trials were recorded during the movement of joint 3, representative of internal and 

external rotation, at speeds A and B. Figure 21 and Figure 22 shows the movement of joint 3 hip 

internal rotation at speeds A and B respectively.  

 
Figure 21 Joint 3 Hip Internal Rotation A 
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Figure 22 Joint 3 Hip Internal Rotation B 

 
The movement of joint 3 hip external rotation at speeds A and B is shown in Figure 23 and 

Figure 24.   

 

 

Figure 23 Joint 3 Hip External Rotation A 
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Figure 24 Joint 3 Hip External Rotation B 

 

There were six trials recorded for joint 4, representative of knee flexion and extension at 

speeds A, B and C. The Vicon and systems are shown in the plots by the blue and red lines 

respectively. Figure 25, Figure 26 and Figure 27 show joint 4 knee flexion at speeds A, B and 

C. 

 
Figure 25 Joint 4 Knee Flexion A 
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Figure 26 Joint 4 Knee Flexion B 

 

 

Figure 27 Joint 4 Knee Flexion C 
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Joint 4, representative of knee extension, at speeds A, B and C are shown in Figure 28, Figure 

29 and Figure 30.  

 

Figure 28 Joint 4 Knee Extension A 

 

 

Figure 29 Joint 4 Knee Extension B 
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Figure 30 Joint 4 Knee Extension C 

 
Table 4 shows the RMSE in degrees between the Vicon and APDM joint angle 

calculations for the single joint movements. The joint 4 “knee” angles for the APDM sensors 

were calculated using the two-sensor algorithm (Equations 2-6). The Pearson’s R correlation 

values were all 0.999 except joint 3 hip internal rotation B which was 0.996. 

Table 4 RMSE Between Vicon and APDM Sensors 

 
  

Joint Movement
RMSE 

(Degrees)

Hip Extension A 0.8
Hip Extension B 0.4
Hip Extension C 1.4
Hip Flexion A 1.3
Hip Flexion B 0.9
Hip Flexion C 0.5

Hip External Rotation A 2.1
Hip External Rotation B 2.1
Hip Internal Rotation A 2.4
Hip Internal Rotation B 1.8

Knee Extension A 1.0
Knee Extension B 0.8
Knee Extension C 0.9
Knee Flexion A 1.0
Knee Flexion B 1.4
Knee Flexion C 1.1

Joint 1

Joint 3

Joint 4
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 The knee angle or joint 4 angle was calculated three different ways: the Vicon system, 

with the two-sensor algorithm and the sensor directly on the joint.  An example of the 

comparison between the angles calculated by the Vicon system, two-sensor algorithm and the 

sensor on joint 4 are shown in Figure 31.  The blue line represents the Vicon system, the red 

line is the two-sensor algorithm and the orange line is the sensor directly on joint 4.  

 

Figure 31 Comparison Between Algorithm and Sensor On Joint 4 

 
The RMSE between the Vicon and the two-sensor algorithm, between the Vicon and the 

sensor on joint 4 and the two-sensor algorithm and the sensor directly on the joint 4 is shown in 

Table 5.  The Pearson’s R correlation values were all 0.999. 
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Table 5 RMSE for 3 Methods of Knee Angle Calculation 

 
 

Table 6 shows the angular velocity in degrees per second for each of the three systems: 

Vicon, APDM and WMRA. 

Table 6 Angular Velocity 

 

 
 

 

Vicon and 

2 Sensor 

Algorithm

Vicon and 

Sensor on 

Joint

2 Sensor 

Algorithm 

and Sensor 

on Joint

Knee Flexion A 1.0 2.0 2.2
Knee Flexion B 1.4 1.2 1.9
Knee Flexion C 1.1 2.2 2.2

Knee Extension A 1.0 2.3 2.5
Knee Extension B 0.8 3.9 4.2
Knee Extension C 0.9 2.1 2.7

RMSE (Degrees)

Joint 4

Movement

Vicon APDM WMRA

Hip Flexion A 2.6 2.7 2.6
Hip Flexion B 3.4 3.3 3.5
Hip Flexion C 3.5 3.6 3.6

Hip Extension A -2.5 -2.0 -2.5
Hip Extension B -3.1 -2.8 -3.2
Hip Extension C -3.2 -2.9 -3.2

Hip Internal Rotation A -4.3 -4.1 -5.2
Hip Internal Rotation B -4.5 -4.4 -5.7
Hip External Rotation A 4.9 4.5 5.2
Hip External Rotation B 4.7 4.7 6.0

Knee Flexion A 6.8 6.3 6.8
Knee Flexion B 10.3 9.7 10.2
Knee Flexion C 10.2 10.1 10.8

Knee Extension A -6.7 -6.7 -6.8
Knee Extension B -9.6 -9.5 -10.1
Knee Extension C -10.2 -10.1 -10.7

Link 1

Angular Velocity (deg/s)

Link 2

Link Movement
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All three joints were moved simultaneously during the 3-dimensional motion for five 

cycles, and two separate trials.  The two trials for joint 1 are shown in Figure 32 and Figure 33. 

 

Figure 32 Joint 1 3D Motion 1 

 

 

Figure 33 Joint 1 3D Motion  
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The movement of joint 3 during the 3-D trials is shown in Figure 34 and Figure 35. 
 

 

Figure 34 Joint 3 3D Motion 1 

 

 

Figure 35 Joint 3 3D Motion 2 
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The movement of joint 4 during the 3-D trials is shown in Figure 36 and Figure 37.  

 

Figure 36 Joint 4 3D Motion 1 

 

 

Figure 37 Joint 4 3D Motion 2 
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The RMSE and Pearson’s R correlation between the APDM and Vicon calculations for 

3D motion trials 1 and 2 are shown in Table 7. 

 
Table 7 RMSE and R Values for 3D Motion Trials 1 & 2 

APDM vs Vicon 

Joint 3D Motion 1 3D Motion 2 
RMSE (Deg) Pearson's R RMSE (Deg) Pearson's R 

Joint 1 1.1 1.0 0.8 1.0 
Joint 3 7.0 0.9 6.8 0.9 
Joint 4 4.0 1.0 0.8 1.0 

 
 

5.1.2 Range of Motion Tests 

Figure 38 shows the range of motion test during the Vicon data collection. 

 

Figure 38 Range of Motion Test 
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The comparison between the knee flexion angle calculated by the WMAS and the Vicon system 

during the range of motion test is shown in Figure 39. 

  

 

Figure 39 Left Knee Angle Range of Motion WMAS and Vicon 

 
The RMSE and R Correlation for the range of motion tests are shown in Table 8. 
 

Table 8 RMSE and R Values For Range of Motion Tests 

  Left Knee Angle 

Trial 
RMSE 

(Degrees) R 
ROM L1 4.0 0.998 
ROM L2 4.1 0.998 
ROM L3 4.3 0.998 
Overall 4.1 0.998 
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5.1.3 Sit to Stand Tests 

 The sit and stand positions, as well as the Vicon plug in gait model and autolabel are 

shown in Figure 40.  Figure 41 shows the comparison between the WMAS and Vicon calculated 

right knee angles during the sit to stand test.  

 

Figure 40 Sit To Stand Test in Vicon Workstation 
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Figure 41 Right Knee Angle During Sit To Stand 

 
The RMSE and R Values are shown in Table 9.  
 

Table 9 RMSE and R Values For Sit To Stand Testing 

  Right Knee Angle Left Knee Angle 

Trial 
RMSE 

(Degrees) R 
RMSE 

(Degrees) R 
STS 2 4.0 0.999 4.0 0.998 
STS 4 5.2 0.999 5.4 0.999 
STS 5 4.1 0.998 4.2 0.998 

Overall 4.4 0.999 4.5 0.998 

 
 

5.2 WMAS 

The WMAS calculates knee flexion angle, stride length, and cadence.  The results for 

each of these parameters are in sections 5.2.1, 5.2.2 and 5.2.3 respectively.  The graphical user 

interface is also shown in section 5.2.4. 
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5.2.1 Knee Angle 

Examples of the right knee flexion angle with the WMAS and Vicon system overlayed 

are shown in the following figures.  An example of the right knee flexion angle during one slow 

gait cycle is shown in Figure 42.  The knee flexion angle in degrees is shown as percent gait 

cycle.  The WMAS angle is shown in red and the Vicon angle is shown in blue.   

 

Figure 42 Right Knee Flexion Angle During One Slow Gait Cycle 

 
An example of the right knee flexion angle during one normal gait cycle is shown in Figure 43.  

The blue line represents the knee flexion angle in degrees calculated by the Vicon system and 

the red line is the knee flexion angle calculated by the WMAS.  
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Figure 43 Right Knee Flexion Angle During One Normal Gait Cycle 

 

Figure 44 shows an example of the right knee flexion angle calculated by both the WMAS and 

Vicon systems during one fast gait cycle. 

 

Figure 44 Right Knee Flexion Angle During One Fast Gait Cycle 
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The WMAS and Vicon knee flexion angles were compared for the all of the gait trials.  

The RMSE and R correlations values the knee flexion angle for the slow, normal and fast 

speeds is shown in Table 10. 

Table 10 RMSE and R Values For Knee Flexion Angle 

Speed 
RMSE Right 
Knee Flexion 

(Degrees) 

Pearson's R     
Right Knee 

Flexion  

RMSE Left 
Knee Flexion 

(Degrees) 

Pearson's R 
Left Knee 

Flexion  
Slow 3.3 0.992 3.9 0.983 

Normal 3.3 0.989 3.9 0.988 
Fast 4.1 0.978 4.4 0.987 

Overall 3.5 0.988 3.3 0.986 
 

Each gait trial was separated in gait cycles and the maximum knee flexion angle was 

identified.  The maximum knee flexion angle from the WMAS compared to the Vicon 

maximum knee flexion for each gait cycle.  The RMSE for both the right and left knees at each 

of the three speeds is shown in Table 11. 

Table 11 RMSE For Maximum Knee Flexion 

Speed 
RMSE Right 

Knee Max Flexion 
(Degrees) 

RMSE Left Knee 
Max Flexion 

(Degrees) 
Slow 2.6 2.3 

Normal 2.6 2.8 
Fast 3.5 3.4 

Overall 2.8 2.8 

  
 The maximum knee flexion angle for one subject during slow gait as calculated by the 

WMAS and Vicon systems are compared in the Bland Altman plots shown in Figure 45.  The 

top dashed line represents the mean of the APDM angle (degrees) minus the Vicon Angle 

(degrees) plus two standard deviations.  The bottom dashed line represents the mean minus two 
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standard deviations.  The upper and lower dashed lines are the limits of agreement.  The center 

dashed line represents the mean for the maximum knee flexion angle in degrees.   The Bland 

Altman plot for the maximum knee flexion during normal gait is Figure 46.  The Bland Altman 

plot for the maximum knee flexion during fast gait is Figure 47. 

 
Figure 45 Bland Altman Plot: Maximum Knee Flexion During Slow Gait 
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Figure 46 Bland Altman Plot: Maximum Knee Flexion During Normal Gait 

 

 

Figure 47 Bland Altman Plot: Maximum Knee Flexion During Fast Gait 
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5.2.2 Stride Length 

 The average stride length in meters at the slow, normal and fast speeds is shown in 

Table 12.  The Pearson’s R correlation values, RMSE and percent difference for stride length 

between the WMAS and Vicon system is shown in Table 13. 

Table 12 Average Stride Length 

Average Stride Length (m) 
Speed Vicon APDM 
Slow 1.08 1.11 

Normal 1.29 1.25 
Fast 1.54 1.48 

Overall 1.30 1.27 
 
 

Table 13 Stride Length Statistics 

Speed Pearson's R RMSE (m) Percent 
Difference 

Slow 0.91 0.056 1.96% 
Normal 0.88 0.067 0.37% 

Fast 0.87 0.136 5.31% 
Overall 0.89 0.091 2.11% 

 

 
Bland Altman plots for stride length are shown for the slow, normal and fast gait speeds for one 

subject in Figure 48, Figure 49 and Figure 50. 
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Figure 48 Bland Altman Plot: Stride Length During Slow Gait 

 

 
Figure 49 Bland Altman Plot: Stride Length During Normal Gait 
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Figure 50 Bland Altman Plot: Stride Length During Fast Gait 

 

5.2.3 Cadence 

 Cadence was calculated from the WMAS and Vicon system and the results are shown in 

Table 14.  The average cadence is reported in steps per minute at each of the three speeds. 

Table 14 Average Cadence 

Speed WMAS 
(steps/min) 

Vicon 
(steps/min) Pearson's R 

Slow 70 71 0.951 
Normal 96 94 0.933 

Fast 123 120 0.908 
Overall 96 95 0.931 

 

 



69 

5.2.4 Graphical User Interface 

A graphical user interface (GUI) was created in Matlab to display the knee angle 

analysis as shown in Figure 51.  The GUI has a drop down menu to select which trial to plot. 

 

Figure 51 Knee Angle GUI 

 

The GUI can also display two knee angle trials on top of each other as shown in Figure 52.  

This is a useful feature if you want to compare two separate trials, or a new to a baseline trial. 

 

Figure 52 Knee Angle GUI Comparing Two Knee Angles  
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CHAPTER 6: DISCUSSION 
 
 
 
 

6.1 Verification Tests 

 The purpose of the verification tests was to show that the WMAS algorithm calculated 

the knee flexion angle within 5 degrees of error relative to the gold standard Vicon motion 

capture system.  

 The first step of the verification testing used a robotic arm to provide a repeatable 

movement.  These movements allowed for the comparison between the Vicon optical motion 

capture system and the APDM Opal IMU system in terms of joint angle calculation, angular 

velocity and trajectory recognition.    

 During the linear or single joint movements, the calculated joint angles from the Vicon, 

APDM and WMRA systems shown in Figures 4-6 were very similar.  The three speeds did not 

seem to have a significant effect on the joint angle calculations.  The joint angles calculated by 

the Vicon and APDM systems for the linear movements had an average RMSE of 1.2 degrees. 

The Vicon and APDM systems were also strongly correlated with a Pearson’s R correlation 

value of 0.998.  According to manufacturer, the APDM Opal sensors have a static roll/pitch 

orientation accuracy of 1.15 degrees, a static heading orientation accuracy of 1.50 degrees and 

dynamic orientation accuracy of 2.80 degrees [82]. Therefore, the quaternion-based algorithm 

improved the accuracy of the APDM sensors.  The largest deviations in joint angle between the 

three systems were most apparent in the joint 3 hip internal and external rotation movements.   
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The APDM sensor begins to drift towards the end of each trial.  Joint 3 hip internal and external 

rotation trials have an average RMSE between the Vicon and APDM sensors of 2.1 degrees; 

nearly double the average RMSE for all linear movements.  This is because the APDM sensors 

begin to drift at the end of each trial. 

  When the Vicon system and two-sensor algorithm was compared the average RMSE for 

the knee flexion angle was 1.0 degree.  Since the Vicon system is considered the gold standard 

for gait analysis, this shows that the two-sensor algorithm accurately calculates the knee flexion 

angle within a clinically acceptable range.  The RMSE was less than the results reported by 

Schiefer et al. and Toffola et al [44, 45] and the manufacturer’s specifications.  The comparison 

between the Vicon system and sensor directly on joint 4 had a RMSE of 2.3, which was nearly 

double the error calculated by the two-sensor algorithm.  The RMSE between the two-sensor 

algorithm and the sensor directly on the joint was 2.6 degrees.  

 The angular velocity measurements from the APDM sensors came directly from the data 

from the gyroscope sensor and the manufacturer’s calibration, whereas the Vicon and WMRA 

angular velocities were calculated using the time and angle measurements.  The correlation 

between the Vicon system and APDM average angular velocities was the highest with a 

Pearson’s R-value of 0.999 and RMSE of 0.29 degrees per second.  The WMRA and Vicon had 

a correlation value of 0.997 and an average RMSE of 0.57 degrees per second.  The WMRA 

and Vicon systems had an R-value of 0.997 and an average RMSE of 0.69 degrees per second.  

Since the APDM sensor directly measures the angular velocity, it makes sense that the APDM 

and Vicon comparison has the highest correlation and lowest RMSE, followed by the APDM 

and WMRA comparison. The APDM angular velocity towards the end of each trial the 

measurements did not drift significantly, the signals were a little noisy but remained relatively 
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constant.  This is likely due to the calibration of the gyroscope data.  The raw gyroscope data 

was noisier than the calibrated data, and contained some drift.  When the joint angles were 

calculated by integrating the gyroscope signal, the drift continually increased and the error was 

compounded over time.  However, the manufacturer’s calibration seems to correct the 

gyroscope drift, so drift was not a significant problem in this study.  

 The last trials collected were the two three-dimensional trials where all three joints 

moved simultaneously for five complete cycles.  All three systems had been running for several 

hours and the calibration files were not reset for any of the systems.  The largest differences 

between the three systems joint angles, particularly the WMRA, were evident in the 3-

dimensional motion trials. These trials also had some of the highest RMSE, particularly for joint 

3.   Before beginning the study, time-based effects were expected to be a factor and source of 

error. Knee angle calculations using the two-sensor algorithm for both 3-D trials 1 and 2 were 

still within a clinically acceptable range, even after several hours of data collection. 

 The management of several hours of IMU data in this study was possible due to the 

MATLAB (Mathworks, Natick, MA) algorithm and the ability to save each trial separately in 

the Motion Studio program.  However, the APDM Opal sensors are capable of on board data 

storage, which would allow for continuous data collection outside of a laboratory setting during 

activities of daily living.  The calculations of the joint angles would be similar to having 

separate trials, however the processing time of the MATLAB algorithm would be increased. 

The problems with data management would arise when attempting to separate different 

activities.   
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 The manufacturer’s calibration of the APDM sensor gyroscopes limited the drift and 

time-based effects.  As a result, the APDM sensor algorithm accurately calculated the joint 

angles well within a clinically acceptable range relative to the gold standard Vicon gait analysis 

system. 

 The range of motion and sit to stand tests were an additional method used to verify the 

WMAS knee angle calculation algorithm.  Both the range of motion and sit to stand tests had a 

RMSE of less than 5 degrees when compared to the Vicon system.  A potential source of error 

in these tests was the height of the stool that the subject sat on.  The stool did not allow the 

subject to begin with their legs at a 90-degree angle and it was difficult for the subject to sit 

completely upright.  However, the stool was used rather than the chair used during the rest of 

the gait trials because the RPSI and LPSI markers were blocked from the view of the cameras 

by the back of the chair.  Since three markers are needed to define a segment, the pelvis could 

not be defined at the start of the trials due to drop out of two of the four pelvis markers. The 

pelvis is used as a reference segment for the legs, and as a result the knee angles could not be 

calculated using the chair.  Another potential source of error was movement of the pelvis 

markers during the trial.  The pelvis markers were attached to the elastic belt on the APDM 

strap, and moved slightly during the trials. However, these tests showed that WMAS was able to 

accurately measure the knee flexion angle within the goal of 5 degrees error relative to the 

Vicon system and within clinically acceptable range. 

6.2 Comparison Between Vicon and WMAS 

  The Vicon and WMAS were compared for three gait parameters: knee flexion angle, 

stride length and cadence.  The three verification tests were the first methods that were used to 

compare the WMAS and Vicon system.  As mentioned previously, the Vicon motion analysis 
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system is the gold standard for gait analysis and was used to validate the algorithms and 

accuracy of the WMAS.  

 The goal of the WMAS knee angle calculations was to have less than 5 degrees of error 

relative to the Vicon system.  The RMSE for the WMAS was less than 5 degrees for both the 

entire trial comparisons and the maximum knee flexion angle comparison.  For the entire gait 

trial comparisons, the RMSE for the right knee during the slow, normal and fast speeds was 3.3 

degrees, 3.3 degrees and 4.1 degrees respectively.  The left knee flexion RMSE were slightly 

higher than those calculated for the right knee.  Slow, normal and fast RMSE for the left knee 

were 3.9 degrees, 3.9 degrees and 4.4 degrees.  For both the left and right knee flexion angles, 

the R correlation values were between 0.983 and 0.992.   The overall RMSE and Pearson’s R 

correlation values for the right knee were 3.5 degrees and 0.988, whereas the left knee was 3.3 

degrees and 0.986. 

 The maximum knee flexion angles were also well within under the goal of 5 degrees of 

error with an overall RMSE of 2.8 degrees. Analysis of the bland altman plot shows that the 

maximum flexion angles were well with an error of 5 degrees, with the exception of a few 

outliers. The bland altman plot was used to show a comparison between the Vicon and WMAS 

measurements, and to validate if the WMAS is an acceptable alternative to the gold standard. 

Unlike Pearson’s R correlation, the bland altman plot does not assume a linear relationship 

between the values.  The limits of agreement are the top and bottom dashed lines in the figure 

representing the mean +/- two standard deviations.  Since the limits of agreement fall within a 

clinically acceptable range, it can be assumed that the WMAS is a reliable alternative to the 

Vicon system. 
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 There are several potential sources of error for the knee angle calculations.  The 

potential error sources related to the Vicon system include misplacement of the knee markers. 

These markers are difficult to locate properly, and a slight offset could affect the location of the 

knee joint center.  An additional source of error related to the Vicon system is the movement of 

the pelvis markers during the trials due to their placement on an elastic belt on the waist and the 

movement of the subjects shirt and in turn the reflective markers.  The potential error sources 

related to the WMAS include misalignment of the APDM sensor with the axes of the thigh and 

shank, magnetic interference and movement of the sensors during the trials.  Magnetic 

interference may have occurred due to the force platforms, solo step, cameras and computer 

system, but did not seem to have a major effect on the results.  Lastly, the sensors were not 

calibrated before each data collection. The Motion Studio software has been updated since the 

collections for this study were completed and now includes a calibration feature that can 

recalibrate the gyroscopes and magnetometers before beginning data collection.  It is expected 

that recalibrating the sensors before every data collection would improve the results. 

 Another goal of this study was to improve the stride length calculations in a previous 

study using the APDM sensors by Simoes.  Simoes reported stride length R correlations of 

0.776, 0.8 and 0.817, which correspond to normal, fast and slow speeds, and an overall 

correlation of 0.861 [3, 35].  In this study the stride length calculations were improved at all 

three speeds as well as in the overall correlation.  The highest correlation value for stride length 

in this study was 0.91 at slow speed.  The normal and fast correlation values were 0.88 and 0.87 

respectively.  Overall the stride length correlation was 0.89.  In addition to the correlation 

values, the overall average RMSE was 0.091m, with the slow speed having the lowest RMSE at 

0.056m.  The limits of agreement from the stride length Bland Altman plot for slow gait also 
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show that the error between the two methods at slow speed was approximate 0.05m.  Since the 

literature has shown that subjects with TBI tend to walk slower, so the WMAS will be able to 

calculate the TBI parameters accurately.  The overall percentage difference between the WMAS 

and Vicon stride length calculations was 2.11%.  

 In the WMAS, a peak detection method was used to identify the heel-strike and toe-off 

gait events from the angular velocity signal.  However, manual inspection was necessary to 

avoid selection of noise in the signal rather than a peak or gait event.  A filtering technique 

should be used in the future to eliminate the need for manual inspection of the locations of the 

gait events.  

 The WMAS was able to achieve the goals of 5 degrees or less of error in the knee 

flexion measurements and improve upon previous stride length results. 

6.3 Comparison Between WMAS and Previous Work 

 There are several differences between the WMAS and the previous work with IMUs 

mentioned in Chapter 2.  One significant difference is a lot of the systems contain wires 

connected to a data logger, and are not small or practical for a person to wear during their 

activities of daily living.  Another difference between previous work and the WMAS is the gait 

parameters were calculated directly not from integrating gyroscope or accelerometer signals.  

This resulted in a smaller error due to the elimination of error propagation and drift 

accumulation during integration.  The WMAS was also validated against a gold-standard, 

industry leading, Vicon optical motion capture system rather than a video camera based, 

magnetic or ultrasound system.  No extensive filtering, such as Kalman filtering, was used in 

the WMAS but was popular in previous work.  The WMAS is different from the iTUG plug-in 

used by Simoes because the data is based off individual subject measurements rather than a 
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normative database, the data is output into columns and graphs that are editable rather than a 

standard template report that cannot be edited, and the equations and calculations are known to 

the user rather than a “black box” type software.   The other major advantage to the WMAS is 

the gait parameters and knee angles are calculated directly from the orientation data rather than 

the integration of the sensor data.  In addition the WMAS can be used for other activities and 

gait tests, other than just the TUG test, which is the only test Simoes was able to perform [3, 

35]. 

 The WMAS RMSE for knee flexion angle was 3.3 degrees for the normal and slow 

speeds and 4.1 degrees for the fast speed during gait, which were lower than those reported in 

the literature. For example, Schiefer et al. used accelerometers and gyroscopes to calculate knee 

flexion during several activities of daily living compared the data to an optical camera system 

with a RMSE between 4.6 and 7.1 degrees [46].  Watanabe reported RMSE of 4-5 degrees, and 

7 degrees without a Kalman filter, which are also higher than those from the WMAS [46].  

Pochappan reported a RMSE of 9.12 degrees, nearly triple the error calculated by the WMAS 

[48].   The Xsens MTx sensors are a similar product to the APDM Opal sensors, however    

Cloete and Scheffer reported RMSE of 7.6 degrees for the knee flexion angle using the Xsens 

software [47].  RMSE from the WMAS were not as small as Dejnabadi [83] or Cooper [59], 

however, these systems were not validated with an optical motion capture system.  Lastly, Favre 

reported lower average RMSE for knee flexion angle but used several calibration and alignment 

procedures prior to data collection [52, 54, 55], which were not used with the WMAS. 

 The work by Aminian [38] and Salarian [39] was used in the WMAS to identify the gait 

events or heel-strike and toe-off from the angular velocity signal from the shank IMU.  

However, unlike Aminian [38] and Salarian [39], the gyroscope data was not integrated to get 
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the segment angles that are necessary to calculate parameters such as stride length.  The WMAS 

calculations for stride length were similar to Zexi, however their equations were used to 

calculate step length and the segment angles were calculated by integrating the angular velocity 

[65].  Aminian reported RMSE of 0.07 meters and 7.2% error for stride length calculations [38], 

which are slightly higher than the WMAS.  The WMAS has a RMSE of 0.056 meters and 0.067 

meters for slow and normal gait speeds, and an average error of 2.11%.  Salarian reported lower 

stride length RMSE than the WMAS with 3.5 centimeters, however Salarian used filtering and a 

more complex gait double pendulum and inverse double pendulum gait model [39].  Doheny 

reported a RMSE of 0.09 meters and an R correlation of 0.84 for stride length calculations [63].  

The WMAS performed better during slow and normal speeds, and had about the same average 

RMSE for all three speeds (0.091 meters) with an R correlation of 0.89.  Lastly, as previously 

mentioned the stride length calculations were improved with the WMAS relative to the work by 

Simoes with the APDM Opal sensors [3]. 

6.4 Graphical User Interface 

 A graphical user interface was also created in Matlab for use with the knee angle 

analysis during gait.  The user is able to select the data which they have previously collected 

and plot both the right and left knee flexion angles, or compare a knee flexion angle to one 

collected previously as a baseline.  This will allow for visual analysis of the knee angle during 

gait.  A future improvement includes adding the values for maximum knee flexion.  Future 

work could also involve adding the stride length parameters.  The GUI could also be 

programmed to collect the data directly from the sensors rather than from Motion Studio.  This 

would allow for collection and analysis in one easy to use tool. 
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6.5 Limitations of this Research 

 There are several limitations of this research in addition to the previously discussed 

sources of error.  The main limitation is a small sample size of only healthy; generally young 

subjects participated in the study.  Ten healthy individuals with an average age of 27 

participated in the study.  The ultimate application of the study is for mTBI and TBI research, as 

well as concussion or return to duty diagnosis, which would require an additional validation 

study.  Another limitation is the use of a short gait lane in a defined laboratory setting.  

However, despite these limitations the WMAS showed it was able to calculate gait parameters 

within a clinically acceptable range to the gold standard Vicon motion capture system. 

6.6 Applications of WMAS 

The WMAS has several applications including use in a physical therapy or rehabilitation 

clinic, data collection outside of a laboratory setting during a person’s normal activities of daily 

living, on the sidelines at sporting events or in the battlefield to analyze concussion injuries, and 

to determine return to duty or return to play after a head injury. 
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CHAPTER 7: CONCLUSION 
 
 
 
 

The purpose of this study was to develop a wearable motion analysis system to evaluate 

gait parameters that are indicative of gait deviations, particular those relevant to mTBI and TBI.  

In addition to developing the WMAS, one of the goals of this project was to calculate knee 

flexion angle within 5 degrees of error of the Vicon optical motion capture system.  The other 

goal was to improve the stride length calculations from Simoes [3].  Both of these goals were 

met as the RMSE of the knee flexion angle was 3.5 degrees relative to the Vicon system and the 

stride length correlations were increased to strong correlation values of 0.91, 0.88 and 0.87 

corresponding to slow, normal and fast speeds.  The WMAS is a powerful clinical tool for gait 

analysis, especially outside of a laboratory setting.  A future study will include mTBI patients, 

and test the validity of the WMAS for evaluating and rehabilitating mTBI.  
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CHAPTER 8: FUTURE WORK 
 
 
 
 

8.1 Use with mTBI and TBI Subjects 

 The next phase of this project should involve testing the validity and accuracy of the 

WMAS with mTBI and TBI subjects.  Similar testing to this study could be used, with an 

addition of treadmill walking.  The data from the mTBI and TBI subjects can be compared to 

the data collected in this study from healthy subjects.  

8.2 Robotic Arm  

 Future work with the robotic arm will also include the development of algorithms to 

detect gait abnormalities such as those seen in patients with mild traumatic brain injury (mTBI). 

To complement human subject testing with gait pathology, controlled introduction of gait 

deviations into this robotic testing framework will allow for well-characterized unit testing, 

providing more robust algorithm development. 

8.3 Testing Outside of Laboratory 

 Future studies will involve collecting data continuously on board the sensors outside of a 

laboratory setting.  After the data collection, there would be a large amount of data to process, 

and would test the ability to extract only the relevant parameters.    
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8.4 CAREN 

 The CAREN or Computer Assisted Rehabilitation Environment and WMAS system 

could be used together for return to duty testing for subjects with mTBI or PTSD.  The testing 

could begin in the gait laboratory with the WMAS and Vicon motion capture system for 

analysis of level walking, stairs and gravel.  The testing framework could also include noises 

and visual distractions during the gait trials.  The next phase would involve testing on the 

CAREN for several weeks with visual distractions, varying terrain and noises. The final phase 

would involve retesting in the gait laboratory to determine if the rehabilitation training 

improved the gait and could result in return to duty.  A benefit of using the WMAS and the 

CAREN would be the ability to control the environment and the movement of the platform.  

The CAREN could provide perturbations and obstacles, as well as distractions that cannot be 

provided during gait analysis on a flat walkway in a laboratory setting.  Someone may walk 

well when the only focus is walking, but when other factors are introduced gait deviations may 

occur.  This would allow the WMAS to be tested with closer to real life situations than the 

traditional gait lane testing, but still in a controlled and known environment. 

8.5 Sports Concussion 

The WMAS has the potential to identify the growing number of concussion and mTBIs 

that occur during sports such as football, hockey and baseball.  As mentioned previously, the 

current on field diagnostic tools for concussions are subjective.  There is a major need for an 

objective, portable method to determine whether a player can return to play or has suffered a 

concussion on the field.  Baseline gait measurements with the WMAS could be collected prior 

to the start of the season for each player, and used to compare to the gait measurements after a 

potential concussion.  Treadmill walking should be tested, in addition to the regular gait trials 
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because if there is a correlation between slow speed and concussion players may be able to 

outsmart the system by walking slower.  If a treadmill was used, the speed would be controlled, 

and the gait deviations would be evident and not dependent on gait speed.    
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Appendix A: WMAS Data Collection Checklist 
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Appendix B: Instructions for WMAS Data Collection 

B.1 APDM Instructions 

1. Plug access point USB into laptop 

2. Plug docking station into outlet using power adapter 

3. Connect USB cord into docking station and plug into laptop 

4. Go to Programs and open Motion Studio 

5. Plug Opal sensors into docking station.  The light on each sensor should turn blue  

6. Under "Working Directory" specify which folder data will go into  

7. Press New at top of Motion Studio 

8. It will say “plug in all hardware that you wish to configure” Click Ok 

9. It will check the firmware and calibration 

10. Choose the “Systems tab”: 

a. Under  “Attached hardware” it should show: 1 access point, 6 docking stations 

and 6 monitors 

b. Under “Recording configuration” it should be Robust Synchronized Streaming, 

wireless channel 90 and sample rate 128. 

11. Choose the “Monitors” tab: 

a. Make sure the sensors that you connected are shown in the “Select Monitor” drop 

down menu 

b. Make sure the boxes next to Enable Accelerometer, Enable Gyroscope and Enable 

Magnetometer are all checked 

c. Accelerometer range should be 6g 

d. Select Do Nothing for Spin Mode 
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Appendix B (Continued) 

12. Click Configure, it will configure for the channel selected 

13.  Once its finished it will say Configuration Complete. Click Ok 

14. Undock the sensors from the docking station.  

15.  Put the sensors on the subject (prior to placing the markers on the subject). Make 

sure the sensor number (located on the back of the sensor case) corresponds 

accordingly to where the sensors are placed on the subject as specified previously in 

the “Monitors” tab 

16.  Attach the sensors with the USB port facing toward the ground 

17.  Adjust the straps so that they are snug but not uncomfortable on the subject 

18.  Click the Stream button at the top of the toolbar 

19.  A window will show up with the strip charts on the right and a list of menu options 

down the left side.  

B.2 Vicon Set Up 

1. Place the Plug-in-Gait marker set on the subject  

2. Open Workstation on the computer 

3. Calibrate the cameras and force plates 

4. Create a folder for your data 

5. Press the turquoise "New Trial" icon 

6. Under Trial Types check mark the Static Trial option 

7. Capture a static trial 

8. Make sure marker set is Plug in Gait  

9.  Label the markers and apply autolabel 
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Appendix B (Continued) 

B.3 APDM Sensors Data Collection Steps 

1. Click “Stream 
a. Under "Record Duration" choose Indeterminate  

b. Under "Save Options" choose CSV for the file format and the file name should 

follow  the following format: subjectid_typeoftrial_trialnumber 

c. Press Record 

d. Under "Real Time Data Plot" different plot types of each sensor can be picked 

e. Press Stop  

f. Repeat 5 times for each of the 3 trial types 

g. Click Exit 

2. Take the sensors off of the subject 

3. Dock the Sensors in the docking station  

4. Click "Power Off"  

5. Undock the Sensors 

B.4 Vicon Data Collection Steps 

1. Press the turquoise New Trial icon 

2. Make sure the Static Trial box is unchecked 

3. Capture a trial by pressing Start and Stop  
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Appendix C: Visual 3D Pipeline 

C.1 Joint Angle Calculations 

Calculate Right Knee Angle [75]:  
Compute_Model_Based_Data 
/RESULT_NAME=Right Knee Angle 
/FUNCTION=JOINT_ANGLE 
/SEGMENT=RSK 
/REFERENCE_SEGMENT=RTH 
/RESOLUTION_COORDINATE_SYSTEM= 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
/NEGATEX=TRUE 
/NEGATEY=TRUE 
/NEGATEZ=TRUE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z; 
 
Calculate Left Knee Angle [75]: 
Compute_Model_Based_Data 
/RESULT_NAME=Left Knee Angle 
/FUNCTION=JOINT_ANGLE 
/SEGMENT=LSK 
/REFERENCE_SEGMENT=LTH 
/RESOLUTION_COORDINATE_SYSTEM= 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
/NEGATEX=TRUE 
/NEGATEY=TRUE 
/NEGATEZ=TRUE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z;
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Appendix C (Continued) 

C.2 Stride Length Calculations  

Calculate the Position of the Right Heel with Respect to the Pelvis [76]: 
Compute_Model_Based_Data 
/RESULT_NAME=RHEEL_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=RHEE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGATEX=FALSE 
! /NEGATEY=FALSE 
! /NEGATEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z; 
 
Calculate the Position of the Left Heel with Respect to the Pelvis [76]: 
Compute_Model_Based_Data 
/RESULT_NAME=LHEEL_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=LHEE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGATEX=FALSE 
! /NEGATEY=FALSE 
! /NEGATEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z; 
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Appendix C (Continued) 

Calculate the Position of the Right Toe with Respect to the Pelvis [76]: 
Compute_Model_Based_Data 
/RESULT_NAME=RTOE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=RTOE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGATEX=FALSE 
! /NEGATEY=FALSE 
! /NEGATEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z; 
 
Calculate the Position of the Left Toe with Respect to the Pelvis [76]: 
Compute_Model_Based_Data 
/RESULT_NAME=LTOE_WRT_PELVIS 
/FUNCTION=TARGET_PATH 
/SEGMENT=LTOE 
/REFERENCE_SEGMENT=RPV 
/RESOLUTION_COORDINATE_SYSTEM=RPV 
! /USE_CARDAN_SEQUENCE=FALSE 
! /NORMALIZATION=FALSE 
! /NORMALIZATION_METHOD= 
! /NORMALIZATION_METRIC= 
! /NEGATEX=FALSE 
! /NEGATEY=FALSE 
! /NEGATEZ=FALSE 
! /AXIS1=X 
! /AXIS2=Y 
! /AXIS3=Z; 
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Appendix C (Continued) 

Find the Right Heel Strikes [76]: 
Event_Maximum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=RHEEL_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=RHS 
! /SELECT_X=FALSE 
/SELECT_Y=TRUE 
! /SELECT_Z=FALSE 
! /FRAME_WINDOW=8 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0; 
 
Find the Left Heel Strikes [76]: 
Event_Maximum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LHEEL_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=LHS 
! /SELECT_X=FALSE 
/SELECT_Y=TRUE 
! /SELECT_Z=FALSE 
! /FRAME_WINDOW=8 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0; 
 
Find the Right Toe-offs [76]: 
Event_Minimum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=RTOE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=RTO 
! /SELECT_X=FALSE 
/SELECT_Y=TRUE 
! /SELECT_Z=FALSE 
! /FRAME_WINDOW=8 
! /START_AT_EVENT= 
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Appendix C (Continued) 

! /END_AT_EVENT= 
/EVENT_INSTANCE=0; 
 
Find the Left Toe-Offs [76]: 

Event_Minimum 
/SIGNAL_TYPES=LINK_MODEL_BASED 
/SIGNAL_NAMES=LTOE_WRT_PELVIS 
! /SIGNAL_FOLDER=ORIGINAL 
/EVENT_NAME=LTO 
! /SELECT_X=FALSE 
/SELECT_Y=TRUE 
! /SELECT_Z=FALSE 
! /FRAME_WINDOW=8 
! /START_AT_EVENT= 
! /END_AT_EVENT= 
/EVENT_INSTANCE=0; 
 
Calculate the Right Stride Length [77]: 
Metric_Vector_Between_Events 
/RESULT_METRIC_NAME=RStride 
! /RESULT_METRIC_FOLDER=PROCESSED 
/GENERATE_VECTOR_LENGTH_METRIC=TRUE 
/START_SIGNAL_TYPE=TARGET 
/START_SIGNAL_NAME=RHEEL 
! /START_SIGNAL_FOLDER=ORIGINAL 
/END_SIGNAL_TYPE=TARGET 
/END_SIGNAL_NAME=RHEEL 
! /END_SIGNAL_FOLDER=ORIGINAL 
/EVENT_SEQUENCE=RHS+RTO+RHS 
/EXCLUDE_EVENTS= 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /RETAIN_NO_DATA_VALUES=FALSE; 
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Appendix C (Continued) 

Calculate the Left Stride Length [77]: 
Metric_Vector_Between_Events 
/RESULT_METRIC_NAME=LStride 
! /RESULT_METRIC_FOLDER=PROCESSED 
/GENERATE_VECTOR_LENGTH_METRIC=TRUE 
/START_SIGNAL_TYPE=TARGET 
/START_SIGNAL_NAME=LHEEL 
! /START_SIGNAL_FOLDER=ORIGINAL 
/END_SIGNAL_TYPE=TARGET 
/END_SIGNAL_NAME=LHEEL 
! /END_SIGNAL_FOLDER=ORIGINAL 
/EVENT_SEQUENCE=LHS+LTO+LHS 
/EXCLUDE_EVENTS= 
/GENERATE_MEAN_AND_STDDEV=FALSE 
! /APPEND_TO_EXISTING_VALUES=FALSE 
! /RETAIN_NO_DATA_VALUES=FALSE; 
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This research employs an agglomeration of knowledge from the fields of electrical
engineering, digital signal processing, physics, computer music, music performance,
music psychology, machine learning, and pattern recognition. The integration of
this knowledge is applied to the technology of inertial measurement sensors in an
attempt to detect musical expression and emotion in intuitive gestures based solely
on kinesthetic data from piano players in real-time. A system is presented for de-
tecting common gestures, musical intentions and emotions of pianists in real time
using kinesthetic data retrieved by wireless inertial measurement sensors. The al-
gorithm is implemented using the gesture recognition toolbox in EyesWeb software
and employs the lens model of communication of emotions in music. The algorithm
can detect common Western musical structures such as chords, arpeggios, scales,
and trills as well as musically conveyed emotions such as cheerful, mournful and
vigorous, completely and solely based on motion sensor data. The algorithm can
be trained per performer in real time or can work based on previous training sets.
The system presents feedback to the user by mapping the emotions to a color
set and projecting them as a flowing emotional spectrum on the background of a
piano roll. The detected emotion is also shown as an object floating in the two-
dimensional emotion space of the adjective circle. The system was tested on a
study group of pianists, detected and displayed structures and emotions, and it
provided some insightful results and conclusions.
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PREFACE

Hence, again, it becomes possible for motion in music to imitate the peculiar
characteristics of motive forces in space, that is, to form an image of the various
impulses and forces which lie at the root of motion. And on this, as I believe,
essentially depends the power of music to picture emotion. [Helmholtz, 1863].
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1

Introduction

“Music exists only at the moment of its performance” [Kierkegaard, 1843].

Although nearly two centuries have passed since this statement was first made, it

seems that it is still well established that live performance is in fact the

paramount musical experience. It is in live performance that the dyad between

performer and audience creates that intimate setting where extreme emotions

manifest in music and gestural expressions. And it is the integration and

interaction of senses – sound, sight, and even touch – that the performer exploits

in order to convey the verbally ineffable. It seems therefore, that while

investigating the emotions aroused by music it is only reasonable to explore the

relationship of motion to the musical experience.

The expressions and emotions communicated and aroused by music have

been addressed from a wide range of directions, some of which are quite distinct

and some that overlap. These include the fields of philosophy, music psychology,

musicology, computer music, artificial intelligence, machine learning, and music

information retrieval.

From a philosophical and psychological perspective, emotions in music

have been of core interest for centuries and have attempted to define, model, and

justify the problematic, controversial but yet undeniable expressive power of

music. Some of the influential works were those of [Helmholtz, 1863],
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[Seashore, 1938], and [Meyer, 1956]. However, a significant majority of this

research was based on the acoustical phenomena and structural compositional

elements. It is only recently that the performance aspect of music has become of

interest to this kind of exploration [Juslin and Timmers, 2010]. I will review

some of this in the background section.

More recently, from the motivation of expressive performance in computer

music, there have been ongoing attempts to quantify and objectify the way in

which human expression can be embedded in what otherwise would be a stale

performance. The KTH rule-system developed at the KTH Royal Institute of

Technology [Friberg et al., 2006], describes a set of rules to employ on a musical

score in order for it to sound lively and expressive while being played back by a

computer. This research led to an enhanced understanding of how expression is

conveyed in the audio of a music performance. But it is reasonable to assume

that these realizations might not be limited to the analysis of the acoustical

property of music, since many of these insights describe performance rules that

can possibly be picked up in the motion of the performer. Thus, the motion can

be analyzed using some of the same rules that are employed on musical audio

analysis. This is explained in more detail in the previous work and proposed

system sections.

The more recent burst of development and utilization of machine-learning

algorithms has spawned research in human gesture recognition aimed at the

control of musical instruments and audio effects [Dillon et al., 2006],
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[Toyoda, 2007], [Höfer et al., 2009], and [Odowichuk et al., 2011]. These

publications mostly describe novel controllers and games employing gesture

recognition. Utilizing the motion in musical performance has also been attempted

in some studies. Friberg [Friberg, 2004] implemented a fuzzy logic analyzer that

uses audio data as well as video stream of a performer to map the performance to

specific expressions. This is also reviewed in detail in the previous work section.

More recently, Nicholas Gillian and Benjamin Knapp [Gillian et al., 2011a] have

developed a gesture recognition toolbox for the EyesWeb1 environment the

enables use of a variety of machine-learning algorithms in real-time. This

environment was specially designed to explore interactive multidimensional

musical interfaces and displays. For additional related work that has been

performed with EyesWeb and this toolbox see [Camurri et al., 2000],

[Camurri et al., 2004], [Camurri et al., 2007], [Varni et al., 2010] and

[Gillian et al., 2011b]. The gesture-recognition toolbox in EyesWeb is a major

infrastructure in the present research. I will go into more detail regarding some

of these in the background and previous work sections. However, at this point, it

is important to note that all of these developments indicate that we are

approaching a point where machines can recognize and detect human intentions

in a real-time environment to a level of accuracy that can make the computer an

active and live participant in the music-making process.

There is a history of the study of motion of performers in the past century,

1http://www.infomus.org/eyesweb_eng.php

http://www.infomus.org/eyesweb_eng.php
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but in the recent decades this is traditionally carried out by use of video-tracking

systems employing passive or active markers. This setup is referred to as motion

capture (mocap) and is mostly used for animation. I will review it in the

background section. In addition and in parallel to these, during the past decade,

the technology of inertial measurement units (IMUs) has become commercially

available and accessible at any budget and scope. Sensors such as accelerometers,

gyroscopes, and magnetometers are commonly integrated in almost all mobile

devices, and much research is carried out with these sensors in a variety of fields

from medical devices, computer games, and musical controllers.

However, to this day, and despite these advances, the use of these novel

technologies has not yet been adopted by most musicians, and most performers

still use instruments employing technology from decades ago. A common

justification to this phenomenon is that many performers lack the bandwidth

required to master additional controls [Cook, 2001], or in other words, they have

their hands “tied”. This implies that these technologies have still not been

implemented in musical controllers in a way that can actually be useful to create

music that can be mastered, widely adopted and appreciated.

A possible reason for the deficiency of motion sensor-based controllers

could be the knowledge gap in the understanding of the optimal way to employ

motion-sensor technology into musical controllers in a way that a greater

majority of musicians would accept. A musical controller might be easy to adapt

to if instead of having to master it, the device would employ machine-learning
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algorithms to detect the musicians’ intentions. This way mastering it would

impose a minor requirement on the musician in terms of how much they need to

alter their movements. Such a controller could be trained to detect various types

of musical intentions such as patterns of playing, expression and musical

emotions. Therefore, it seems that the missing link between utilizing motion

sensor technology in music controllers, machine learning and interactive

computer music composing and performance is some theory in the ability of a

machine to detect musical intentions (just like a fellow performer does) in

intuitive expressive musical gestures.

But how much information is actually conveyed through a musician’s

motions, and how detailed is this information? Are these motions direct

expressions of emotions, or are they merely a side effect of the physicality in

controlling the instrument? Since it is reasonable to assume that it is not one or

the other but rather a combination of the two, by tracking a musician’s motions,

how much information can we retrieve about the musical content being

displayed? Could we track musical structures such as chords and arpeggios,

crescendos and diminuendos? Could we detect emotions such as anger or

cheerfulness? At what resolution and accuracy could we detect this information?

And moreover, assuming the musician is moved by his or her’s own performance,

how would this influence our observations, and how much would this information

correlate with the musical interpretation of the piece being played? These are all

questions this research attempts to address.
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The applications of answering these questions aside from pleasing our

curiosity would enable us to design artificially intelligent musical controllers that

could interact with the musician by detecting the musician’s intuitive gestures

and using them to augment and control the music. This could also be used in

music pedagogy and music therapy as a feedback system for expressive

performance. Moreover, the evolution path of emotions through a musical piece

has interest in other communities such as music informatics/retrieval, musicology,

music composition and music psychology. For example, following the emotional

path through a Beethoven sonata might help us better understand the tracks of

the emotional “rollercoaster” we experience while listening to this exhilarating

music.

In this research, I will employ an agglomeration of knowledge from the

fields of electrical engineering, digital signal processing, physics, computer music,

music performance, music psychology, machine learning, and pattern recognition.

I will attempt to combine the knowledge in order to use the rather recent

technology of inertial measurement sensors to detect musical expression and

emotion in intuitive gestures based solely on kinesthetic data of piano players in

real time. While preparing for this research I noticed that much of the published

work in the fields of engineering is engaged in the tasks of circuit design,

programing, mechanical design, and other technical issues of “getting stuff to

work”, which does not leave much time for the research itself. It was therefore

my secondary goal to utilize existing technology as much as possible in order to
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minimize the time lost on development and maximize that spent on the research.



2

Background

The ordering of the sections in this chapter is one of several possible

alternatives that exist. Nevertheless, I have chosen a layout in a bottom-up

approach, from the finest physical inspection in the details of particle motion to

the large-scale abstract observations and reflections on human emotions. I feel

that this should make the reading experience flowing and insightful to the reader.

2.1 Inertial Measurement Units (IMUs)

In this section, I will review the topic of inertial measurement units,

describe those used in this research and provide a brief overview of how they

operate.

2.1.1 Overview

The inertial measurement units used in this project are body worn

monitors named Opals, manufactured by APDM 1. Each IMU consists of a 3-axis

accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The Opals

transmit the measurements from these sensors wirelessly to a receiver connected

to a computer at a rate of 64 samples per second. These units will be explained

in the sections that follow.

1For more information about the Opal sensors, see the APDM web site. http://www.apdm.

com/.

http://www.apdm.com/
http://www.apdm.com/
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2.1.2 Accelerometers

Accelerometers typically measure proper acceleration which is the physical

acceleration experienced by an object in the frame of an observer in free-fall.

Therefore, an accelerometer on the earth’s surface and in no motion will measure

a constant positive 9.8 SI (m/sec2) upwards and an accelerometer in free-fall

towards earth will measure zero acceleration. A more general explanation to this

behavior is the equivalence principle from relativity theory [Einstein et al., 1920]

that shows how the effects of gravity on an object are indistinguishable from

acceleration. In fact, the design concept of accelerometers is based on this

equivalence since what is actually measured in them is force and not position. In

order to measure the movement acceleration that is the second derivative of the

body position relative to earth, this constant can be corrected by a simple

calibration, by subtracting its value from our measurements.

Figure 1: Diagram of typical accelerometer design. A moving proof mass hung
between two tethers and connected to a capacitive plate that moves between two an-
chored plates creates a capacitance divider. Diagram from [Analog Devices, 2008].

The modern design of accelerometers and also that of our Opals is a micro

electro-mechanical system (MEMS). A typical design is based on a proof mass
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connected to a tether that is anchored at the edges. The mass is free to move in

a constant range between those edges. The proof mass is also connected to some

capacitive plate that moves along with it between two anchored capacitive plates.

This creates two sets of capacitive plates that modify their capacitance as a

result of the mass’s movement. See figure 1.

2.1.3 Gyroscopes

Gyroscopes measure angular velocity in units of degrees per second. The

theory behind their operation is employing the phenomena of the Coriolis effect

that a mass in motion experiences when angular rotation is applied to it. This

force is always perpendicular to both the motion vector and the angular velocity

vector 2 [Feynman et al., 1963]. The Coriolis force causes a displacement that

can be measured by a capacitive sensing structure, similar to that in a MEMS

accelerometer. Typically, in a method called tuning fork configuration, two

masses are positioned in a way that they constantly oscillate in opposite

directions. The masses are attached to capacitive plates that are also in motion

with them. Then, when an angular velocity is applied to the two-mass system,

the Coriolis force pushes each of the masses in opposite directions. This causes a

displacement between the masses that is measured in a change in the capacitance

between the plates connected to them.
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Figure 2: Diagram of MEMS gyroscope tuning fork design. Two masses oscillate
in opposite directions. Applying angular velocity to the two-mass system causes them
to displace in opposite directions. This displacement is measured in a capacitance
change between them. Diagram from [Solid State Technology, 2010].

Figure 3: Opal monitors on hands.
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2.1.4 The APDM Software Development Kit

The APDM access point is read utilizing a set of library functions in

MATLAB in a dedicated SDK. This includes functions for reading the data

buffers in the access point per monitor or for all monitors at once, clearing the

buffers, setting parameters such as sample rate, streaming configuration modes

and data synchronization. The SDK can be used in Matlab or C++. For detailed

information on the SDK and its functions see [APDM, 2011] and [APDM, 2012b]

2.2 Motion Analysis and Gesture Recognition
2.2.1 Motion Capture Data

Motion capture (AKA mocap) and motion analysis algorithms have been

of deep interest in the fields of computer science and specifically computer

animation for military, sports and entertainment applications for over two

decades. A majority of the development in this field is image-processing-based

and is engaged in detecting human activities in video streams. The most common

technique of collecting motion capture [Müller, 2007] is with the use of several

dozen (40–50) retro-active optical markers attached to a subject’s suit and a set

of 6–12 cameras detecting their location at up to 240 frames per second. Each

camera generates a 2D data stream of the marker locations. By knowing the

location and orientation of the different cameras, alignment algorithms can

collect the multiple sets of 2D data and reconstruct the 3D image of the motion

that was tracked. The data set created by such a system can be either used

immediately for animation purposes or referred to further processing such as

2it is a vector cross product of the two.
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detecting gait deviations and other movements for physical therapy. In some

applications, the marker data must be converted to a skeletal kinematic chain by

using fitting algorithms. This is useful for robustness and enables using different

sensor configurations, but it is limited by the skeletal model’s accuracy in its

approximation of the human body that does not always account for possible

variances.

One way or another, most mocap systems produce some kind of kinematic

chain that consists of body segments connected by joints. For a proper

mathematical description of mocap data, we let J denote a set of joints (such as

{left ankle, right knee} ). Then we define the motion capture data stream as a set

of frames (also called poses). Each pose can be described as a matrix

P ∈ R3×|J | (1)

where |J | is the number of joints. Thus, the jth column of P is denoted P j and

is in effect the 3D coordinates of that joint in that frame. So, the complete data

stream can be described by

D : [1 : T ]→ P ⊂ R3×|J | (2)

Now T is the number of poses and P is the set of poses. A subsequence of frames

is also referred to as a motion clip and the curve described by a single body joint

is referred to as 3D trajectory.
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2.2.2 Similarity Measures

While observing mocap data, probably the most fundamental element is

finding suitable similarity measures that can be calculated by an algorithm and

used to compare two or more motion clips. Now, the definition of similarity of

course varies per application according to the requirements on the performance of

the system. For example if the system needs to detect a state of running versus

walking but disregard the subtleties of gait then we shall define all types of

walking as similar as opposed to running. However, if the system is required to

detect an emotional intention in motion such as aggressive or shy, then it would

have to distinguish between different types of walking but not necessarily between

running and walking if they were to fall under the same category (for example,

vigorous walking and running would both fall under the aggressive category).

A good general rule for defining similarity is to regard two motions as

similar if and only if they can be projected to have the same representation via a

global transformation. The simplest example of a similarity such as this is a body

performing the same motion at two different locations relative to the center of a

room. By projecting both motions to an axis system centered on the body itself,

the dissimilarity is eliminated and the motions can be regarded as similar.

However, this measure could also be extended to any global rotation about an

axis, or, in the case where size and speed are not of interest, (for example in

detecting an element in sign language), the transformation could include scaling

in time and space, making the similarity measure spatially and temporally
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invariant.

In the scope of this project, I intend to detect emotions and intended

expressions in piano-playing motion. In mocap nomenclature, this falls under the

category of motion style or motion content. Various techniques such as Fourier

Expansion, Principle Component Analysis (PCA) and Hidden Markov Models

are employed in order to address the complex task of analyzing and synthesizing

motion styles. For a comprehensive overview of how motion content and style are

treated in literature see [Müller, 2007].

2.3 Bayes Decision Theory

Bayes decision theory is one of the most efficient and straightforward

methods in pattern classification. It is a stochastic approach that assumes that

the decision problem can be solved based on probabilistic considerations

[Duda et al., 1995a]. A Bayes classifier relies on the fundamental Bayes Theorem

from probability theory dating back to Reverend Bayes himself. The theorem,

[Bayes and Price, 1763] determines the probability of occurrence of event ωj

given the fact that another event x has occurred. This rule is an inverse version

of the conditional probability rule and is depicted in Equation 3.

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(3)

Here, the lower case p is the probability density function and the upper case P is

the probability mass function. Notice that the denominator in equation 3 does not

depend on ωj and is actually the sum of all density functions weighted by their



16

probabilities and is a constant scaling factor. Therefore, because we will only be

comparing and not interested in evaluating the probabilities, in practice we can

ignore the denominator and use the numerator classify the event ωj. In order to

further understand how we can be apply the Bayes rule to make decisions and

predict future events, we can express it in informally in English as in equation 4:

posterior =
likelihood× prior

evidence
(4)

So, by measuring the value of x, knowing the probability density of p(x|ωj) and

knowing the prior probability P (ωj) we can evaluate the posterior probability

P (ωj|x), which is the probability of the occurrence of ωj given that the value x

has been measured.

Now, let us assume a uniform distribution of the class state ωj , i.e.

without prior knowledge it could be any state at equal probability 3. Then, all we

need to do is get a good approximation of the likelihood p(x|ωj). One way to do

this is to assume a distribution function for x (for example a Gaussian

distribution), and then estimate its parameters by performing measurements of x

in different ωj conditions (i.e. for all j) [Duda et al., 1995b]. These training

measurements will give us estimations of the mean and standard deviation of our

variable and that is all we need in order to calculate the Gaussian probability

density function for any x. And since we already assumed that P (ωj) is constant,

this Gaussian function will give us the likelihood of event ωj occurring given the

3More knowledge however, could improve our approximation, and I will discuss this in later
chapters.
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value of x. Now, by choosing the event with the highest likelihood, we can

classify which is the most likely event ωj.

Moreover, by comparing the likelihood of the different events at a given x

we can calculate the probability error which is, in the case of two categories,

equal to the probability of the category not chosen. Thus, by selecting the

category with the higher probability, we de facto minimize the error. Therefore,

our final decision and error for the two-category case with equal probabilities can

be given by

Given x : decide ω1 if P (x|ω1) > P (x|ω2); otherwise decide ω2 (5)

and

P (error|x) = min[P (ω1|x), P (ω2|x)], (6)

I will review the Naive Bayes Classifier in more detail in the proposed system

section including a generalization for the mutlivariate d dimensional feature space

and N categories. For a comprehensive mathematical description of Bayesian

theory and see [Duda et al., 1995a] and [Duda et al., 1995b].

2.4 Expressive Notation

Modern Western music notation has evolved for over 400 years and has

realized stages of varying levels of detail in terms of how descriptive composers

have conveyed their intentions in scores. The basic score representation describes

only the technical aspect of music, namely, which note is played at what time and

for how long. Thus, in their primal form, music scores depicted just this. The
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Baroque period was in fact characterized with very few expressive markings in

the notes and often employed tablature in the form of figured bass. However, as

musical instruments evolved and were perfected through the Classical and

Romantic periods, as seen in the evolution from the harpsichord to the fortepiano

and then on to the piano [Fletcher and Rossing, 1998], the expressive bandwidth

of musicians expanded and along with it the expressive markings on piano score

sheets. These markings incorporated various forms and will be discussed to an

extent in this introduction. For more details and an insightful reading experience

about the history and evolution of music notation see [Read, 1979a].

2.4.1 Dynamic Markings

Dynamic markings were introduced in sheet music at the beginning of the

seventeenth century. The first indications were the Italian words piano (soft) and

forte (loud). Further on, with the development of symphonic writing during the

eighteenth century in the works of Mozart and Haydn, the dynamic markings

evolved from the binary form to more of discrete degrees of loudness such as

mezzo forte and pianissimo. The romantic composers of the nineteenth century

(such as Wagner, Tchaikovsky and Mahler) followed by the avant-garde twentieth

century composers (e.g. Berio and Stockhausen) with their demand for extreme

subtlety ultimately transformed the markings to a practically continuous

spectrum of dynamics. This leaves us with a very wide range from

fortissississimo (ffff) (used by Tchaikovsky in the 1812 Overture) all the way

down to pianissississississimo (pppppp) (used by Tchaikovsky in the Pathetique
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Symphony).

In addition to the above absolute and somewhat obscure scale, the more

commonly used and comprehensible dynamic markings are the relative markings

crescendo and diminuendo which direct a gradual increase or decrease in

loudness. When a relatively short increase or decrease is required (over just a few

notes), the word markings are often replaced by the dynamic symbols > and <.

These symbols are often accompanied by descriptors molto (much) and poco

(little).

More specifically, due to its unique design, piano notations are even more

complex and are often combined in intriguingly sophisticated ways such as the

sign fp on a single note. This marking is a direction to attack with forte and

then an immediate piano. This type of marking appears in various forms such as

ffpp; ffmp; mfp; and fppp. Finally, accent terms are also often merged in with

dynamic notation, forming marking such as fzp which means forzando followed

by piano, or sfmp which means sforzando followed by mezzo piano, all variations

of the fp sign. See figure 4 for an example on the use of combined dynamic

markings. For more details, see [Read, 1979b]

2.4.2 Articulation

A second fundamental variant that makes music more than just a

mechanical stream of sounds are the patterns of accents on which the musical

expression is conveyed. An accent is an exaggerated stress upon any beat or

portion of a beat. Even without extra markings, all Western music has an innate
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Figure 4: First measures of Beethoven Sonata No. 8. Pathetique . Emphasizing
the composers extended use of combined dynamic markings to direct the performer on
his precise expressive intention.

pattern of accent or stress that is emphasized by the meter of the piece which is

set up by the bar lines. Thus, the initial beat of any measure receives an accent,

regardless of the time signature. In order to direct an accent in a place other

than this, a composer uses the accent mark (>) below or above the note opposite

to where the stem is.

Accent markings are divided into two categories: percussive attack and

pressure attack. Percussive accents are typically used for higher dynamic levels

(mf and louder) while pressure accents are used with lower levels of dynamics

(mp and softer). This is comes from pragmatic reasons that accenting a note

with a sharp percussive attack will naturally create a loud dynamic level whereas

accenting while keeping a low dynamic level will produce a pressured accent with

a soft percussive attack. The percussive accents are marked either by > or by a

wedge ∧. The wedge typically directs a forceful accent and is used with only high

dynamic levels (f and up). The pressure accents are usually marked by > or -.
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The accent in this case becomes not a sharp attack but more of a sudden leaning

on the note.

It is important to differentiate between the staccato and accents. The

staccato (marked by a ·) does not necessarily mean an accent on the note (in

keyboard performance) but merely that the duration is shorter than the actual

stem definition of the note. Thus, in fact the staccato is actually equivalent to a

short note and a rest before the next note. In order to generate a short and

accented note, the staccato can be combined with the accent.

If accents are intended to emphasize and prominent individual notes, slurs

are designed to do the opposite, which is to act in grouping and merging of notes.

The actual use of slurs has transformed over the years and varies between

instrumental and vocal notation; however, it ultimately functions in guiding the

performer to treat a note-sequence as a unified melodic idea. Much of this

unifying is emotional and visual and instructs that the notes beneath the slur to

be played in legato, smoothly connected and without breaks between them.

Figure 5: Excerpt from Schubert Impromptu 142, D 935. Demonstrating the
use of a combination of accents and slurs to group and emphasize individual notes.

Slurs and accents are sometimes combined in a somewhat paradoxical

appearance. Nevertheless, this has been used in music notation since Mozart’s

piano sonatas. The combination suggests that a sequence of notes should be



22

played in a legato-staccato fashion, thus, stressing each note but also merging

them and somehow emphasizing that they are a group. For an example see figure

5. The result of performing such accentuation is more perceptual than physical

and therefore it will be quite interesting to see how much of it can be detected

with inertial sensors. For more details on accents and slurs see [Read, 1979c].

2.5 Expression and Communication of Emotion in Music Performance

The emotional aspect of music has been studied for over a century and

has been approached by researchers in the fields of music psychology, philosophy,

musicology, music pedagogy, and music performance. In this section, I will

attempt to review and summarize only that research that I intend to employ or

observations that seem relevant to me in the context of this dissertation. Namely,

the research that involves the understanding of communication of emotions in

music performance and specifically that which relates to human motion. For a

comprehensive review, see [Juslin and Timmers, 2010],

[Gabrielsson and Lindström, 2010], and [Davies, 2010].

2.5.1 Philosophical Problems and Theories of Emotions

Before commencing this short expedition, I feel it is appropriate to point

out some philosophical difficulties in the topic itself. The first obstacle that arises

immediately when discussing emotions in music is the following: When we say

that something expresses an emotion, we mean that it reflects a state that it

feels. For example, a person’s tears could express their sadness if they are

actually feeling it. So how could music, being merely organized sound and by
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definition a non-sentient object, express emotion? There are, of course, several

answers to this question, but there are also various consequent questions that

would follow [Davies, 2010].

Addressing these problems requires a basic understanding of theories

regarding the phenomenon of emotions. The core debates regarding emotions in

the world of philosophy and psychology have historically been over the extent of

emotions being bodily sensations, a notion dating as far back as Descartes’s

awareness of perturbations of animal spirits [Descartes, 1649], or rather cognitive

realizations as developed in the cognitive theory in the 20th century.

The first attempts to discuss emotions in the science of the modern age

were through a biological-physiological perspective. In Darwin’s “The Expression

of the Emotions in Man and Animals” [Darwin, 1874], he discussed the role of

emotions in human communication for the purpose of survival. This was then

followed later by the James-Lange Theory of Emotions [James, 1884] and

[Lange, 1885]. These theorists maintain that emotions are perceptual experiences

corresponding to triggered activities in the autonomic nervous system, and that

they are caused only by physiological changes in the body. In the words of

William James: “we feel sad because we cry, angry because we strike, afraid

because we tremble, and neither we cry, strike, nor tremble because we are angry,

or fearful, as the case may be”. These theories, and modified versions of them,

are still held today to an extent, especially in the fields of neuroscience and in

biofeedback research. Since the current research is of proximity to the latter, I
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shall refer to it in later sections.

The developments in the fields of biology and psychology during the 20th

century lead to a more complex interpretation described in the Cannon-Bard

Theory [Cannon, 1929]. It was claimed and even proven to an extent that

although physiological responses could cause some of the experienced emotions

such as fear through the fight-or-flight mechanism, they could not account for the

variety and the rapidness in which emotions are perceived. Moreover,

[Bard, 1928] proved that all physiological sensations including motor information

had to pass through the thalamus before being processed and interpreted to

consequential actions. This makes it impossible for certain sensations to trigger

direct physiological responses and then emotions without first being consciously

perceived. It was therefore established that cognition generates both the

physiological and perceptual manifestations of at least some of the emotions.

Another research that is important to mention here is that which initiated

the Two-factor Theory of Emotion [Schachter and Singer, 1962]. This observed

the emotional state of subjects that were injected with epinephrine. The

epinephrine typically causes a state of arousal and bodily sensations. It was

observed that in the presence of emotion evoking cues, (for example, from an

actor in the room), the subjects who were unaware of the expected effects of

epinephrine, attributed the physiological responses to emotions, while the

subjects who were informed about the effect did not, and some of them did not

even display any of the typical physiological manifestations of emotions (such as
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tremors or increased pulse). This research led to an understanding that although

physiological changes play a role in experiencing emotions, the role is to allow a

cognitive appraisal to an event, but the interpretation of this event is what

defines the subjective emotional experience. Thus, being at a high state of

arousal could lead a subject to euphoria just as well as anger, depending on the

cues that are available. This research was then followed by

[Erdmann and Janke, 1978] and criticized in [Marshall and Zimbardo, 1979].

More topics discussed and specifically regarding emotions experienced in

music, are if the existence of emotions requires an external object (real or

imaginary) to which they are directed. Moreover, a distinction is made between

emotions and moods that I will not go into in this framework. It is however,

important to summarize that emotions in and out of the musical context are

generally observed as a phenomenon that is more cognitive than mere

physiological reactions such as increased heartbeat and tremors, but is not

completely and solely a cognitive process. It is also important at this point, to

note that even though we are addressing emotions in the musical context, we are

still constrained to assign terms such as sad and happy with their usual

meanings, otherwise we cannot refer to them as emotions. Therefore, when we

describe an emotion expressed in music in terms of regular emotions we must also

account for how it relates to its normal application. This constraint is actually

quite helpful, because it rules out some approaches to the topic.

It follows that music’s expressiveness can no longer be reduced to simple
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technical compositional elements such as a minor chords, since the term minor

key cannot not equate to sounds sad until it is explained how the music’s

modality can make true the manifestation of something actually pertaining to

sadness and misfortune. Another approach that is ruled out is that which refers

to music as a metaphor of expressive nature. This too is not inductive to claim

anymore because a metaphor by definition is a linguistic device based on

semantic relations. But music in its core cannot contain these semantics unless

they are defined that way (i.e. the term minor key is not defined as sad even if it

can trigger that emotion). Otherwise, it is like suggesting that music is a

metaphor by metaphor, which does not really lead anywhere. The third approach

that cannot hold is the theory of sui generis, which claims that music’s

expressiveness is of its own kind. This is now clearly not offering a theory

because based on this we cannot refer to the expressions in music as emotions.

Of course, music is unique in its expressiveness, which is only to be expected due

to its manifestation in a different medium than other communications, but in

order to analyze this phenomenon one must address the existence of any

equivalence to other biological expressiveness [Davies, 2010].

Music as a Symbol

There are however still various possible explanations to our problem. The

first one is suggesting that music operates as a symbol [Cooke, 1959]. Thus, it

can refer to an emotion and characterize it similar to the way a language does.

For this to be possible, music must encompass a sort of vocabulary for expressing
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emotions. Although there have been attempts to describe such as system

[Jackendoff and Lerdahl, 1983] and it is clear that music is highly formed and

organized, it still does not consist of the basic elements required in a meaningful

language such as predications and propositional logic. Another symbolic

explanation is that music refers to emotions by association due to linking of

phrases and sounds to certain texts or ceremonies such as relating the organ to

religion and spirituality and the trumpet to majesty and war. This might explain

some referral to emotions but still cannot account for how music characterizes

emotions. There are more semiotic theories regarding music’s expressive nature,

but they all fail in the same way because they lack a proper account for the

direct and immediate manner that music affects us. Moreover, [Raffman, 1991]

claims that whatever the meaning conveyed in music turns out to be, it will not

be the garden-variety of emotions. She supports this with the claim that most

traditional musical theories and grammars do not consist of elements attempting

to convey emotions, in contrast with linguistics and other semantic languages

that are designed to portray the meanings they offer.

Another topic addressed in length, since we have defined that emotion

must exist in a sentient being, is who is therefore experiencing the emotions?

There are of course three main candidates: the composer, the performer and the

listener, and there are theories assigning the emotions to each of these and

research supporting and refuting these claims. There is also an interesting theory

describing an imagined persona to which we relate the emotions expressed in
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music [Walton, 1988]. This theory is widely accepted but also has some

objections, again relating to the level of detail that instrumental music can

convey to be enough to imagine a story contrary to film or literature. For a full

review see [Davies, 2010].

The Contour Theory

This seems to be the most promising theory and it is fortunate because it

is highly consistent with the scope of this research. The Contour Theory,

[Kivy, 1980], [Kivy, 1989], [Davies, 1994] and also [Nussbaum, 2007] does not

attempt to connect the expression in music to occurring emotions. Instead, it

suggests that certain patterns, shapes or movements are experienced as

expressive without manifesting actual emotions. It is observed that faces and gait

can appear happy or sad without actually feeling it or even intending to convey

it. Furthermore, even still images of a weeping willow seem to express an

emotion. The manner in which this is carried out according to the contour theory

is by secondary side effect to a primary emotion that it often accompanies. The

weeping willow looks like a person bent over in sorrow. In most cases, this

appeals to us as a person actually expressing and feeling sorrow and we are wired

to identify to this sorrow because it serves an evolutionary purpose, as I explain

in later sections.

The contour theory notion with regard to music is that it can present

emotion characteristics in a similar fashion. These manifest in the dynamic

structures of music, which resemble those of human behavior and movement that
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are related to emotions. This is different from the previous theories, since it does

not suggest that music refers or symbolizes something beyond itself. The ability

to be expressive is in the features of the music itself because they resemble the

features of human motion that in many cases reflect emotion!

The emotion expressed in music is not immediate like the picture of the

weeping willow, because music is a temporal phenomenon, and its expressiveness

unfolds with the piece. This however, makes it more powerful in expressing

emotions because they too, have a temporal aspect to them. Emotions are

continuous, and they evolve in time. It is therefore, this innate sensitivity that

composers and performers have mastered over the years to control (or one might

say, exploit and manipulate), but the expressive nature inherently lies in our

ability to animate music characteristics as motion.4

2.5.2 Hevner’s Adjective Circle

In order to have a solid working definition to the emotions we wish to

observe, we must look at some emotion categories. An inclusive and thorough

work that laid the ground for further understanding and is still considered a sort

of ground truth when it comes to musical emotions is Kate Hevner’s Adjective

Circle [Hevner, 1936]. It classifies the emotions portrayed in music into eight

categories located on a circle where the distance between two categories on the

circle implies their proximity in terms of the emotional meaning. Hence, for

example, the categories merry and mournful are on opposite sides of the circle

4Davies addresses two more problems, which I will not review in this context. For more
thoughts and analyses such as these, see [Davies, 2010].
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whereas dreamy and serene are adjacent categories. See figure 6. The circle was

Figure 6: Hevner’s Adjective Circle. The distance between categories on the circle
implies their proximity in the context of their emotional meaning.

later updated by Schubert [Schubert, 2003] to have more categories, and some of

the terms were adjusted to fit more modern English. Another common

measurement of emotions is using Russell’s Circumplex Model of Affect where the

musical emotion is mapped in two-dimensional space of valence vs. arousal

[Russell, 2003]. However, the emotion categories in this model were not tailored

for musical emotions, and some are difficult to convey in music (such as sleepy or

disgust). Moreover, it is possible to map Hevner’s circle to a dimensional model

similar to Russell’s [Gabrielsson and Lindström, 2010]. In this study, I will utilize

this implicit dimensionality by addressing adjacent categories as close in the
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emotional context.

2.5.3 The GERMS Model

Since the release of the seminal work Emotion and Meaning in Music

[Meyer, 1956], the study of music and emotion expanded dramatically. This

brought with it many advances in our understanding of how and why music

moves us the way it does as well methods for measuring and evaluating the

emotions aroused by music in listeners and psychological models of the

techniques used by composers to stimulate these emotions. However, most of the

research over the last century focused on the structure and compositional aspects

of music that allow it to convey emotions. More recently and with the rapid

development of computational technology that allowed a musical score to be

accurately performed by a computer, an understanding has evolved that musical

expression is largely in the hands of the performer and in many ways more than

the composer or arranger. A computer performing a dictated score in a precise

manner will still sound mechanical and unnatural such that it would, in many

cases, fail to trigger the musical emotions to the same extent as an expert

performer will. This implies that the performer has a crucial role in shaping the

musical experience in listeners [Widmer and Goebl, 2004]. The many other

manifestations of music are mere coding or other technical representations. This

brings us back to the imperative comprehension that “music exists only in the

moment of its performance”. Therefore, to fully understand the phenomenon of

music experience we must capture and analyze the performance and not only the
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score or other representations.

The current opinion regarding music expression in performance is that is a

multi-dimensional phenomenon that can be decomposed into subcomponents

each influencing the expressive character of the performance. It is very difficult

to pinpoint the exact nature of each component and its contribution and their

reciprocal relations. Juslin suggests a model known as the GERMS model,

[Juslin, 2003] in which he describes expressive performance as deriving from five

main sources:

• Generative rules (G) are variations in timing, dynamics, and articulations

that allow a performer to highlight, accentuate or group notes and

harmonic structures in a musically pleasing manner.

• Emotional expression (E) is the manipulation of large-scale performance

features such as tempo or loudness that the performer uses in order to

communicate emotions to listeners.

• Random fluctuations (R) reflect human motor precision limitations, even

expert performers attempting to play perfectly even intervals will present

minor fluctuations in timing [Gilden, 2001].

• Motion principles (M). This is the notion that tempo and dynamic changes

should follow natural patterns of human movement and locomotion to

convey a musically pleasing shape [Shove and Repp, 1995]

• Stylistic unexpectedness (S) is the intentional deviation from stylistic
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expectation of the performance. The performer uses this to surprise the

audience, thus adding tension and unpredictability [Meyer, 1956]

These components are utilized by the performer and merged together to create

an expressive and meaningful performance. It is interesting to note that each

component originates from a different source, is characterized by different

features and is even processed in a different region of the brain [Juslin, 2003].

Figure 7 describes these observations.

Figure 7: Five components of performance expression according to the
GERMS model. The components are analyzed by origin, features, processing brain
region, perceptual effects, knowledge dependence, aesthetics contribution, and volun-
tary controllability. From [Juslin, 2003].

2.5.4 The Functionalist Perspective

As mentioned above, the fact that music can communicate emotions from

a performer to an audience is a complex psychological and anthropological

phenomenon and explaining the process that enables this is problematic to say
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the least. There have not been many models addressing this issue, nevertheless

[Juslin, 1997] suggested a framework inspired by Herbert Spencer

[Spencer, 1875]. The reason we call this a functionalist approach is that it

assumes the same ideas explaining other non-verbal communications and their

function in human survival.

The functionalist approach attributes the expression of emotions in music

to two factors. The first factor is evidence of the existence of innate programs for

vocal expression of basic emotions. According to this, humans possess an

expressive code that originates from involuntary physiological changes that are

associated with emotional reactions. These reactions strongly influence different

aspects of voice production, see [Juslin and Scherer, 2005]. The notion assumes

that the decoding and encoding of emotions is designed to account for a discrete

and limited number of emotion categories. The reason for this is the requirement

for accuracy in decoding the correct emotion on the expense of high resolution of

emotions. The ability to quickly and correctly interpret an emotional expression

is a strong advantage for survival because only then can it act as a guideline for

action in essential life problems such as danger (fear), competition (anger), loss

(sadness), cooperation (happiness) and caregiving (love). It is also reasonable to

assume that these vocal expressions of emotion were later used in ancient

ceremonies of festivals, funerals, wars, and caregiving and reflected happiness,

sadness, anger, and love and through this music obtained its expressive nature.

This realization has a significant implication on music performance since it
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indicates that these basic emotions will be privileged over other intended

emotions in our perception of music due to our biological preparedness for their

effective communication. In other words, we are evolutionarily programmed to be

very sensitive in detecting these emotions and are constantly searching for their

patterns.

The second factor that characterizes music’s emotional expression is

related to social learning. This begins in very early childhood and some research

suggests even before birth [Parncutt, 2006]. But definitely a process of imprinting

happens when mothers talk to their infants while trying to calm them by

reducing the tempo and intensity of speech or if they want to scold or warn them

using a sharp staccato and louder voice. Later on, expressive skills of actual

music performance will also develop but often the performers adapt the basic

expressive codes to their performing style [Timmers, 2007]. For a list of

consistencies endorsing the functionalist approach of the existence of an innate

code for vocal expression of basic emotions, see [Juslin and Timmers, 2010].

Juslin also suggested a model for capturing these functional relationships of

decoding and encoding emotions [Juslin, 2000]. This is called the Lens Model and

I will review it in the previous work section.

2.5.5 The Standard Paradigm

It is important to note here that when it comes to the exploration of

musical performance, the literature dates back as far as the 18th century. Much

of the first work during these periods was done by the performers and composers
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themselves, stating their personal view on musical expression and even detailed

description on how to enhance performance. For example, see [Bach, 1778] who

wrote the Essay on the true art of playing keyboard instruments. This type of

literature describes techniques for expression such as tempo, dynamics and

ornamentation and structural composition techniques to enhance musical

expression. However, all of this information concludes to personal opinions of

musical experts. It is only in the past few decades that scientific research

methods have been developed to actually measure and analyze the

music-psychological effects of performance.

The most well developed line of research is based on the Standard

Paradigm. Some claim that this research method originated with Seashore and

his famous quote that “deviation from the exact is the medium for the creation of

the beautiful, for the conveying of emotion” [Seashore and Metfessel, 1925].

Later on he suggested a paradigm used on actors who were required to express

various emotions in speech. Following that, the speech was analyzed acoustically

to understand the coding of these emotions. Seashore claimed this could be done

for music back in the 1940s but this was not attempted until the early 90s

[Juslin and Timmers, 2010].

In the Standard Paradigm, performers are requested to play melodies

while attempting to express certain emotions selected by the researcher. The

performances are recorded and later played to listeners in order to assess if they

can recognize the intended emotion. Typically, the performances are presented to
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the listeners in random order. The judgments are measured in terms of forced

choice, adjective ratings, free labeling, or continuous response. The acoustical

recording of the performance is then analyzed to discover the cues used by the

performer to convey the emotions.

A well accepted technique is to ask the performer play the same melody in

different expressions in order to factor out the compositional effect of the melody

in conveying the expression and focus on the performance itself. However, due to

the interaction of the melody with the performer and the performance, it is not

always reasonable to request a performer to play with a certain expression that

does not fit the melody. In addition, because this research is mainly interested in

the detection of emotion by a computer and not by a human listener, and

because the music itself will not be analyzed but rather the motion, the effect of

different melodies is less problematic (since no one and nothing is listening to the

melody). In this research, I will therefore, employ both techniques. The

performers will play the same melodies in different emotions but also play

different melodies that match typical emotions in order assure that they can

completely engage in the emotion they are expressing.
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Previous Work

3.1 Computational and Perceptual Models

In this section, I will review some the computational and perceptual

models related to expression of emotions in performance. I have used a

combination of the knowledge gained in these models in the final design of my

system.

3.1.1 The Todd Model

Presented by [Todd, 1985], this model is one of the first to attempt to

design a timing structure in expressive computer performance. The model was

entirely based on empirical measurement of performances and model of tonal

music generation. Later on the model was modified to reflect relationships

between dynamics and tempo [Todd, 1992] and is most well-known for the quote

“the faster, the louder, the slower the softer”.

The main assumption in this model is based on the observation that a

performer has control only over two characteristics of the music and those are

duration and intensity. The pitch and musical structure are controlled by the

composer, and the timbre is determined by the physics of the instrument at

hand. Nevertheless, the performer manages to create an expressive performance

with these two variables. The model therefore assumes that there are direct links

between tempo variations (rubato) and dynamics variations to expressive

performance and that these links can be drawn out by simple rules. The rules
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designed are based on the Genrative Theory by [Jackendoff and Lerdahl, 1983].

This theory describes points of stability in the structure of music, and it is on

these points that the performer leans in order to emphasize the expressive

musical structure to the listener. These points are in many cases the edges of

musical groupings, where it is observed that the tempo significance is minimal.

This is very similar to the phrase arch rule in the KTH rule system described

ahead. The rules of this model are rather simple. The tempo is related to

Figure 8: Todd simulation results. Comparison of intensity in computer generated
simulation to two human performances. The average intensity in each beat is plotted
vs. the beat number (the beats are constant time frames measuring temporal metrical
distances from the beginning of the piece). The bold line is the computer-generated
intensity and the dotted lines are the human performances. Figure from [Todd, 1992].

dynamics in a power relationship, i.e. intensity is proportional to the squared

tempo. The tempo on the other hand varies in a rubato according to the

phrasing and hierarchical grouping of the piece. Thus, the tempo is minimal at

the edges of arches (beginnings and endings of groups) while accelerating toward

the center and retarding toward the end. The dynamics, in turn, follow the
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tempo in the square rule mentioned above. The rules were implemented in the

LISP language to produce artificially generated expressive performances of

Haydn and Mozart and compared it to human generated performances. The

comparison can be seen in figure 8.

It is also interesting to note that the model analogizes tempo changes and

dynamics in musical expression to that of physical movement and extends this to

concepts of energy and mass. There is even a suggestion that this is more than

an analogy and that it originates from a neuro-physiological source in the inner

ear and the vestibular cortex. See [Todd, 1992] for more details.

Todd’s model was later on evaluated by other researchers (see

[Widmer and Goebl, 2004] for a summary of this) some of whom showed it was

not successful in generating a performance similar to pianists. Regardless, the

model was used by some to understand what cannot be explained by these simple

rules and to assess some idiosyncrasies in human performance.

3.1.2 The KTH Rule System

In contrast to the empirical nature of the Todd model, the KTH rule

system is based on the concept of analysis by synthesis. Hence, the rules are first

designed based on theoretical framework, then the music is synthesized with

them, then it is evaluated by expert listeners and the rules are adjusted

accordingly. The system was initially designed by Gabrielson [Gabrielsson, 1985]

and then refined and extended by Friberg and Bresin [Friberg et al., 2006]. It

consists of a greater set of rules compared to the Todd model, all intended to
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transform a stale technical stream of notes into an expressive musical

performance. The rules depict instructions to alter timing, dynamic levels and

articulations of specific events in the piece. The top-level rule scheme is a block

of performance rules and its input is the nominal score and k values. These k

values set the level of expression required for each rule. The rules are grouped in

eight categories and are described in Figure 9. Each category consists of a set

(one or more) rules that are designed to alter the corresponding aspect of the

perceived performance.

It is also interesting to see how these rules fall into the categories of the

GERMS model described in the background section [Juslin, 2003]. For example,

the phrasing rule probably corresponds to the Generative rules component,

whereas the Performance noise rule falls under the Random fluctuations category.

In order to generate a specific emotion or expression in a performance, a

combination of rules must be applied with appropriate k values. There are no

“correct” k values. It is entirely dependent on the requirement of the composer

or arranger as to the level of expressivity and accentuation through the piece.

For a detailed description of each of the groups see [Friberg et al., 2006]. There

has however, been some research done on how to generate certain emotional

categories using the rule set. Figure 10 depicts the qualitative ranges on some of

the rules to create the emotions Happy, Sad, Angry, and Tender.
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Figure 9: Summary of KTH rule system. The rules are grouped into eight cate-
gories. Musical expression can be altered by varying combinations of rules. Table from
[Friberg et al., 2006].

Figure 10: Portraying emotions with the KTH rules. Qualitative changes of over-
all performance and rule quantities for portraying four different emotional expressions.
Table from [Friberg et al., 2006].
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3.1.3 The Lens Model

In order capture the functional relationship and the manner in which

emotion is encoded and decoded in music, [Juslin, 2000] employs a model

originally designed for visual perception and cognitive studies based on

Brunswik’s Lens Model [Brunswik, 1956]. This model must account for some

intriguing and somewhat confusing findings related to emotional communication

in music. For example, how it is that that different performers using dissimilar

instruments manage to successfully communicate emotions despite the fact that

the sounds they produce vary drastically and thus offer diverse perceptual sonic

cues? The technique suggested is called the Modified Lens Model and is shown in

figure 11. On the left side of the lens, the model depicts how a performer encodes

Figure 11: Modified Lens Model of communication of emotions in musical
performance. Figure from [Juslin, 2000].

emotions in performance by manipulating a set of cues (e.g. variations in

dynamics, tempo, and timbre). On the other side of the lens, the listener decodes
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the expressed emotion by identifying the cues and classifying the emotion they

convey. It is important to note that the employment and characteristics of the

cues in the performer and listener are probabilistic and redundant. They are

probabilistic in that a specific emotion will be expressed by the same cues only to

the extent that the performer is consistent in using those cues and that the

sampled set of cues is a sufficient representation of the performer’s expressivity

that can encapsulate this distribution. They are redundant in that many times

more cues are used to express an emotion than necessary in order to guarantee

that the message is properly conveyed and not misinterpreted. This redundancy

is crucial because of the probabilistic nature of this nonverbal communication.

For example a fast tempo will not always represent happiness, since it could also

in some cases occur in anger. The way to distinguish between them is by adding

more cues.

Thus, performers and listeners combine several cues together in order to

successfully communicate emotions. The more cues, the more reliable the

communication. It is interesting to note the analogy of this redundancy to that

of the sounds of musical instruments. For example, a strong attack on the piano

will produce a loud sound but also a sharper timber. I mentioned this in the

difference of accent notations between the case of forte and piano where the

former implies a percussive accent and the latter a pressure accent. This

correlation and redundancy is shown by Juslin [Juslin, 2000] by calculating a

multiple regression analysis between both sides of the lens.
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The lens model is also described by some numeral factors that help

further understand the nature of this communication. These factors are:

• Achievement (ra) is the correlation between the performer’s intention and

the listener perceived emotion. This is an overall measure of the success of

the communication.

• Cue weight (βi) is the significance of cue i in the encoding on the

performer’s side or decoding on the listener’s side relative to the other cues.

In other words, these are the “coefficients” used by the performer or

listener in the communication. It is by this weighted combination that

these cues are utilized and interpreted.

• Matching (G) is the similarity between the use of cues on the performer’s

side and the listener’s side. It is calculated by correlating the predicted

values of the performer’s regression model to that of the listener’s

regression model. This is essentially an upper limit to the Achievement rate

since if the performer and the listeners are not using the same cues, the

communication is bound to fail.

• Consistency (Re, Rs) is the degree of consistency in the performer’s and

listener’s use of the cues. This is calculated by a multiple correlation of the

performer’s intention or listener’s perception and cues. This too, sets an

upper limit to the Achievement rate, since an inconsistent behavior on

either of the side is likely to be difficult to interpret on the other side unless
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by extreme chance the inconsistency is similar on both sides and this factor

is dealt with later.

The Lens Model Equation

By employing regression models on performers and listeners, Juslin

[Juslin, 2000] showed a mathematical relationship between intended and

perceived emotions via the Lens Model Equation (LME). This equation was

originally designed by Hursch and Hammond [Hursch et al., 1964] for describing

cognitive judgment. The studies attempt to model the cognitive system as a

statistical decision making process. The LME is described in equation 7.

ra = GReRs + C
√

(1−R2
e)
√

(1−R2
s) (7)

The equation relates the factors of consistency and matching to the final

achievement in communicating emotions. The first component, also called the

linear component, is a simple multiplication of the matching factor by the

consistencies of the performer and the listener. If the communication is

unsuccessful we can look which one of these three variables is the most significant

in its influence on the result and then determine whether: (a) the performer and

listeners are using different codes (low G value), (b) the performer is applying the

code inconsistently (low Rs value) or (c) the listener is applying the code

inconsistently (low Re value). As mentioned above, these three factors set the

upper limit of achievement.

The second component, also call the unmodelled component, is intended
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to correct for the unsystematic and systematic variance that cannot be accounted

for in the linear component. This could be the result of inconsistencies, order

effects, distractions, memory, omission of relevant cues, and configurationally cue

utilization. The (1−R2) factors are the residual variances of the regression

models and C is a factor that represents the correlation between these residuals.

A high C value could imply either a common reliance on acoustical cues that was

not accounted for in the model, a chance agreement in model errors, cue

interaction common to both models, or non linear cue functions common to both

models. It turns out however, that the unmodelled matching factor is small in

music performance [Juslin and Madison, 1999].

In this research, I will use the lens model to decide on the features to

calculate from the pianist motions to decode the emotions. I will then use the

Bayesian decision theory to model the cue utilization process that enables the

communication of emotions in music.

3.2 Real-Time Machine Learning Tools

In this section, I will review some of the existing platforms that allow the

use of real-time machine learning algorithms.

3.2.1 The Wekinator

In her doctoral thesis, [Fiebrink, 2011] researched the application of

supervised learning algorithms to music performance and composition and

implemented the Wekinator, a real-time interactive data mining environment
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based on the Weka1 software from the University of Waikato and the Chuck 2

environment developed at Princeton university.

The Wekinator is a software program that is designed to enable

machine-learning algorithms to be trained and employed in real time and with a

rather simple interface. It offers two main options to the user, either classification

of discrete categories using AdaBoost or K-nearest neighbors or continuous

output control using neural networks. The goal of this project was to allow end

users to design interactive applications for performance and composition of

computer music by employing supervised machine-learning algorithms.

It can handle various input sources such as a web cam, the tilt sensors in a

laptop and external inputs such as audio and joysticks. The user trains the

program based on selected features that are calculated on the input data and uses

this to control audio or video output. The software comes with sample projects

such as Max/MSP feature extraction and synthesis, Kinect and GameTrak.

The Wekinator, however, is not a comfortable environment for the

development of new applications or exploration of techniques that do not already

exist in it. The user has little control over the features and almost no information

on the algorithms that are employed. Hence, it is more of an interactive game for

playing with controllers and an introduction to machine learning rather than a

research and development environment. Therefore, I have chosen not to use it in

this project.

1http://www.cs.waikato.ac.nz/ml/weka/
2http://chuck.cs.princeton.edu/

http://www.cs.waikato.ac.nz/ml/weka/
http://chuck.cs.princeton.edu/
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3.2.2 EyesWeb and The Gesture Recognition Toolbox

The EyesWeb environment was developed by a team led by Antonio

Cammuri in the infoMus lab at the University of Genoa [Camurri et al., 2000]. It

is a visual programming, open software research platform similar to Simulink and

Max but dedicated to the design and development of real-time multimodal

systems and interfaces. It supports a large number of input systems including

audio, video, and motion sensors as well as various standards such as MIDI,

OSC, VST plugins and MATLAB.

A rather recent addition to EyesWeb is the machine-learning toolbox that

was designed by a team at the Queens University Belfast [Gillian et al., 2011a].

The toolbox features an exhaustive list of machine learning and pattern

recognition algorithms including Adaptive Näıve Bayes, Artificial Neural

Networks, Hidden Markov Models, Dynamic Time Warping, Fuzzy C Means, K

Means. K-Nearest Neighbor, and Support Vector Machines.

Each algorithm is designed as a set of blocks for data collection, training,

and predicting. The inputs to the collection blocks (called training tool) are the

data features their respective weight vector. This block merely collects the data

and stores it to a file upon user request. The training block (called train) loads

this file upon startup or user request and calculates a training model according to

the algorithm it implements. This model is also stored to a file. Finally, the

predict block loads the model upon startup or user request and classifies newly

received data based on the model.
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The simplicity of this design and its ease of use makes the gesture

recognition toolbox an extremely handy tool while trying to rapidly develop and

evaluate pattern-recognition algorithms. The fact that it works in real time

makes it even more efficient for research because an algorithm can be optimized

by modifying the various parameters while the data is streaming in and the

feedback is immediate. An example of a Näıve Bayes Classification layout is

shown in figure 12.

Figure 12: Näıve Bayes Classification in EyesWeb. Notice the three major blocks
marked in red: ANBC training tool, ANBC train, and ANBC Predict.

3.3 Previous Applications

In this section, I will describe some implementations and applicatios that

are similar or closely related to the current research.

3.3.1 The Fuzzy Analyzer

The Fuzzy analyzer is a system designed by Andres Friberg [Friberg, 2004]

that implements a real-time algorithm for analyzing emotional expression in
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music performance and body motion. It is mainly intended for artistic human

computer performance. The algorithm uses both acoustical information and

motion capture information from a camera to assess the emotional content of the

performance.

The audio input is analyzed for cues similar to those in the KTH system

such as tempo, sound level and articulation. This is done by calculating the RMS

after applying a Hanning window to the audio signal. Then two envelopes are

created by filtering this signal with a bank of cut offs of 40Hz and 1Hz. These

two filters extract single tones and phrases. The crossing of envelopes defines

tone onsets and offsets. On each tone, five cues are calculated: sound level (dB),

instant tempo (tones/second), articulation (relative pause duration), attack rate

(dB/ms), and high-frequency content (high/low energy). These cues were selected

based on multiple regression analysis results performed by [Juslin, 2000].

The motion signal is evaluated for a parameter called Quantity of Motion

(QoM) which is an evaluation of the total difference between frames, indicating a

change and hence motion. In addition, two other motion cues are calculated,

width peak to peak and height peak to peak. These reflect the extent of motion in

two dimensions of the video frame.

The second step in the algorithm is a calibration step to account for

variances in the instrument and performer. This is merely a normalization that

verifies that the mean of the cues is zero and the standard deviation is one.

The third and final step is mapping from cues to emotions. This is done
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via a Fuzzy Logic rules set based on data collected in previous research

[Juslin, 2000]. Fuzzy logic means that the discrete threshold decision process is

performed on continuous values of cues. Based on the data collected linking these

cues to emotions most of the continuous cues were assigned a value of high or low,

however in some cases, they were assigned three discrete levels: high, medium

and low. Then, a standard logic (truth table) process is applied to decide on a

classification. Figure 13 specifics the complete process on three audio cues only.

Figure 13: Fuzzy analyzer for estimating emotions. An audio input is analyzed
in terms of tempo, sound level and articulation. The resulting prediction of emotional
expression is output in terms of three functions ranging from zero to one. Figure from
[Friberg, 2004].

The system detected three categories of emotions: happiness, sadness, and

anger. It was demonstrated in a number of installations such as Ghost in the
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Cave and Expressiball. The system was not evaluated for validity because of

difficulties in establishing a ground truth and in simulating the motion in a

performance. However, the authors do suggest ways to evaluate the system in

future research. See [Friberg, 2004] for details.

3.3.2 Mapping Emotions to Colors in Musical Performance

This research, performed by [Bresin, 2005], explored the relationship

between colors and the perceived emotion in musical performance. The aim of

the research was to come up with a mapping of HSB (Hue Saturation Brightness)

coloring the different emotions aroused in music. This knowledge could help

design pedagogic feedback systems for music students by providing them with

live expressive evaluation of their performance. Subjects were presented with 12

music performances expressing different emotions and were asked to rate how

well each of a set of eight colors and their nuances corresponded with the

emotions perceived in those performances.

The emotion categories selected were: happiness, love, contentment, pride,

curiosity, indifference, sadness, fear, shame, anger, jealousy and disgust. It is not

clear why these emotions were selected since they do not reflect the emotions

expressed in musical research and the author does not explain this. Nine

musicians were asked to express these emotions in music by Haydn and Brahms

played on piano, guitar, and saxophone. Then these recordings were evaluated

through listening tests to find the best match for each emotion. The final set of

music excerpts were
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12 (emotions)× 3 (instruments)× 2 (melodies) = 72 (performances).

The colors presented were red, orange, yellow, green, cyan, blue, violet, and

magenta, their brightness and saturation variances (saturation and brightness set

to 1 or 0.5 respectively). Thus, 8× 3 = 24 total colors were used.

The subjects were presented with the music and the colors in randomized

order and asked to set a slider based on how well the colors were associated with

the music on a scale of 1 to 10. The results show some significant correlations

between colors and emotional intention in the music. A summary of the results

for the hue parameter are displayed in figure 14.

Figure 14: Mapping colors to emotions. Results for hue values that received the
highest mean rating for each emotional expression. Figure from [Bresin, 2005].

3.3.3 IMUs in Piano Teaching

Research in the field of music pedagogy has also examined the option of

tracking a pianist’s motion with IMUs. With the goal of enhancing piano

teaching systems, currently based mainly on MIDI data, [Hadjakos et al., 2008]
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explored the use of an accelerometer in a setup quite similar to what this

research suggests. They designed a prototype IMU with an accelerometer and a

gyroscope. They attached the sensor to three locations: the upper arm, the wrist

and the hand of the right arm only. The aim of the research was only to present

how piano playing patterns such as trills and scales appear in inertial

measurement data.

The research focused on examining the following patterns:

• Rotation patterns displaying supinaton and pronation (clockwise and

counterclockwise rotation of the right ulna), Tremoli and Trills (the rapid

repetition of two distant or adjacent notes) and scales.

• Jump patterns displaying vertical forearm motion and flexible or rigid arm.

Some of the interesting results are displayed in figure 15. Trills and Tremoli can

be played using only the fingers or using the forearm. Another variant of trills is

using the upper arm. All three techniques were clearly observed in the results.

Detecting these differences in performance could be useful for music information

retrieval because they are often employed in specific settings. For example,

finger-tremolo is generally used in soft gentle parts in contrast to forearm tremolo

that is used in louder, more dramatic parts.

The data from scales playing is also interesting, the high peaks correspond

to thumbs crossings, in which there is either a pronation or supination of the

forearm. This typically happens in groups of three and four notes (e.g. in the C



56

Figure 15: IMU Data in Piano Playing Patterns. The dots indicate the note
on events from the MIDI data. Playing patterns are clearly distinguishable such as
pronation and supination, finger, forearm, and upper arm tremolo, scales and jumps.
Figure from [Hadjakos et al., 2008].
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major scale). Nonetheless, most of the single notes are also observed in the

signal. Also, notice the negative drop at the end of the scale. This indicates a

supination on the little finger when the player finished the scale, which is a

typical expressive gesture pertaining to pianists.

Vertical forearm movement is often used by pianists to connect loud note

to a soft note in the case of a resolved dissonance. This is also a very basic

expressive gesture and is clearly observed in the data. Although none of this is

very surprising or novel, the results of this research seem encouraging in regard

to what could be accomplished with the use of inertial measurement units in

piano performance.
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Proposed System

4.1 System Design

In this section, I will review the system structure including the required

specifications, the top-level block diagram of the solution, and the system setup

with regard to hardware and software implementation platforms and data

structures.

4.1.1 System Specifications

The system is required to function as a real-time musical gesture

expression classifier that can detect intended musical expression and emotions

performed by a pianist. The inputs to the system are kinesthetic data from two

wrist-worn IMUs each transmitting 3-axis acceleration and 3-axis angular

velocity.

Requirements

• Collect kinesthetic data from APDM sensors at a rate of 64 samples per

second.

• Record data to files and use to train an algorithm and enable playback

mode for demonstration and algorithm development.

• Detect and Classify in real-time the following common musical structures

from each hand:

1. scales
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2. chords

3. arpeggios

4. trills

• Detect and Classify in real-time the following expressions in Western

notation [Read, 1979b], [Read, 1979c]:

1. Tempo: ritardando and accelerando

2. Dynamics: crescendo and diminuendo

3. Articulation: staccato and legato.

• Detect and Classify in real-time the following emotion categories from

Hevner’s adjective circle [Hevner, 1936]:

1. sad/mournful

2. dreamy/tender

3. lyrical/serene

4. humorous/playful

5. cheerful/merry

6. vigorous/dramatic

• Display all expression evaluations as feedback to the performer in real-time

to enable an intuitive interactive musical experience.
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4.1.2 Setup and Top-Level Design

In order to perform the required tasks, I have designed a system

comprised of the following hardware and software elements. Most of the elements

could be substituted with similar functioning parts. However, the real-time

performance and stability of the algorithm might be affected by the processing

power of the PC and the operating system. Moreover, the IMU data must be

synchronized at 64 samples per second with a lag of less than 50 ms to allow for

proper tempo alignment and response time.

• Hardware

IMU system including 2 Opal sensors and one access point.

Celviano AP-220 Digital Piano (from Casio).

Mini Super computer with 16G RAM and 2 Intel Xeon co-processor

CPUs.

• Software

Windows 7, 64 bit operating system.

Matlab environment version 7.10 including the APDM SDK.

EyesWeb environment version 5.2.1.

An illustrative block diagram of the system setup is presented in Figure 16.

The Opals [APDM, 2012a] are small wireless wrist worn inertial sensors

that feature triaxial accelerometers, gyroscopes, and magnetometers transmitting

9 values 64 times per second. The values transmitted are:
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Figure 16: System Diagram Illustration. The system is designed to work in real-
time or playback mode.
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• 3 axis proper acceleration in SI units relative to x, y, z.

• 3 axis angular velocity in radians per second units around x, y, z.

• 3 axis magnetic field projection in µT units on x, y, z.

The magnetometer values are ignored in this project because they would make

the training data based on orientation relative to the North and thus make the

algorithm sensitive to the pianist’s position. Therefore, they will not be discussed

here or henceforth.

The data arrives at the receiver via multiple ports. The motion signal

data from the sensors is transmitted wirelessly to an access point for

synchronization. The access point is read utilizing a set of functions in MATLAB

[MATLAB, 2010] in a dedicated SDK.The MIDI data from the piano is

transferred via USB to the receiver. The synchronization of Opal and MIDI data

is implemented via a combined system in MATLAB and EyesWeb. The

MATLAB receives the data from the Opals through the APDM access point and

transmits them via OSC messages to EyesWeb. The EyesWeb receiver acquires

these data from MATLAB in addition to the MIDI and Audio data directly from

the piano. The MIDI and motion data are synchronized at 64 samples per second

and stored to a file system. While the data are being collected, it is also passed

to the classification algorithms for training and prediction. All of this happens

simultaneously on parallel processors and in real-time.
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4.1.3 Data Collection and Storage

The MIDI and sensor data are collected in two formats; The EyesWeb

native format (.ebf), and a text file. Each row consists of sample of data (IMU

measurements and MIDI commands) along with a time stamp. The .ebf files can

be read directly in EyesWeb and enable the playback of data just as it was

collected simulating a real-time environment. This allows for developing and

evaluating the algorithm while running it on real subjects’ data. The text files

can be read in any other software platform for additional offline analysis.

4.2 Algorithm Description

Six dimensional data from two sensors are collected by the system at 64

samples per second. These data are buffered into three consecutive frames of one

second each. This windowing of data corresponds to the Gestalt theory of music

psychology which describes how music is perceived in groups rather than single

notes [Narmour, 1992]. Determining the optimal size of these chunks is not

trivial and with the aim avoiding a deeper dive into the studies of music

perception and auditory scene analysis, it was currently chosen by trial and error.

Also, it most likely varies between musical pieces and performances.

Nevertheless, a window size of 1 second corresponds to a tempo of 60 BPM, and

should allow for capturing several notes in rapid playing or single notes in slower

playing. It is also reasonable to assume that in most cases the musical mood will

not change during this period. The reason three frames are buffered is due to

short term memory considerations. It is assumed that the emotions expressed
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and experienced in music preserve some continuity, evolve gradually and are

influenced by recent emotional states [Meyer, 1956]. Therefore it make sense to

record the data from the recent past in order to make a decision regarding the

emotional state of the present. The degree of the past influence on the present is

also a parameter of the algorithm and is reflected in the weight assigned to the

features in the classifier. The features are calculated on each frame, except for

the tempo feature which is continuous. The features from each frame are weighed

and passed to the classifier for training or prediction. I will discuss the weighing

considerations in the sections that follow.

4.2.1 Feature Extraction

For each frame, the following features are calculated on the incoming

signals:

• mean motion intensity (per hand per axis)

• RMS motion intensity (per hand per axis)

• variance of acceleration (per hand per axis)

• mean spin intensity (per hand per axis)

• RMS spin intensity (per hand per axis)

• variance of angular velocity (per hand per axis)

• dynamics

• tempo
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• articulation (per hand)

In the following subsections, I will describe how each of these features is

calculated.

Motion Intensity

Motion intensity is calculated on each hand over each axis separately via

sum of squares over an entire frame, i.e. the average of the sum of squares over

all accelerations as described in equation 8, per dimension (per hand per axis).

This feature over the z axis should be a good estimator of the audio intensity

since the acceleration is proportional to the force exerted on the keys, which is

proportional to the squared velocity of the hammers striking the strings which is

proportional to the kinetic energy converted into acoustic energy

[Fletcher and Rossing, 1998]. The factor of two compensates for adding the

absolute value of the positive and negative accelerations, which should cancel out

in the case of zero total distance traveled.

motion intensity = Iaj =
1

N

N∑
i=1

a2i,j (8)

Where N is the number of samples in a frame and j is the dimension column (i.e.

which hand which axis).

Variance of Acceleration

The variance of acceleration σ2
a is calculated in the unbiased estimator

definition as described in equation 9. It is an indicator of the variation in

intensity during a frame a might point to certain expressive elements such as
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legato vs. staccato playing as well as rapidly changing vs. monotonic

performance. The feature is calculated per hand per axis.

variance of acceleration = σ2
aj

=

∑N
i=1 (a2i,j − Iaj)2

N − 1
(9)

Spin Intensity

The spin intensity feature is extracted from the angular velocities

measured by the gyroscopes. It is calculated via sum of squares over an entire

frame, i.e. the average of the sum of squares over all angular velocities as

described in equation 10, per dimension. It is an estimation of total supination

and pronation as well as forearm tremolo.

spin intensity = Igj =
1

N

N∑
i=1

g2i,j (10)

Variance of Angular Velocity

As with motion intensity, the variance is calculated in the unbiased

estimator definition. It is an indication of the change in articulation style within

a frame with regards to tremolo, supination, and pronation.

variance of angular velocity = σ2
gj

=

∑N
i=1 (g2i,j − Igj)2

N − 1
(11)

Tempo

For extracting tempo out of motion, one must consider the phenomena of

tempo perception in piano playing. Bruno Repp shows some insightful concepts

in this specific area [Repp, 1994] and the algorithm is mostly based on his

findings. The assumption is that the perception of tempo evolves from an
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accumulation of temporal cues derived from the audio in the form of varying

intensities. Therefore, using this, a real-time running tempo estimator can be

attempted as follows. First, the envelope of the signal is calculated via RMS.

Then, two thresholds are calculated based on the standard deviation of a

half-second frame. For both thresholds, crossings are detected and their times

registered in to a buffer. For the low thresholds the crossings are weighed by the

intensity of the peak in that crossing, this is to account for the stronger pulses

having a more significant influence on the perception of tempo. Then a weighted

average is performed on the buffer. For the high threshold, the timing of the

crossing are only registered to buffer and a median filter is applied to account for

extreme outliers. Finally, the average of the two tempo estimations is calculated

to provide an overall perceived tempo. The implementation of this algorithm in

EyesWeb is depicted in Figure 17.
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Figure 17: Tempo from Motion Algorithm . A perceptual model based on averag-
ing of temporal cues.
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It is important to note that the tempo feature it is not calculated

separately on each hand since both hands contribute to one performance and

there should only be one perceived tempo. Thus, the input to this algorithm is a

Pythagorean sum of all six accelerations from both hands. Using this approach,

the algorithm can detect a joint tempo created with accents from both hands.

For example, if a waltz in three fourths is played at 60 BPM playing the bass

with the left hand and two accents with the right, then the tempo may vary

depending on how this is articulated. If the bass is accentuated significantly

stronger than the following notes then only the downbeat will be detected as a

threshold crossing and the tempo will be assigned 60 BPM. However, if the right

hand part is articulated with equal intensity then the tempo algorithm might

detect those as crossings and measure 180 BPM. Intuitively this makes sense

because the perceived tempo of the audio would also probably be affected by

these differences in articulation and so will the expressive nature of the piece. See

[Repp, 1994], [Levitin and Cook, 1996], and [Scheirer, 1998] for a broader review

of the problems with definitions and perceptions of tempo and in establishing a

ground truth.

Dynamics

The dynamics features are extracted by estimating a corollary to the

acoustic energy. Thus, we calculate features that are proportional to mean

acoustic energy, gradient of mean acoustic energy, and variance of acoustic

energy. This is done by first summing the squares on the two z axis components
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of the accelerations from the left and right hand. Then an envelope of that signal

is calculated and buffered over time frame of one second. Then we calculate the

mean and the variance. In order to detect crescendo and diminuendo we also

compute the derivative of the mean. A positive derivative for a long enough time

is a continuous increase in energy and therefore a crescendo. Similarly a steady

negative derivative is a diminuendo. The EyesWeb implementation of extracting

dynamics from motion is shown in Figure 18.

Figure 18: Dynamics from Motion Algorithm. Estimating acoustic energy levels,
variance, and gradient from acceleration in the z axis.

Articulation

Articulation is defined in [Juslin, 2000] and [Bresin and Battel, 2000] as

the ratio between the note duration and the inter onset interval. It is an

estimation of the legato in a phrase. To calculate this, two values are defined:

dii the duration from the onset of a note until the onset of the next note.
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dio the duration from the onset of the note to its offset.

Then, note articulation is defined as:

Articulation =
dio
dii

(12)

In engineering terms this could be viewed as the duty cycle of the note in a

phrase. Detecting articulation from motion in this manner would require us to

detect precise note onsets and offsets from motion. Since this is difficult to

achieve and although intriguing, is not in the context of this research, I have

designed a different but similar approach. Instead of finding note onsets we find

temporal regions of activity in the z axis signal. Since the z axis is in the

direction of the key down and up, this should closely correspond to note onset

and offset behavior. We count the number of activity occurrences in a time frame

of half a second and divide it by the total time. An articulation value close to

one represents legato and an articulation value close to zero corresponds to

staccato articulation. The implementation of the articulation algorithm in

EyesWeb is described in Figure 19. The display of tempo, dynamics, and

articulation in EyesWeb is shown in figure 20.

4.2.2 Classification

Following feature extraction, the features are fed to an Adaptive Näıve

Bayes Classifier (ANBC) along with a weight matrix that defines the weight for

each feature. The ANBC is a part of the gesture recognition toolbox in EyesWeb

[Gillian et al., 2011b]. In this section, I will review how this block operates,
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Figure 19: Articulation from Motion Algorithm. Utilizing high and low activity
detection on the z axis as estimations of note onsets and offsets.

Figure 20: Tempo, Dynamics, and Articulation displayed in EyesWeb

.
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including its features and some of its advantages and drawbacks.

As described in the background section, the design of any classifier

employing the Bayes decision theory is structured on the Bayes theorem

(equation 3) and some näıve assumptions regarding the probabilistic nature of

the features and classes. One assumption is that the features are independent

random variables. Another assumption is that their distribution (i.e. their

probability density function) can be approximated to be of Gaussian nature.

Note that neither of these assumptions is prerequisite for Bayes decision theory

to be optimum. Bayes theory is general and optimum for any random variables

in any distribution as long as the distribution is correct. However, assuming

these distributions and independent variables significantly simplifies calculations

and programming complexity.

Rewriting the Bayes theorem for gesture recognition we define the

likelihood (or conditional probability) of gesture gk being the state of nature out

of G gestures given an observation of the input feature vector

x = {x1, x2, . . . , xN} in equation 13.

P (gk|x) =
p(x|gk)P (gk)∑G
i=1 p(x|gi)P (gi)

(13)

Notice that just as in equation 3, the denominator is constant because it sums

over all gestures and therefore can be ignored for classification purposes. Also

note that because x is a vector of N variables, p(x|gk) is a function of N

parameters. If we assume that the features abide to a normal distribution then

this function becomes the multivariate Gaussian distribution function
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[Duda et al., 1995a] defined in equation 14.

p(x|gk) ∼ N (x|µ,Σ) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
(14)

Where µ is an N dimensional mean vector of the features in a class defined in

equation 15.

µ ≡ E(x) =

∫
xp(x)dx (15)

Σ is an N ×N covariance matrix of the features defined in equation 16.

Σ ≡ E [(x− µ)(x− µ)t] =

∫
(x− µ)(x− µ)tp(x)dx (16)

Σ is always symmetric and semidefinite, |Σ| is its determinant and Σ−1 is its

inverse matrix. To simplify this, we observe that the components of the

covariance matrix are the single pair covariances σ2
i,j. Also, we note that the

expected value of a vector is found by taking the expected value of its

components. Thus, our individual scalar components are:

µi = E [xi] (17)

And,

σ2
i,j = E [(xi − µi)(xj − µj)] (18)

Now, if we assume statistically independent features then the covariance matrix

becomes diagonal where σ2
i,j = 0 when i 6= j. In this case, the multivariate

Gaussian distribution simplifies to a multiplication of single variable distributions

as in equation 19.

p(x|gk) ∼ N (x|µ,Σ) =
N∏
i=1

1√
2πσi

exp

(
−(xi − µi)

2

2σ2
i

)
(19)
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Therefore, under these assumptions what we need is to calculate the µi and σ2
i of

each feature in each class condition during the training phase. This will give us

the conditional probability density function p(x|gk) for every gesture gk.

Finally, looking back at equation 13, one last assumption is made, and it

is that prior distributions of the gestures P (gk) are equal. This implies that prior

to any knowledge there is an equal chance for any gesture to occur. This

assumption seems reasonable to make considering the complexity and

randomness of emotional responses in music. If this is not the case, and we have

some prior knowledge such as the composer’s or performer’s inclination for

specific expressive gestures, then adjusting this factor could improve the

performance of the classifier.

Therefore, for every input feature vector x we compute the conditional

probability density p(x|gk) for all G gestures. And based on our assumptions and

equation 13, this is proportional to the posterior probability P (gk|x). Thus, the

gesture with the highest prior is the one that will be predicted by the classifier.

This is the simplest case of Bayes classification. However, the ANBC block has

some additional features to enable flexibility in its application that make it a

powerful tool for musical gesture recognition.

Feature Weighting

The training block of the ANBC has a weight parameter for every for each

feature. This allows certain features to be more significant than others in the

classification process. The weighting works as follows. For each gesture class k, a
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discrimination function is created from vectors of mean, variances, and the

weight vector:

Φk = Φ{µk,σ
2
k,φk} (20)

The function is defined such that if the weight φn is greater than zero, then the

Gaussian function is multiplied by the weight, otherwise the function is forced to

1, thus not affecting the classification process. Then, the product of all these

functions is computed as before. To prevent underflow of precision due to many

multiplications, a log is taken over each distribution, followed by an addition.

In our implementation, the features are weighed such that those from the

current frame are weighed 1.0, those from the previous frame are weighed 0.6 and

those from the frame before are weighed 0.3. This allows for a diminishing

significance of the past features.

Rejection Threshold

A second important feature of the ANBC is allowing for a null class

without having the user explicitly define and train it. This is carried out by

computing a rejection threshold for each gesture under which the classifier will

not choose the gesture even if it is with the highest probability. Therefore, if

none of the gestures pass the rejection threshold, the classifier will choose the null

gesture. This feature is especially important for the case of continuous data that

may or may not contain gestures, and this is the case when we are presented with

IMUs in piano performance.

The rejection threshold is calculated using a confidence measure in the
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form of a log likelihood confidence and standard deviation. The threshold is set

by:

τk = µ∗k − (σ∗kγ) (21)

Where µ∗k is the mean log likelihood, σ∗k is the standard deviation log likelihood,

and γ is a scalar set by the user. For an overview on how these are calculated,

see [Gillian et al., 2011b].

Adaptive Real-time Training

The third powerful feature of the ANBC is the ability to add training

samples to improve the model while classifying in real time. This enables an

initial relatively small training set, then more data could be recorded for refining

the classifier during the performance. The adaptive training feature is controlled

by three parameters: maximum training buffer size, model update rate, and the

scalar number of standard deviations for the rejection threshold. Based on these

parameters, every time the rejection threshold is crossed a new sample is added

to the buffer, discarding the oldest one, and a counter is incremented. Once the

counter crosses the update rate, the model is recalculated based on the new

samples and the counter is set to zero. The adaptive training feature can be

powerful for improving accuracy and adapting to performers, however it is also

inherently sensitive to errors, especially at the beginning of a trial. If the first

samples are classified incorrectly (despite crossing the rejection threshold) then a

run-away model will be created which will get worse at every step.
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4.3 Post Processing and Visual Feedback

This section describes the operations performed after the Bayes

classification. The classifier generates a prediction 64 times per second. These

predictions are then further processed for display and feedback.

4.3.1 Post Processing

Since the output of the classifier is a discrete class from 1 to 6 and it is

updated every sample, some post processing is required in order to exclude

outliers and smooth the transition between emotions. This is meant to create the

effect of a human listener perceiving the music and responding emotionally to it.

To do this, two main assumptions are laid:

• Emotions change slowly at intervals of at least several seconds (or several

notes) and have a similarly long minimum duration. This is based on short

term memory for objects [Miller, 1956] and on phonological working

memory research [Baddeley and Hitch, 1974].

• While shifting from one emotion to another, the emotional path should be

as continuous as possible and follow the implicit dimensionality in Hevner’s

adjective circle [Gabrielsson and Lindström, 2010]. Hence, while jumping

from sad and mournful to humorous and playful must first pass through

tender and then serene.

These assumptions make the flow of the algorithm more human like in its

real-time behavior while following an emotionally varying performance. In order
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to account from these assumptions the last few seconds of the classifier output

are buffered into a mode filter in order to remove occasional erroneous outliers.

Then, then a running average is employed on the output to smooth the transition

from one state to another. This creates intermediate categories between the

adjectives that can describe transient emotions.

4.3.2 Visual Feedback

The data are collected, trained and classified in real time. The emotions

are predicted as discrete integers 1–6 and displayed as text on the screen. To

make the display more intuitive and to smooth the behavior of the algorithm, a

moving average is computed over the previous several seconds. The working

memory for sound, known as the phonological loop is generally known to be 1–2

seconds [Baddeley and Hitch, 1974]. However, following several trials in the

development of this display I observed that musical emotions change less rapidly

than this and a three second buffer was found to be more appropriate. This

creates a continuous flow that is used for two displays as follows.

Piano Roll Display

The piano roll display maps the MIDI note on and note off events to

colored locations on an image. The color of the notes is set by the velocity of the

note on event. The background color of this piano roll is mapped from the

continuous emotion number generated by the classifier. The mapping of

emotional musical performances to colors is based on [Bresin, 2005] as described

in the background section and was used as a reference for our color mapping.
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Displaying the emotions predictions this way allows for the feeling of a

continuous flow in the music along with the musical emotion coloring that evolves

in a natural rate similar to how we experience emotional responses in music. The

emotional piano roll implementation is shown in Figure 21.

Figure 21: Display of piano roll with emotion colored background. The colors
change continuously based on the emotion detected providing naturally flowing visual
feedback to the performer.

Color Wheel Display

The second display is the Adjective circle projected on an HSV color

wheel. The current state of emotion is represented by a moving, circle-shaped

object followed by a tracer (tail). The head of the object is located on the

current emotion predicted by the algorithm and the tail on the recent trajectory

of emotional states. This display provides a feedback that is motion-like and can

serve as a motive indication to the pianist similar to a dancer responding to the

music. The emotional color wheel implementation in EyesWeb is shown in Figure

22.
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Figure 22: Adjective Circle on HSV Color Wheel. The head of the circle shaped
object tracks the current emotional state tracked by the algorithm, providing the per-
former with dance-like feedback responding to the music. The emotion-to-color map-
ping is based on [Bresin, 2005] the adjectives are from [Hevner, 1936].
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Evaluation

5.1 Evaluation and Research Goals

The evaluation section has two goals:

• To assess the accuracy in the system’s performance with regards to

detecting emotions.

• To provide an understanding of the detail of information that can be

obtained from kinesthetic data of musicians and to attempt to identify the

reasons and possible solutions for limitations.

Assessing the performance of a classifier is carried out by training it with a

training sample set and then classifying using a different known test set. In order

to do this, the training and data must include each of the classified categories.

This is challenging to accomplish when dealing with live performance since it is

implies either requesting the musician to perform in a certain fashion (all of the

expressions and emotions) or having the musician self-report on the performance.

In both cases, the experiment is sensitive to bias and subjectivity.

Moreover, as mentioned earlier, the standard paradigm in experiments

such as these is to play the same piece in different emotions thus eliminating the

factor of the composition. However, in my pilot study it was observed that it is

difficult to express an emotion in a composition that was not meant to convey it.

This causes a dissonance in the performance, rendering it more of a technical
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attempt at acting an emotion than a successful communication of it. For this

reason, I have decided to add to the standard paradigm a test where each

emotion is portrayed via a dedicated piece. Because the algorithm is completely

deaf to the music the composition factor diminishes in its significance compared

to that of analyzing the audio signal.

Finally, it is also in the scope of this project to follow the patterns in

which performers shift from one emotion to the other during a performance. This

could reveal some interesting observations regarding live performance as well as a

musicological understanding of the structure of a piece. Therefore, a third section

was added to the test in which the performers were requested to play freely either

from a long score or through improvisation while self-reporting on their

emotional intentions.

5.2 Subjects

The test subjects for this evaluation were a homogenous group of 13

pianists, with an average playing experience of µ = 12.6± 4.8(yrs). The age

group statistic was µ = 21.8± 3.0(yrs). Four subjects described their genre as

Classical, three as Jazz , four Contemporary, and two Rock/Pop. The subjects

were from a variety of academic backgrounds and academic levels, this was not

considered an affecting factor in this research since the subjects were not required

to perform any academically related task other than piano performance. The

details of the subject group are described in Table 1.
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Table 1: Test Subjects Description

Subject age (yrs) experience (yrs) genre
1 18 12 Classical
2 30 5 Contemporary
3 21 14 Classical
4 19 11 Pop/Rock
5 23 17 Classical
6 20 15 Contemporary
7 24 8 Pop/Rock
8 20 12 Jazz
9 22 5 Classical
10 25 23 Jazz
11 21 12 Jazz
12 20 13 Contemporary
13 21 17 Contemporary

5.3 Experiment Procedure

As described above, because the system is required to detect various

patterns and due to the complexity of the different affecting factors in this

condition, the experiment was divided to three sections.

5.3.1 Stage 1 – The Standard Paradigm, One Piece Different Emotions

In this section, the performers played the first few measures of Bach’s

Minuet in G major, BWV 841 from the Notebook of Anna Magdalena Bach. The

piece was played six times in the six different emotion categories based on the

standard paradigm [Juslin and Timmers, 2010] to create the training data. The

performers were only allowed to make variations in intensity, tempo, accents and

slight pitch variations (major/minor and decorations). This was repeated twice

while randomizing the order for training and testing. The algorithm classified

emotion categories were tested against the intended emotion categories.
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5.3.2 Stage 2 – Different Pieces, Different Emotions

In this section, the performers chose six different pieces with the intention

to convey the six different emotion categories. The hypothesis in this section is

that it would be more intuitive for the performers to express the emotions that

matched the piece. An example of the six pieces played (per category) by the

performers were:

• sad/mournful Nocturne in E Minor, Chopin

• dreamy/tender Clair de Lune, Debussy

• lyrical/serene Songs without Words, Mendelson

• playful/humorous Maple Leaf Rag, Joplin

• cheerful/merry Sonata in C Major, Mozart

• vigorous/dramatic Sonata no. 8 movement 1, Beethoven

The data from this stage was used as training data for stage 3. The primary

hypothesis was that training based on this data would achieve improved

generality of the classifier compared to that of the standard paradigm in stage 1.

This hypothesis was clearly observed while attempting to classify the stage 2

results based on training from stage 1. The reason for this is that training on one

song severely limits the expressivity that can be conveyed and thus it yielded

poor results in classifying other pieces with a wider range of expressiveness. In
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other words, more training data was needed displaying a wider range of

expressivity. This proved successful as seen in the Results section.

5.3.3 Stage 3 – Free Playing, Self-report, and Listener Evaluation

In this section, the performers were asked to play freely for several

minutes while continuously self-reporting on their intended emotions. They

played either from a selected score or improvisation. The algorithm had been

trained before based on the previous section. However, in this section the

classified emotion categories were tested against the intended emotion categories

as well as against listener evaluation. The listener evaluation was carried out by

four musically trained listeners. Thus, a three-way comparison was performed

between the intended emotion, the algorithm’s classification, and the average of

the listeners’ perceived emotion.

5.4 Tools for Classifier Evaluation

There are several methods and techniques to evaluate a classifier that vary

with the application, the implementation, and the purpose of the evaluation. In

this research, the classification results were evaluated using a Confusion Matrix,

Precision, Recall, Specificity,and Accuracy parameters,RMS error, χ2 test, and

Cohen’s κ test to assess the statistical validity of the results. The following is a

brief overview of these tools and how they were used in the context of this

research.
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5.4.1 Confusion Matrix

The confusion matrix is the simplest way to provide a qualitative but

comprehensive evaluation on the performance of a classier. It displays the total

classification in an c× c matrix where c is the number of categories. The rows

represent the labeled (true) categories and the columns represent the classified

(estimated) categories. As the classification improves, the matrix becomes

diagonal (with higher values on the main diagonal and zeros in the remaining

fields). The confusion matrix is also useful for understanding the limitations and

weaknesses of the classifier, i.e. which categories are classified incorrectly and

which categories they are confused with, hence the name, confusion matrix.

5.4.2 Precision, Recall, Accuracy, and Specificity

Precision and Recall are single parameters that evaluate the performance

of an algorithm in detecting an occurrence of an event [Powers, 2007]. These can

be extracted directly from the confusion matrix. In order to define precision and

recall, four terms are defined:

• True Positive – the prediction of a category in its presence.

• False Positive – the prediction of a category in its absence.

• False Negative – the non-prediction of a category its presence.

• True Negative – the non-prediction of a category in its absence.
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Then, Precision and Recall are defined in equations 22 and 23 respectively:

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

Looking again at these definitions, we can observe that Precision is an evaluation

of the positive predictions while Recall is an evaluation of the true positive rate

and it is also referred to as Sensitivity. In other words, Precision is an evaluation

of the correctness of classifications generated by the algorithm while Recall is an

estimation regarding the ability of the classifier to detect an event in its

occurrence. A third term that is useful is Accuracy and it is defined in equation

24:

Accuracy =
TP + TN

TP + TN + FP + FN
(24)

Another term for classifier evaluation is specificity as defined in equation 25. It is

an estimation of the probability of a negative prediction of a class in its absence.

Specificity =
TN

TN + FP
(25)

In this research, the Precision, Recall, Accuracy, and Specificity parameters are

calculated on each of the six categories.

5.4.3 RMS Error

This evaluation metric is based on our assumption that there exists a

dimensionality in the category space of the adjective

circle[Gabrielsson and Lindström, 2010]. Thus, two adjacent emotion categories
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are also close in there expressive content. Moreover, the ground truth is set by

the emotion category the performer was requested to play; however, it was

observed that the pianists drifted between categories based on their self-report.

Therefore, the binary relation of true/false is an incomplete description of the

algorithms behavior. Instead, we measure the RMS distance of the classification

from the intended emotion. The RMS error is defined in by:

RMS error =

√√√√ 1

N

N∑
i=1

(ωc − ωi)2 (26)

Where ωc is the classified emotion, and ωi is the intended emotion.

Another aspect of the assumed dimensionality is that the categories are

set on circular space. Therefore the difference between categories is the distance

on the circle. In other words, there is a wrapping of the classes, where the actual

distance between two categories is the shortest path around the adjective circle.

For example, the distance from vigorous/dramatic to dreamy/tender is two, and

so is the distance to humorous/playful. The distance error is therefore an angular

RMS error and can be measured in units of degrees.

5.4.4 χ2 Test

The χ2 test is a common statistical method test used evaluate a null

hypothesis when a sample set consists of several events or categories that are

mutually exclusive and have a total probability of 1. The purpose of the test is to

examine the rejection of the null hypotheses. The null hypothesis in the case of

this research would be that the classification outputs of the algorithm are a
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random variable and uniformly distributed with equal probability.

The test is performed by separating the data into category bins and

comparing the observed and expected rates at which each bin occurs. Then, the

χ2 is calculated by:

χ2 =
M∑
i=1

(Oi − Ei)
2

Ei

(27)

Where

• M – number of categories or bins.

• Ei – expected number of occurrences in category i.

• Oi – observed number of occurrences in category i.

Then the χ2 is mapped to a p value indicating the probability of the observed

data given the null hypothesis. If p is below a threshold we say that we can reject

the null hypothesis.

For the purpose of this research, we shall define a sample as one instance

of classification or categorization. Therefore, for every subject, and for every

intended emotion category we have N instances of categorizations into one of six

bins (the six emotion categories). The null hypothesis is that the algorithm is

randomly guessing with equal probability (uniform distribution one out of six),

therefore the expected samples in each of the six bins are N
6

. We then plug in our

observed classifications for that trial and compute the χ2 based on equation 27.

Our number of bins is six and therefore we have five degrees of freedom. This is

used to map the χ2 to a p value. The p value represents the probability that, had
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the null hypothesis been true, we would get our observations. Therefore the lower

p is, the more unlikely the null hypothesis.

5.4.5 Cohen’s κ test and weighted κ test

The κ test, [Cohen et al., 1960], is a statistical measure of agreement

between two judges in a multicategorization problem. In the context of this

research one judge would be the performer’s intended emotion and the other

judge is the algorithm’s classification. The κ test accounts for the

chance-expected agreement, thus evaluating the actual proportion of agreement

after chance is removed from consideration. For this, two quantities are defined:

• po - the proportion of units in which the judges agreed.

• pc - the proportion of units for which agreement is expected by chance.

The purpose of the test is to evaluate the extent to which po exceeds pc.

Therefore, κ is defined by:

κ =
po − pc
1− pc

(28)

We can compute this directly from the frequencies in the confusion matrices for

each emotion category by:

κ =
fo − fc
N − fc

(29)

Where, fo are the observed classifications and fc are the expected classifications,

i.e N/6. Thus, a high κ implies a good agreement between the judges. There is

no one criteria scale for interpreting the κ values. In this research we use the

scale suggested by [Landis and Koch, 1977].
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However, the simple κ test assumes that all misclassifications are equally

costly. In order to account for categories that are ordered in dimensionality

(similar to our case where adjacent categories are considered “close” in the

emotional aspect), the weighted κ test was developed [Cohen, 1968]. In order to

compute a the weighted κ we define a c× c weight matrix, where c is the number

of categories. Typical weights are linear or quadratically decaying values as a

function of the distance from the main diagonal. Then, fo and fc are computed

by multiplying the frequencies by the weights as in equations 30 and 31.

weighted fo =
C∑
i=1

C∑
j=1

wijOij (30)

weighted fc =
C∑
i=1

C∑
j=1

wijEij (31)

Where O is the observed matrix and E is the expected (chance) matrix.

In this research we will look at the unweighted, linearly weighted, and

quadratically weighted κ values. The reason for this is that we do not have a

priori knowledge regarding the form of dimensionality in the emotional space, or

in other words, how close is sad to dreamy relative to sad and lyrical or cheerful

to playful and so on. Thus, as shown the results section, experimenting with

different weight techniques might give us an understanding of the dimensionality

of the emotion space in the adjective circle.
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5.5 Results

This section presents the results followed by a brief interpretation. A more

thorough inquiry is carried out in the discussion chapter.

5.5.1 Stage 1 - The Standard Paradigm, One Piece Different Emotions

The initial classification results per subject on all categories are

summarized in Table 2. The correct and off by one values are calculated as a

percentage of the total number of classification samples. Each trial consisted of

3000–6000 classifications, distributed evenly to 500–1000 classifications per

emotion. It is important to note that the emotion categories are organized on the

adjective circle in a way that adjacent emotions are close to each other in concept

and those who are across are different. This is the implicit dimensionality

mentioned earlier in [Gabrielsson and Lindström, 2010] and it is for this reason

that we do not completely ignore incorrect classifications but also look at those

that are one off. The total column shows the sum of correct and 1 off

predictions. For example many times the emotions sad/mournful are confused

with dreamy/tender. This confuses performers as well as the algorithm and the

listeners as observed in the following sections. The percentage of correct

classifications is approximately 50% and including those that are off by one we

get to over 80% mean total classification accuracy. Also, the results are quite

stable (std = 6.7%).

Furthermore, the RMS angular error is displayed in the most right

column. This is calculated as explained in the previous section and is an
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Table 2: Classification results per subject over all categories in the Standard
Paradigm

Subject Correct (%) Off by 1 (%) Total (%) Angular RMS error (◦)
1 49.37 35.082 84.452 61.884
2 46.128 39.319 85.447 61.279
3 59.03 17.893 76.923 63.496
4 67.531 18.904 86.436 51.321
5 23.917 45.002 68.919 78.292
6 39.626 32.532 72.158 76.615
7 28.828 49.545 78.373 71.144
8 47.981 27.019 75 81.163
9 67.899 18.133 86.031 51.616
10 61.576 15.117 76.693 70.392
11 59.21 14.983 74.193 74.952
12 60.97 27.931 88.9 51.028
13 49.301 39.263 88.564 55.319

population mean 50.8743 29.2864 80.1607 65.2693
population std 13.8282 11.8183 6.7427 10.8732

indication of the mean accuracy angle when a classification is made. Thus, while

the algorithm is classifying an emotion, this predicts the error range in degrees in

which the emotion is expected to be found. The angular distance between

adjacent emotions is 60◦. We get a mean angle accuracy of approximately 65◦

which implies that the predictions are within one emotion on the adjective circle.

The overall confusion matrix is calculated by the sum of all confusion

matrices and is displayed in Figure 23. The results show high performance in

detecting most of the intended emotions. A clear diagonal is observed in the

confusion matrix, with the main discrepancies occurring between the sad,

dreamy, and serene categories.

In order to understand the confusion matrix more, one should observe it

in varying levels of resolution. First, four major blocks are clearly seen, the two
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on the main diagonal are bright and the two on the remaining are dark. This is

an indication of the algorithm’s strong ability in distinguishing between high and

low arousal in emotions. The sad, dreamy, and serene are low arousal and the

humorous, cheerful, and vigorous are high arousal categories.

Second, the inner diagonals are observed, this is an indication of the

algorithm’s ability in distinguishing valence. The sad and vigorous categories are

considered low in valence while the lyrical, humorous, and cheerful are in high

valence. The dreamy category is generally assumed neutral in valence (there are

good dreams and bad dreams). Perhaps this is why it gets confused the most.

Figure 23: Overall Confusion Matrix Stage 1. A clear diagonal is observed, the
main discrepancies are between dreamy/tender, sad/mournful, and lyrical/serene .

Based on the total confusion matrix, the results for Precision, Recall,
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Table 3: Precision, Recall, Specificity, and Accuracy per category for Stage
1

Category Precision Recall Specificity Accuracy
sad/mournful 0.5582 0.421 0.8842 0.7647
dreamy/tender 0.2999 0.4161 0.8208 0.7578
lyrical/serene 0.4371 0.5263 0.8867 0.8351

humorous/playful 0.5993 0.5072 0.9311 0.8595
cheerful/merry 0.4814 0.5203 0.9159 0.8643

vigorous/dramatic 0.8797 0.8137 0.9813 0.9572

Specificity, and Accuracy are be obtained per category and displayed in Table 3.

The results show that the vigorous emotion has the highest precision, recall,

specificity, and accuracy. This is expected since the vigorous playing is very

different and easily distinguishable from the other emotions. This is also

consistent with the functionalist perspective [Juslin, 1997], i.e. that we are

programmed to be sensitive to emotions that can be life threatening and are

imperative to our survival.

The humorous and cheerful categories had similar results, both were lower

in precision and recall because they were confused between each other. Their

accuracy however, is still relatively high because when detected they were not

confused with other categories.

The sad and lyrical also had similar results but lower than the other

categories because they were often not only confused between each other but also

with dreamy. The dreamy category had the lowest achievement in all categories.

This too, matches our expectation regarding its neutral valence as explained in

the analysis of the confusion matrix.

The results for the χ2 test per emotion category are displayed in Table 4.
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Table 4: χ2 test results per category for Stage 1.

category N dof χ2 p
sad/mournful 38 5 27.895 0.0000382
dreamy/tender 42 5 32 0.00000594
lyrical/serene 32 5 21.875 0.000553

humorous/playful 29 5 19.897 0.001307
cheerful/merry 29 5 18.655 0.002228

vigorous/dramatic 25 5 17.32 0.003931

Table 5: κ test results for Stage 1. The agreement criteria is taken from
[Landis and Koch, 1977]

weighting po pc κ agreement
unweighted 0.5193 0.1667 0.4231 moderate

linearly weighted 0.8460 0.6107 0.6044 substantial
quadratically weighted 0.9361 0.7662 0.7269 substantial

The method of calculation is explained in the previous section. p < 0.01 is

observed for all categories, clearly rejecting the null hypothesis. Thus, the system

is obviously performing much better than guessing one category out of six.

The results for the κ test on the complete confusion matrix are displayed

in Table 5. The method of calculation is explained in the previous section. The

agreement criteria is taken from [Landis and Koch, 1977]. As expected, it is

observed that using the weighted κ produces a better agreement criteria.

However, it is interesting to observe that the quadratic weighting is better than

the linear. This will be discussed further in the next section.

5.5.2 Stage 2 – Six Pieces, Different Emotions, testing on Free-playing and
Self-report

In this section, the algorithm was trained on the performers playing six

different pieces that were chosen to express the six emotion categories. Following

that, they were asked to play freely and self-report on their intended emotion.
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The first analysis is the overall confusion matrix of the self-reported intended

emotion vs. the algorithm classification. The overall confusion matrix is

calculated by the sum of all confusion matrices and is displayed in Figure 24.

The main diagonal is still observed. However, the sad and dreamy categories

were often misclassified as serene. Also, the humorous category was misclassified

as cheerful and vigorous. Misclassifying all three low-arousal categories with

serene implies that the system in this test perfomed less accurately in

distinguishing valence in the low-arousal categories. Once again, if valence

cannot be distinguished, there is really no difference between sad, dreamy, and

serene. Misclassifying humorous with cheerful and vigorous implies that there is

a dimension in emotions we are not considering. Humor is typically thought of as

high in valence but there is also dark and sarcastic humor. Moreover, humor in

many cases by definition is a case of contradiction (such as the contradiction

between the literal and actual meaning in the definition of irony) this type of

contraction can easily throw off an algorithm trained to detect only the literal.

Such is the case in many scherzo portions of pieces by Beethoven and Schubert

which are often played in a playful manner but convey dark drama attributed to

Beethoven’s growing deafness and Schubert’s decaying health [Ringer, 2009].

That said, perhaps there are other ways of detecting hidden meanings in motion

that could be explored in future research.

Still, these results are quite promising considering the difficulty in

detecting emotions from a much broader range compared to that of the standard
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paradigm test in the previous section. The purpose of this section was to

evaluate the performance of the algorithm in real-life scenarios where the system

is presented with an unknown piece that it had not been trained on, and attempt

to predict the intended emotions in it. Considering the difficulty in this, and the

fact that it has not been attempted before in such conditions, the results of this

section are satisfying.

Figure 24: Overall Confusion Matrix for training on different pieces and test
on free playing and self-report Rows represent labeled emotions while columns
represent algorithm classified emotions. The main diagonal is still observed. However,
the sad and dreamy categories were often misclassified as serene. Also, the humorous
category was misclassified as cheerful and vigorous.

Based on the total confusion matrix, the results for Precision, Recall,

Specificity, and Accuracy are be obtained per category and displayed in table 6.

The results for the χ2 test per category are displayed in table 7. The precision

and recall rates are lower than before but the accuracy and specificity are still
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Table 6: Precision, Recall, Specificity, and Accuracy per category for Stage
2

Category Precision Recall Specificity Accuracy
sad/mournful 0.2992 0.4822 0.8473 0.8039
dreamy/tender 0.0561 0.189 0.8037 0.7679
lyrical/serene 0.5604 0.2865 0.89 0.6917

humorous/playful 0.3202 0.3422 0.886 0.8123
cheerful/merry 0.4426 0.3547 0.8741 0.7599

vigorous/dramatic 0.4846 0.4298 0.9264 0.8575

Table 7: χ2 test results per category for Stage 2.

category N dof χ2 p
sad/mournful 34 5 24.471 0.000176
dreamy/tender 35 5 25.4 0.000117
lyrical/serene 29 5 18.655 0.002228

humorous/playful 23 5 14.652 0.011957
cheerful/merry 33 5 22.818 0.000366

vigorous/dramatic 25 5 15.4 0.008783

quite high. The results of the χ2 still show p < 0.05 value, rejecting the null

hypothesis. However, it is seen now that the playful category achieved the least

significant results (p = 0.012). This can be seen in the confusion matrix where

playful was often confused with cheerful and vigorous.

The results for the κ test for Stage 2 on the complete confusion matrix are

displayed in table 8. The method of calculation is explained in the previous

section. The agreement criteria is taken from [Landis and Koch, 1977]. Here too,

it is observed that better agreement is achieved with the weighted κ test and

especially with the quadratically weighted κ. It seems that there exists a pattern

here which could imply the form of the dimensionality in the emotion space. This

form is a falling quadratic where adjacent categories are very similar but the

similarity drops rapidly after one category. For example, dreamy is very similar
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Table 8: κ test results for Stage 2. The agreement criteria is taken from
[Landis and Koch, 1977].

weighting po pc κ agreement
unweighted 0.3466 0.1667 0.2159 fair

linearly weighted 0.7448 0.6122 0.3419 fair
quadratically weighted 0.8723 0.7680 0.4495 moderate

to sad and lyrical which are immediately adjacent to it but very different from

playful and vigorous which are two steps from it. Likewise, playful is similar to

cheerful and lyrical but very different from vigorous and dreamy. This fits a

falling quadratic form more than a linear form and it is also pleasingly consistent

with our initial justification for adding the “one off” column in the results of

Stage 1.

5.5.3 Stage 3 – Performer vs. Listener vs. Algorithm

In this section, three pieces from the free-playing self-report part were

selected for listener evaluation. The pieces were selected one from each genre,

Classical, Jazz, and Contemporary. Four listeners evaluated the perceived

emotion and compared to the performers’ intentions and the algorithm

classification. This three-way comparison allows for interesting qualitative

observations of what the system is doing. First, instead of looking at a 2D

confusion matrix we present a 3D confusion matrix or a Confusion Cube. The

confusion cube of the total algorithm performance on the three performers is

presented Figure 25.

Each of the small cubes represents a bin of classifications corresponding to

the emotion a coordinate of the cube. The colors in each cube are mapped the
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Figure 25: Three dimensional confusion cube. The intended emotions are com-
pared with the listener perceived emotions and the algorithm classification through a
complete piece.
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number of classifications via the jet color mapping. The α transparency factor is

also adjusted according to the number of classifications. Hence, empty bins will

remain colorless, bins with only few classifications in them will be colored in blue

transparent colors, and fuller bins will be colored yellow and then in dark red.

The main diagonal is still observed but is it wider now, and there are

disagreements especially regarding the sad, dreamy, and serene categories. It is

still observed though, that most of the classifications occur around the main

diagonal and in the center of the cube and most of the remaining edges are empty.

Figure 26: Emotion paths of Performer, Listeners, and Algorithm through 10
seconds of Classical piece played by subject No. 9. The piece was Chopin Noc-
turne Posthumous in C] Minor. The performer, algorithm, and audience in agreement,
but the algorithm is detecting vigorous at some point.

Next, while the confusion cubes are fun to look at, they can only tell us

about the accuracy of detection at every point in time through the piece.
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However, we would also like to observe the emotional path through longer

sections of the piece. Thus, we can draw the emotion paths of the performer,

listener, and the algorithm projected on the color wheel. This provides some

interesting insights regarding communication of emotions during a performance.

Figure 26, shows the emotion path of a 10 second section during the Chopin

Nocturne Posthumous in C] Minor. It is observed that the performer, algorithm,

and audience are in agreement, but the algorithm is detecting vigorous at some

point in disagreement with the listeners and performer intentions.

Figure 27 shows a 20 second section of a Jazz improvisation. Here, we

observe a general agreement that the section is centered between the homurous

and vigorous emotions. The algorithm decides on cheerful at some point in

disagreement with the performer and audience.

Figure 28 portrays the emotion paths through 20 seconds the

contemporary piece. Here while the performer is attempting to convey humorous

and lyrical, the lyrical is mostly detected by the algorithm and audience, but the

humorous is perceived as cheerful by both. Moreover, the listeners and the

algorithm detected a dreamy and even sad mood that the performer did not

intend to convey.
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Figure 27: Emotion paths of Performer, Listeners, and Algorithm though one
minute of Jazz improvisation played by subject No. 11. There is a general
agreement that the piece is centered on the humorous emotion.
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Figure 28: Emotion paths of Performer, Listeners, and Algorithm through
20 seconds of a Contemporary improvisation played by subject No. 12. An
agreement is observed at the lyrical emotion but the humorous is detected as cheerful
and there is an unintended drift to dreamy and sad.
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Discussion

6.1 System Performance, Limitations, and Possible Improvements

The system presented is a first attempt at musical expression recognition

based solely on kinesthetic sensing. It is successful in detecting basic expressions

such as dynamics and articulation as well as the performer intended emotions

and even listener perceived emotions. Moreover, the system can function as a

performance feedback system via its various displays, the piano roll and the

emotion color wheel. Using this, a musician can be presented with continuous

feedback while practicing for a performance or while composing a piece.

Moreover, this type of detection can also be used to augment musical instruments

by adding musical and emotional intelligence to them and using the predictions

of the algorithm to control various audio parameters in correspondence with the

musical mood and performers intentions.

The system performed well in the standard paradigm where it was tested

on the same piece played in six different emotions. However, in the second

section where a more realistic situation was tested, the system was introduced to

an unknown piece and expected to detect the expressions in it. In this case the

system still succeeded in detecting the obvious emotions sad, vigorous, and

cheerful. However, the system was limited in the prediction of ambiguous

emotions such as lyrical and dreamy. Moreover, the humorous emotion is often

confused with cheerful and vigorous. This could be explained by the notion that
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these emotions differ mainly in valence and are similar in arousal. While it is

quite straightforward to detect high and low arousal via motion, it is not the case

for valence. There is some equivalence with the findings of

[Schachter and Singer, 1962] and their research with epinephrine that is quite

intriguing. The epinephrine alters the physiological state of arousal but it does

not alter valence, therefore it was difficult in some cases to establish the

emotional state. It was thus their conclusion that some emotional experiences

could not be generated and via physiological changes because they require

cognitive processing. This could be the case of some of the musical emotions as

well. When we measure motion, we measure a physiological state. This could be

used to carry some of the cues that convey emotions but possibly not enough for

those that are complex and require more cognitive processing. Perhaps the

dreamy and lyrical emotions fall under this category.

Other limitations of the system and this research include the discrepancy

between performer intention and listener perception. Since this is the case, it is

difficult to establish a ground truth on which to evaluate the system or assign a

goal it must achieve. However, this is precisely the phenomena in which this

system can be helpful in addressing, as I will explain in the future research

section.

There are many ways in which the system could be improved. First, the

obvious way to obtain more information would be to add more sensors. Sensors

could easily be added to the legs and torso of a performer, measurements such as
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these would add more independent features. It is generally shown that increasing

the number of independent features improves the performance of a classifier

[Duda et al., 1995a]. It is however, important to mention that it also increases

the number of dimensions and can lead to the requirement of a large training

data set. This limitation is referred to as the curse of dimensionality where it is

generally claimed that the required training data grows exponentially with the

dimensionality of the problem. However, this too could be overcome by use of

dimensionality reduction techniques such as Principle Component Analysis and

Mutliple Dimension Analysis [Duda et al., 1995b]. Figure 29 shows on the

intensity, tempo, and articulation features per class projected on a

three-dimensional scatter plot. The classification problem is apparent and it is

observed that although the classes occupy different spaces, the shape seems quite

erratic and a decision rule would not take the form of a simple plane or curve.

Figure 30 shows all of the features after they have been projected to a

three-dimensional space using multiple discriminant analysis. Now the clusters

are clearly observed and even though there is still some overlap, the decision

boundaries are now easier to establish.

Second, in this research, the system was only trained per performer. This

is because the performers differed in their ranges and expression styles. However,

this severely limits the generality of the system and therefore its usability in

real-life scenarios. The training data from this research, could be used along with

proper reference to the inter-performer differences to obtain a scaled data set
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Figure 29: [Intensity, tempo, and articulation 3D scatter plot. Although the
classes occupy different spaces, the shape seems quite erratic and a decision rule would
not take the form of a simple plane or curve.
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Figure 30: 3D scatter of linear combination of features projected to three
dimensions using MDA. Clusters are clearly observed and even though there is still
some overlap, the decision boundaries are now easier to establish.
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such that the system could be trained on multiple subjects. This might prove

successful since the number and variety of training samples will grow significantly,

and will therefore address the problem of dimensionality mentioned above.

Third, the system was only evaluated using a Bayes classifier. Other

classifiers such as Hidden Markov Models could perhaps perform with better

results. This assumption is based on the observation that music is a temporal

phenomenon, and so are the emotions portrayed and perceived in it. Classifiers

such as Hidden Markov Models are specifically designed to handle such time

evolving systems in which the current state is influenced by previous states, and

thus it is reasonable to assume that they might perform better at this task

[Duda et al., 1995b].

Finally, the limiting of kinesthetic data was for the purpose of this

research to answer the question, of how much we can achieve by looking only at

motion. However, for further applications in which better classification

performance is of main interest, using the audio signal in real time could reveal

more information. Specifically information regarding major and minor tonality

could, in many cases, help in distinguishing valence [Hevner, 1935].

6.2 Research Discoveries and Ideas for Future Research

We have seen that musically relevant information regarding a performance

and specifically musically conveyed emotions can be detected by using real-time

kinesthetic data. This observation is of importance for several reasons. First, it

highlights the manifestation of emotions in musical performance and it serves to
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show that they can be perceived and distinguished not only subjectively by

humans, but also by a machine. Moreover, since the acoustic detailed musical

information regarding pitch and tonality cannot be conveyed in these motions, it

is only the envelope that is observed, and it is shown to be enough to classify to

some extent. This is consistent with the Contour Theory discussed in

[Kivy, 1980], [Kivy, 1989], [Davies, 1994] and also [Nussbaum, 2007].

However, it is also interesting to look at where the classification was less

successful. These were generally the categories dreamy and serene that were in

many case confused with sad. It was observed that even in cases where there was

an agreement between the performer and listeners, the algorithm had difficulty

distinguishing between them. This of course could imply a weakness of the

algorithm, which as engineers, is always the first assumption. Nevertheless, it

could also imply that the fine differences between these categories cannot be

explained by the contour theory because they require more detail than the

contour can carry. In other words, perhaps the distinction between some

emotions requires a higher sample-rate than the musical contour carries. This

means that some other carrier is at work for this information which could be the

musical grammar and semantics referred to and devised by [Cooke, 1959] and

[Jackendoff and Lerdahl, 1983]. Thus, the findings of this research might help

determine the boundary in which the contour and the semiotic theories meet.

Furthermore, since the semiotic theory generally requires some musical training

and the contour theory does not, this could have implications on understanding
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the borders on which a trained listener and an untrained listener would be able

to determine the emotional content of a musical piece.

Moreover, this research shows that emotions not only manifest in motion

but also that (for some of the performers) they manifest consistently and

repeatedly in the same gestures such that a machine would be able to detect and

classify them. Also, in the standard paradigm test it was noticed that because

playing an instrument forces the performer to repeat the same motions somewhat

accurately, it is a good tool to detect minor deviations in motion style that could

be used to infer on the emotional and possibly physiological changes. Thus,

tracking a performer playing an instrument could be used as a measurement tool

for subtle physiological responses to emotional states. In addition to this, it could

be used as a non-intrusive bio-feedback setting devised to help a subject regulate

physiological and emotional states.

In a related topic but closer to music pedagogy, we have also seen that the

successful communication of emotion is a challenge for performers. We have

observed that by simply asking the performer to play in a certain emotion or

report the emotion they are expressing we challenge them to not only play and

feel but also control what is felt and be aware of it. This awareness is a primary

key in successful communication, since if one is not aware of what one is

transmitting, how is the information expected to be conveyed to the other? This

is where our system can really come into play. Using a system such as this while

performing or practicing, forces the performer to become aware of the emotion
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and mood of the performance and thus adjust the performance accordingly via

feedback. In this research, the system was only trained based on the emotions

the performers were instructed to play in the first and second sections. However,

using the results of the listening tests and performing more listening evaluations

on the rest of the recorded data, the algorithm could be trained based on an

average audience perception. This could then better represent the audience in a

performance feedback scenario. Using this and training on the complete data set

could create a system that is trained on many samples and is quite intelligible

regarding the audience perception of emotion in a variety of performances.

Moreover, the displays designed in the evaluation of this research are novel

ways at observing the phenomena of communication in performance. The idea of

the Confusion Cube represents the interaction that exists between performer,

listener, and model. This is complementary to the Lens model and Lens equation

described in [Juslin, 2000] and [Juslin and Timmers, 2010]. However, in contrast

to the lens model and the lens equation that numerically evaluate and describe

the overall success rate of a performance, the confusion cube describes which

emotion categories fail in communication and which succeed. It could also show

where in the “optic” path of lens model the failure occurred, whether it was

between the performer and the model, the performer and the listener, or the

listener and the model, thus pointing to one of the three factors: G, Re or Rs in

the lens equation as described in the background section. Finally, it could show

which emotion it was confused with and then possibly allow a correction. The
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emotion paths add to this and describe the communication success through a

temporal window during the performance. In this research, a window of 10–20

seconds proved to be a good time to observe deviations between performer,

audience, and algorithm. During a window shorter than this, it was sometimes

difficult to establish a meaningful observation and a longer window seemed to

average out the local deviations that occurred during the performance.

The display of emotion paths is also interesting from a musicological

perspective. If the algorithm is trained to accurately represent the audience in

determining the emotional path, then one could obtain an average musical mood

as well as the general musical path of a piece simply by playing it with the

system. This again, comes down to the matter of awareness. A composer or

songwriter might think that his piece conveys a certain emotion due to the lyrics

or the emotion he is currently feeling. But the algorithm (and perhaps audience)

might think otherwise and this feedback is important to any composer. Even the

mere fact that during the entire piece the algorithm is stuck on one emotion

could alert the composer that the piece is not evolving and might need some

modifications.

Finally, from a music-engineering point of view, an obvious future research

that should be carried out is, now that we know this information regarding our

performance, how do we use this to augment the musical experience in real time?

An immediate application could be displaying objects or videos on a screen in a

performance, corresponding to the musical mood, similar to the background
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coloring of the piano roll in our system. Another option could be continuously

controlling and adjusting audio effects or synthesized sounds that correspond to

detected expressions. Future research should address questions regarding the

relationship between certain effects such as reverb or vibrato and emotions and

the use of these correlations in live performance. This would render the system

not only emotionally intelligent but also musically competent.
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Gyroscope-based conducting gesture recognition. NIME09.

[Hursch et al., 1964] Hursch, C., Hammond, K., and Hursch, J. (1964). Some
methodological considerations in multiple-cue probability studies.
Psychological Review, 71(1):42.

[Jackendoff and Lerdahl, 1983] Jackendoff, R. and Lerdahl, F. (1983). A
generative theory of tonal music. Cambridge, Mass.: MIT Press.

[James, 1884] James, W. (1884). What is an emotion? Mind, (34):188.

[Juslin, 1997] Juslin, P. (1997). Emotional communication in music performance:
A functionalist perspective and some data. Music perception, pages 383–418.

[Juslin, 2000] Juslin, P. (2000). Cue utilization in communication of emotion in
music performance: Relating performance to perception. Journal of
Experimental Psychology: Human perception and performance, 26(6):1797.

[Juslin and Madison, 1999] Juslin, P. and Madison, G. (1999). The role of timing
patterns in recognition of emotional expression from musical performance.
Music Perception, pages 197–221.

[Juslin and Scherer, 2005] Juslin, P. and Scherer, K. (2005). The new handbook
of methods in nonverbal behavior research. chapter Vocal expression of affect.
Oxford University Press, Oxford, UK.



122

[Juslin and Timmers, 2010] Juslin, P. and Timmers, R. (2010). Expression and
communication of emotion in music performance. In Juslin, P. N. and Sloboda,
J. A., editors, In Music and Emotion: Theory and Research., pages 454–489.
New York: Oxford University Press.

[Juslin, 2003] Juslin, P. N. (2003). Five Facets of Musical Expression: A
Psychologist’s Perspective on Music Performance. Psychology of Music,
31(3):273–302.

[Kierkegaard, 1843] Kierkegaard, S. (1843). Either/or: A fragment of life.
ePenguin.

[Kivy, 1980] Kivy, P. (1980). The corded shell: Reflections on musical expression.
Princeton University Press Princeton.

[Kivy, 1989] Kivy, P. (1989). Sound sentiment. Temple University Press.

[Landis and Koch, 1977] Landis, J. R. and Koch, G. G. (1977). The
measurement of observer agreement for categorical data. biometrics, pages
159–174.

[Lange, 1885] Lange, C. G. (1885). The mechanism of the emotions. The
Classical Psychologists. Boston: Houghton Mifflin, 1912.

[Levitin and Cook, 1996] Levitin, D. J. and Cook, P. R. (1996). Memory for
musical tempo: Additional evidence that auditory memory is absolute.
Attention, Perception, & Psychophysics, 58(6):927–935.

[Marshall and Zimbardo, 1979] Marshall, G. D. and Zimbardo, P. G. (1979).
Affective consequences of inadequately explained physiological arousal.

[MATLAB, 2010] MATLAB (2010). version 7.10.0 (R2010a). The MathWorks
Inc., Natick, Massachusetts.

[Meyer, 1956] Meyer, L. (1956). Emotion and meaning in music. University of
Chicago Press.

[Miller, 1956] Miller, G. (1956). The magical number seven, plus or minus two:
some limits on our capacity for processing information. Psychological review,
63(2):81.

[Müller, 2007] Müller, M. (2007). Information retrieval for music and motion,
volume 6, chapter Fundamentals on Motion Capture Data. Springer Berlin.

[Narmour, 1992] Narmour, E. (1992). The analysis and cognition of melodic
complexity: The implication-realization model. University of Chicago Press.

[Nussbaum, 2007] Nussbaum, C. O. (2007). The musical representation:
meaning, ontology, and emotion. Mit Press.



123

[Odowichuk et al., 2011] Odowichuk, G., Trail, S., Driessen, P., Nie, W., and
Page, W. (2011). Sensor fusion: Towards a fully expressive 3d music control
interface. In Communications, Computers and Signal Processing (PacRim),
2011 IEEE Pacific Rim Conference on, pages 836–841. IEEE.

[Parncutt, 2006] Parncutt, R. (2006). The child as musician. chapter Prenatal
Development. Oxford University Press.

[Powers, 2007] Powers, D. M. (2007). Evaluation: From precision, recall and
f-factor to roc, informedness, markedness & correlation. School of Informatics
and Engineering, Flinders University, Adelaide, Australia, Tech. Rep.
SIE-07-001.

[Raffman, 1991] Raffman, D. (1991). The meaning of music. Midwest Studies in
Philosophy, 16(1):360–377.

[Read, 1979a] Read, G. (1979a). Music notation: A manual of modern practice,
chapter Brief History of Music Notation. Taplinger Publishing Company.

[Read, 1979b] Read, G. (1979b). Music notation: A manual of modern practice,
chapter Dynamic Markings. Taplinger Publishing Company.

[Read, 1979c] Read, G. (1979c). Music notation: A manual of modern practice,
chapter Accents and Slurs. Taplinger Publishing Company.

[Repp, 1994] Repp, B. (1994). On determining the basic tempo of an expressive
music performance. Psychology of Music, 22:157–157.

[Ringer, 2009] Ringer, M. (2009). Schubert’s theater of song. Amadeus Pr.

[Russell, 2003] Russell, J. A. (2003). A circumplex model of affect. Journal of
Personality and Social Psychology., 39(6):1161–1178.

[Schachter and Singer, 1962] Schachter, S. and Singer, J. (1962). Cognitive,
social, and physiological determinants of emotional state. Psychological
Review; Psychological Review, 69(5):379.

[Scheirer, 1998] Scheirer, E. (1998). Tempo and beat analysis of acoustic musical
signals. The Journal of the Acoustical Society of America, 103:588.

[Schubert, 2003] Schubert, E. (2003). Update of the Hevner adjective checklist.
Perceptual and motor skills, 96(3 Pt 2):1117–22.

[Seashore, 1938] Seashore, C. (1938). Psychology of music. Dover Publications.

[Seashore and Metfessel, 1925] Seashore, C. E. and Metfessel, M. (1925).
Deviation from the regular as an art principle. Proceedings of the National
Academy of Sciences of the United States of America, 11(9):538.



124

[Shove and Repp, 1995] Shove, P. and Repp, B. (1995). Musical motion and
performance: Theoretical and empirical perspectives. The practice of
performance, pages 55–83.

[Solid State Technology, 2010] Solid State Technology, I. (2010). Introduction to
MEMS gyroscopes. Technical report, Solid State Technology.

[Spencer, 1875] Spencer, H. (1875). The origin and function of music.

[Timmers, 2007] Timmers, R. (2007). Vocal expression in recorded performances
of schubert songs. Musicae Scientiae, 11(2):237–268.

[Todd, 1985] Todd, N. (1985). A model of expressive timing in tonal music.
Music Perception, pages 33–57.

[Todd, 1992] Todd, N. (1992). The dynamics of dynamics: A model of musical
expression. The Journal of the Acoustical Society of America, 91:3540.

[Toyoda, 2007] Toyoda, S. (2007). Sensillum: an improvisational approach to
composition. In NIME, volume 7, pages 254–255. Citeseer.

[Varni et al., 2010] Varni, G., Mancini, M., Volpe, G., and Camurri, A. (2010). A
System for Mobile Active Music Listening Based on Social Interaction and
Embodiment. Mobile Networks and Applications, 16(3):375–384.

[Walton, 1988] Walton, K. L. (1988). What is abstract about the art of music?
Journal of Aesthetics and Art Criticism, pages 351–364.

[Widmer and Goebl, 2004] Widmer, G. and Goebl, W. (2004). Computational
models of expressive music performance: The state of the art. Journal of New
Music Research, 33(3):203–216.



Influence of Input Parameters on Dynamic Orbital
Stability of Walking: In-Silico and Experimental
Evaluation
Federico Riva1*, Maria Cristina Bisi1, Rita Stagni1,2

1 Department of Electrical, Electronic, and Information Engineering ‘Guglielmo Marconi’, University of Bologna, Bologna, Italy, 2 Health Sciences and
Technologies – Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy

Abstract

Many measures aiming to assess the stability of human motion have been proposed in the literature, but still there is
no commonly accepted way to define or quantify locomotor stability. Among these measures, orbital stability analysis
via Floquet multipliers is still under debate. Some of the controversies concerning the use of this technique could lie
in the absence of a standard implementation. The aim of this study was to analyse the influence of i) experimental
measurement noise, ii) variables selected for the construction of the state space, and iii) number of analysed cycles
on the outputs of orbital stability applied to walking. The analysis was performed on a 2-dimensional 5-link walking
model and on a sample of 10 subjects performing long over-ground walks. Noise resulting from
stereophotogrammetric and accelerometric measurement systems was simulated in the in-silico analysis. Maximum
Floquet multipliers resulted to be affected by both number of analysed strides and state space composition. The
effect of experimental noise was found to be slightly more potentially critical when analysing stereophotogrammetric
data then when dealing with acceleration data. Experimental and model results were comparable in terms of overall
trend, but a difference was found in the influence of the number of analysed cycles.
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Introduction

Stability, in terms of capability to walk without falling or
stumbling, is a crucial feature of gait [1,2]. Loss of dynamic
stability while walking can lead to falls, which represent a major
problem for community and public health, with large clinical and
economic consequences [3,4]. Moreover, the majority of fall-
related injuries in older adults occur during walking [5–7]. The
possibility to detect a loss of stability, offline or in real-time,
would represent an improvement in the understanding of the
mechanisms related to falls. The capability to quantify
decreased dynamic stability could lead to the development of
devices alerting the subject (or the clinician) of potentially
critical situations in order to prevent the fall, particularly in the
case of long walks. Moreover, subjects with low gait stability
could be selected for fall prevention programs.

Several stability indices have been proposed in the literature
for clinical application [2,7–10], among them, measures coming

from nonlinear analysis of dynamical systems are particularly
interesting.

Many human tasks are structurally cyclic, and show a
periodic-like behaviour. A motor task can be treated as a
nonlinear dynamic system: biomechanical variables (e.g. joint
angles, accelerations) vary during the temporal evolution of the
task, defining a system whose kinematics continuously
changes over time according to a controlled pattern.
Techniques for nonlinear stability analysis basically consist in
the quantification of the tendency of an orbit (defined by the
temporal evolution of a set of variables called state space) to
diverge from (or converge to) the previous orbit or a repelling/
attracting limit cycle.

Two main approaches for nonlinear stability analysis in
biomechanics are proposed in the literature: local and orbital
stability analysis. These nonlinear measures of dynamic
stability quantify different properties of system dynamics [11].

In particular, orbital stability analysis can be applied to
periodic systems with a limit cycle behaviour; it has been
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extensively used in the study of passive dynamic walking
robots [12] and, in recent years, it has been applied to
biomechanics also [2,11,13–16]. Fundamental indicators of
orbital stability are Floquet multipliers (FM). FM quantify,
discretely from one cycle to the next, the tendency of the
system's states to return to the periodic limit cycle orbit. If FM
have magnitude < 1, perturbations tend to shrink by the
following repetition, and the system remains stable [11].
Smaller FM’s imply higher stability [17].

Despite the lack of evidence of a direct correlation between
maxFM and fall risk [10], still FM were found to be higher in fall-
prone older adults than in healthy subjects [1], and capable to
detect perturbations during walking [18]. For this reason, FM
could be used in the detection of real time short-term
potentially critical variations in stability.

Deriving from the nonlinear analysis of dynamic systems,
orbital stability analysis finds its main application in robotics.
When assessing the stability of a robot (e.g. a walker), the
equations of motion and the nature of the controllers are
known, allowing an adequate selection of the variables that
properly characterize the system and the implementation of the
analysis in an analytical or semi-analytical way [19]. However,
when dealing with human biomechanical time series, equations
of motion and control laws are unknown. FM must hence be
calculated numerically, and with no a-priori knowledge on the
more appropriate variables that define the system. This lack of
knowledge makes the implementation not straightforward.

Beyond the mathematical implications, it is however
important to highlight that applying this analysis to human gait
implies several assumptions: i) human gait is an inherently
stochastic system, while Floquet theory applies to deterministic
limit cycle systems; ii) walking trajectories are continuously "re-
perturbed" by stochastic perturbations that are often internal to
the system. Since one of the main assumptions behind the
application of this technique is the existence of a limit cycle
trajectory, a reference trajectory for human stable walking has
to be chosen. To cope with this situation, the average trajectory
during the motor task is assumed as limit cycle, although the
likely asymmetrical nature of the basin of attraction of human
walking.

Orbital stability analysis preliminarily resulted to detect gait
instability [1,18], suggesting its effectiveness despite the many
theoretical assumptions, but reference values for orbital
stability of stable human walking are not known and, in the
literature, incoherent results are reported [20]. This
incoherence is likely to result from the absence of a standard
implementation of the technique. In particular, the influence to
experimental input noise, state space construction, and
analysed cycles has not been characterized yet. No unique
way of defining the state space of a given motor task was
defined in the literature: which and how many variables should
be included in the state space and how this choice affects the
results of the numerical calculation of orbital stability analysis
have not been analysed yet. A similar problem was examined
in the literature [21]: the performance of local dynamic stability
was analysed when applied to a Lorentz attractor and an
experimental sewing task, but this did not allow to draw clear
conclusions about locomotion. Another relevant issue is the

minimum and optimum number of task cycles to be analysed in
order to obtain reliable orbital stability results: this issue was
addressed before [22], but only for experimental treadmill
walking. Moreover, it is not clear yet how the experimental
noise can affect FM calculation.

In this scenario, the analysis of physiological signals of gait
(e.g. accelerations, joint angles) from a walking stable model
can allow the assessment of the influence of i) experimental
noise, ii) state space variables and iii) number of analysed
cycles on FM values.

In order to obtain indications applicable in experimental
conditions, model data must be comparable with experimental
data. Signals extracted from a stable walking model are hence
required.

Some authors performed simulation studies on orbital
stability of 1 or 2-link walking models related to fall risk
[19,23,24]. However, these are simplified models and simulate
very peculiar walking conditions. Simplicity is both the strength
and the limitation of these models: their walking conditions can
be easily manipulated, but they generate signals that
significantly differ from physiologic human gait. Stability
analysis on a more complex model can better describe human
walking, allowing the comparison between model and
experimental results. In order for the model to produce
kinematics as similar as possible to stable human gait, the
required conditions for the model are a continuous walk and
the absence of falls or stumbles, regardless of control laws and
implementation details.

The aim of the present study was to analyse, from an
applicative point of view, the influence on the final results of
orbital stability analysis applied to walking of i) experimental
measurement noise, ii) selection of the variables for the
reconstruction of the state space iii) number of analysed cycles
on a 2-dimensional 5-link walking model [25], providing walking
patterns of known stability. Results of in-silico analysis were
compared to those obtained experimentally on 10 subjects
performing long overground walks.

Methods

Overview
In-silico orbital stability analysis of a 5-link stable walking

model [25] was performed. The model showed continuous
walking, free of falls or stumbles, for all the simulation period
(300 strides). This was also assured by a check on step
variability, which was minimal following visual inspection of the
phase portraits. In order to properly calculate orbital stability,
model was slightly perturbed. The analysis was performed for
increasing number of cycles (from 10 to 300), based on
differently composed state spaces (including different joint
angles and/or accelerations). Semi-analytical value of the
maxFM of the model was also calculated for reference.
Simulated experimental error and noise were added to the
segmental kinematics of the model and the sensitivity of orbital
stability analysis was evaluated. Orbital stability analysis was
also performed on data collected experimentally on 10
subjects; given the impossibility to use a
stereophotogrammetry system on a long outdoor road, only
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acceleration data were acquired experimentally. Orbital stability
was calculated using an established technique [13].

In-silico data
The 2-dimensional, 5-link biped walking model analysed [25]

consisted of a trunk, two thigh and two shank segments (Figure
1). The model orientation was described by stance and swing
knee angles, stance and swing hip angles and upper body
angle (φk,sw, φk,st, φh,st, φh,sw, φub, all referred to gravity direction).
The dynamics of the model consisted of a continuous swing
phase during which the swing leg smoothly swinged past the
stance leg, and an istantaneous, fully inelastic heel strike when
the swing foot touched the floor. The swing leg knee contained
a hyper-extension stop and a latch that was activated upon full
extension to hold the leg straight. There were a total of four
control torques on the model, at the stance/swing knee and at
the stance/swing hip. All control torques were implemented
with fixed gain proportional-derivative (PD) controllers (with kp
= 100 Nm and kd = 10 Nms).

Small random perturbations were added to the state
variables at each heel strike event as uniformly distributed
random numbers having maximum amplitude ±10*10-4. This
maximum amplitude was chosen based on the maximum
perturbation that the model could tolerate without falling.

The model was adapted to perform 315 consecutive strides.
The first 15 strides of the simulation were discarded in order to
assure stable walking condition. The simulation was performed
using a MATLAB’s (Mathworks, Natwick, NA) fourth- and fifth-
order variable time-step Runge-Kutta solver (ode45, with
relative error tolerance set to 10-12). Joint angles were
expressed using Grood and Suntay approach [26].
Accelerations of the trunk segment at the level of the fifth
lumbar vertebra (L5) were obtained by the second derivative of
the position of a point located at 1/8 of the trunk segment.

Segmental kinematics data obtained from the model were
used to reconstruct experimental data from a
stereophotogrammetric system (joint angles) and a single
inertial sensor located on the trunk (accelerations). Simulated
experimental noise and errors were superimposed to
segmental kinematics signals obtained from the model.

Clusters of 4 markers were virtually applied to all the
segments of the model (trunk, thighs and shanks, for a total of
20 markers) and simulated instrumental normally distributed
noise with a standard deviation of 0.2 mm was added to the
marker position in 2-d space. Technical reference frames were
calculated from the cluster positions, and the position of the
segment extremities relative to these frames was estimated. A
mis-localization error of anatomical landmark positions (Table
1) was also added to the estimate of the position of segment
extremities [27]. Joint angles were then calculated from the
relative orientation of the anatomical reference frames [28].

Instrumentation noise (white noise with an SNR of 10 dB and
alignment errors with a normal distribution and a standard
deviation of 0.1 degrees), compatible with use of commercial
accelerometers, was added to acceleration signals of the trunk
segment at the level of L5. Smaller magnitudes of noise were
also analysed that led to comparable results, therefore, only
the most potentially critical conditions were reported.

Experimental data
10 healthy participants [age 28 ± 3 years, height 174 ± 11

cm, weight 67 ± 13 kg] were included in the study. Two
synchronized tri-axial inertial sensors (Opal, APDM, Portland,
OR, USA) were placed on the participants at the level of L5
and of the right shank, for measuring angular velocity of the
lower leg. Accelerations and angular velocities were recorded.
The range of the accelerometers was ±2G and sampling rate
was 128 samples/second. The participants were instructed to
walk straight at self-selected speed on a 250 m dead-end long
road.

Ethics Statement
The Bioetihcal Committee of the University of Bologna

approved this study (July 7, 2012). Written informed consent
was obtained from the participants.

Data processing
Orbital stability analysis was implemented according to

methodology described in the literature [13,23,24,29].
Seven state spaces (six for model-data and one for

experimental data) were analysed (Table 2), based on the
literature about orbital stability of human gait [11,15,16]. Two
approaches were used. Five state spaces were constructed
directly including time series into the state space. These state
spaces (Table 2) included model knee flexion-extension joint
angles (WMk), model hip flexion-extension joint angles (WMh),
model knee+hip+trunk flexion-extension joint angles (WMhkt)

Table 1. Precision of the palpable anatomical landmark
position (in millimeters) in the relevant mean anatomical
frame obtained by Della Croce et al., 1999.

Anatomical landmark x y
Greater trochanter (GT) 12.2 11.1
Medial Epicondyle (ME) 5.1 5.0
Lateral Epicondyle (LE) 3.9 4.9
Medial Malleolus (MM) 2.2 2.6
Lateral Malleolus (LM) 2.6 2.4

For ME, LE and MM, LM the mean value between the two was used in the
analysis.
doi: 10.1371/journal.pone.0080878.t001

Figure 1.  Schematic representation of the 5-link 2-dimensional model (Solomon et al., 2010).  
doi: 10.1371/journal.pone.0080878.g001
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and experimental accelerations in the V and AP directions
(EXPa). Two state spaces were constructed using delay
embedding [30,31] of model AP (WMaAP) and V (WMaV) trunk
acceleration signals. An embedding dimension of dE = 5 was
chosen, as several published studies supported this delay
dimensions appropriate for gait data [22,31,32]. A fixed time
delay τ = 10 was chosen [22,32].

For both model and experimental data, a stride cycle was
considered as the interval between two consecutive right heel
strikes. For experimental data, right heel strike instants were
estimated from the angular velocity of the lower limb with a
method based on wavelet analysis [33]. Strides were
resampled to 101 samples, because Floquet theory requires a
strictly periodic system. Experimental data were analysed
without filtering, to prevent complications resulting from linear
filtering of nonlinear signals [34]. A Poincaré section was
defined at each percentage of the gait cycle (0% = right heel
strike).

The Poincaré map:

Sk+1FSk (1)

defines the evolution of the state Sk to the state Sk+1 at each
Poincaré section, for each stride k.

The limit cycle trajectory was defined as the average
trajectory across all strides, defining a fixed point in each
Poincaré section:

S*FS* (2)

A linear approximation of equation (1):

Sk+1S*≈JS*SkS* (3)

allows to calculate how system states diverge from or
converge to fixed points. The FM are the eigenvalues of the
Jacobian matrix J(S*). The maximum FM (maxFM) is believed
to govern the dynamics of the system, and hence to be the
most representative in terms of instability. If the maxFM have
magnitude < 1, the system is stable, otherwise, the system
tends to diverge from the limit cycle and is unstable. maxFM
were calculated for each Poincaré section (0 – 100% of the gait
cycle), and the overall mean value of maxFM across the gait
cycle was calculated and used in this analysis.

Orbital stability analysis on model-data was performed on the
seven different state spaces (Table 2). Both noise-free and
noisy conditions were analysed, as well as experimental data.
Mean values of maxFM along the gait cycle were calculated for
increasing number of strides (from 10 to 300 for model-data,
from 10 to 160 for experimental data).

In order to perform a sanity check of the results obtained
from numerical calculation of maxFM on model time series,
semi-analytical calculation of the FM was performed. The full
10-dimensional state space (composed of angular velocities
and accelerations) was considered for this analysis. Instead of
estimating S*, the stable period one solution was taken. Ten
strides were then simulated (being the state space 10-
dimensional), each one with a small perturbation of one the
state variables at the heel strike instant. States at heel strike
after the perturbation were then put in matrix form; S* was then
subtracted from said matrix, obtaining the right hand side of Eq.

3. This matrix was then divided by the magnitude of the initial
perturbation in order to obtain J matrix [19,35].

Results

Semi-analytical calculation of the FM of the model led to a
value of maxFMsa = 0.23.

Experimental noise had a slight but non-negligible influence
on maxFM for state spaces composed by joint angles (WMhkt,
WMk and WMh). Analysis on these state spaces in noise-free
conditions led to mean values of maxFM along the gait cycle
that decay with the increase of the analysed stride cycles, until
reaching the values 0.27, 0.15 and 0.22 respectively. For all
state spaces about 130 strides were needed to reach steady
values. Standard deviation slightly decreased with the increase
of the number of stride cycles (Figure 2). State spaces
composed by noise-affected signals showed a similar overall
trend, but seemed to reach slightly different steady values,
especially for WMhkt state space (Figure 3).

MaxFM calculated on noise-free acceleration state spaces,
both 2- and 5-dimensional (WMa, WMaAP and WMaV),
behaved similarly: values of maxFM gradually decreased,
starting from values between 0.5 and 0.9, until stabilizing
around values a little lower to the ones previously found for non
noise affected joint angle state spaces (0.13 - 0.19) with a
standard deviation of about 0.04 (Figure 4). About 130 strides
were needed in order to reach steady values. Results coming
from analysis of noisy accelerations signals were practically
identical to those obtained from noise-free signals for overall
trend, number of required strides and numerical values (Figure
5).

MaxFM calculated on experimental acceleration state space
(EXPa) showed decreasing value for increasing number of

Table 2. Description of the state spaces.

Acronym Description Composition

WMk
Swing+stance knee flexion/
extension joint angles (model)

WMk(t) = [ϕk,st(t), ϕk,sw(t)] ∈ R2

WMh
Swing+stance hip flexion/
extension joint angles (model)

WMh(t) = [ϕh,st(t), ϕh,sw(t)] ∈ R2

WMhkt
Knees, hips and trunk flexion/
extension joint angles (model)

WMhk(t) = [ϕk,st(t), ϕk,sw(t), ϕh,st(t),
ϕh,sw(t), ϕt(t)] ∈ R5

WMaAP
5-dimensional delay embedding of
AP accelerations of L5 (model)

WMaAP(t) = [aAP(t), aAP(t + τ), …,

aAP(t + (dE - 1)τ)] ∈ R5

WMaV
5-dimensional delay embedding of
V accelerations of L5 (model)

WMaV(t) = [aV(t), aV(t + τ), …, aV(t
+ (dE - 1)τ)] ∈ R5

WMa
Accelerations in the AP and V
direction of L5 (model)

WMa(t) = [aAP(t), aV(t)] ∈ R2

EXPa
Accelerations in the AP and V
direction of L5 (experimental)

EXPa(t) = [aAP(t), aV(t)] ∈ R2

φk,st and φk,sw are flexion/extension knee angles for stance and swing limb;
similarly, φh,st and φh,sw are flexion/extension hip angles. φt is flexion/extension
trunk angle. aAP and aV are accelerations of the trunk at the level of L5 in anterior-
posterior and vertical directions. For delay-embedded state spaces, τ is time delay
and dE is the embedding dimension (τ = 10, dE = 5).
doi: 10.1371/journal.pone.0080878.t002
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cycles analysed, reaching values close to 0.4 from 80 cycles
on, with a standard deviation of about 0.1 (Figure 6).

Discussion

The possibility to have a reliable locomotor stability index is
of fundamental importance in early identification and treatment
of older adults with high predisposition to fall, and possibly in
real-time gait instability detection also. However, still there is no
unique definition of locomotor stability in the literature. Orbital
stability analysis via maxFM seems promising for the analysis
of cyclic locomotor tasks. However, when dealing with
biomechanical time series, the equations of motion are
unknown, excluding the possibility to calculate maxFM in an
analytical or semi-analytical way. Numerical calculation of
maxFM from experimental time series is hence required, but it

is not clear yet how different implementations of this analysis
can influence the stability estimations.

In this explorative study, orbital stability analysis was applied
to a 5-link stable walking model. The walking model was used
in order to produce signals (joint angles and trunk
accelerations) as similar as possible to real human gait signals.
Stability was assumed, since the model didn’t show any fall or
stumble during the simulation period. Different implementations
of numerical orbital stability analysis were then performed on
the biomechanical signals obtained from the model. As a
reference, semi-analytical calculation of FM of the model was
performed. The aim was to better understand the influence of
number of analysed cycles, state space composition and
experimental noise on the stability outputs.

The magnitude of maxFM obtained in this study was lower
than values obtained in previously published simulation studies

Figure 2.  maxFM obtained for model state spaces WMhkt, WMk and WMh (clean signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g002

Figure 3.  maxFM obtained for model state spaces WMhkt, WMk and WMh (noisy signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g003

Figure 4.  maxFM obtained for model state spaces WMa, WmaAP and WMaV (clean signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g004

Figure 5.  maxFM obtained for model state spaces WMa, WmaAP and WMaV (noisy signals) for increasing number of stride
cycles.  Error bars represent standard deviation calculated over the stride cycle. The dotted line (SA) represents the semi-analytical
value of the maxFM.
doi: 10.1371/journal.pone.0080878.g005

Figure 6.  maxFM obtained for experimental state space EXPa for increasing number of stride cycles.  Error bars represent
standard deviation calculated over the stride cycle.
doi: 10.1371/journal.pone.0080878.g006
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[19,23,24]. Whereas those studies analysed the behavior of 1-
or 2-link walking models, in our study walking of a 5-link model
was analysed. A possible explanation is that the higher model
complexity allows for a higher number of state variables to
compensate for perturbations, thus leading to higher stability.
However, as also explicitly stated by Roos and Dingwell [24],
the main aim of the previous published works was to show the
general relationship between fall risk and stability measures,
and not to give exact numerical values.

According to the results of the present study, the number of
cycles analysed plays a fundamental role. From a theoretical
point of view, the number of analysed cycles cannot be smaller
than the dimension of the state space otherwise the set of
equations would be underdetermined. Once the dimension of
the state space is reached, the analysis of more gait cycles
leads to a better estimate of the true attractor [22] in presence
of physiological gait variability and experimental noise.

Orbital stability analysis performed on noise-free signals from
the stable walking model resulted in maxFM values close to the
reference value of maxFMsa = 0.23, as provided by the semi-
analytical calculation of maxFM, for both state spaces
composed by joint angles and L5 accelerations. The coherence
between these results is encouraging, as it seems to indicate
that a repeatable value of the maxFM can be obtained
analysing different state spaces. Another similarity among
these results was the dependence on the number of analysed
cycles, since for all state spaces composed by non noise-
affected signals steady results were obtained from about 130
strides on.

For a few number of cycles, maxFM values resulted to be
high and inconsistent, hence probably unreliable. Moreover, for
shorter time series (15 strides), analysis conducted upon
stereophotogrammetric data led to a lower overestimation of
the maxFM with respect to the analysis conducted upon
acceleration data.

Whereas the analysis performed on 5-dimensional state
space WMhkt led to value very close to the semi-analytical
value, 2-dimensional state spaces performed comparably, and
sometimes slightly better (as it is the case for WMh state
space, composed by hip joint angles time series). Whereas a
2-dimensional representation of a complex system may seem
insufficient to provide a proper characterization, compared to a
5-dimensional state space, it may serve the applicative
purpose of obtaining a repeatable index of stability with a
simpler representation of the system dynamics. The
relationship with the stability index obtained with this
implementation and the actual fall risk remains, however, still
undetermined.

Results from the analysis of noisy signals led to slightly
different results between acceleration and
stereophotogrammetric data. Analysis of noisy accelerations of
L5 led basically to the same results obtained for noise-free
signals, for all the state spaces: simulated experimental noise
on inertial sensor data did not influence maxFM calculation.
This can lead to the conclusion that orbital stability analysis
performed on state spaces composed by accelerations coming
from inertial sensors is robust to noise, and that again a high
dimensional (5) reconstruction of the state space may not be

necessary, as a lower dimension (2) state space led basically
to the same results. Analysis of joint angles showed an
influence of experimental noise and mis-localization error,
leading to lower steady values for the maxFM, with the
exception of WMh which remained practically unvaried (and
very close to the reference value of maxFMsa = 0.23).

These results are in agreement with Bruijn et al. [16], who
found a correlation of 0.66 between maxFM obtained from two
measurement systems (accelerometers and optoelectronics).

Experimental trial results on the accelerations-based state
space showed a similar trend with respect to the ones obtained
from the analysis of the same variables derived from the
model; nevertheless, the value of maxFM obtained was slightly
higher, and so the standard deviation. A limitation of this
experimental session was the relatively short length of the
walks (160 strides) with respect to the model-data; given the
high handiness and portability of inertial sensor, however,
future studies can analyse orbital stability of very long
overground walks. On the other hand, 160 strides seem to be
sufficient to reach a steady value for the maxFM.

Based on these results, a reliable implementation of orbital
stability analysis could be obtained from an acceleration-based
state space (reconstructed with delay-embedding or including
in the state space accelerations in different directions) and a
number of stride cycles not lower than 130.

In conclusion, the exploration of the influence of
experimental input parameters in orbital stability analysis led to
interesting results. One of the main issues relative to this
technique is the necessity to properly describe the dynamical
system, in order to obtain a reliable orbital stability index;
hence, the definition of the state space is of crucial importance
for the outputs. The coherence between the results obtained
with differently composed state spaces showed that the same
stability output can be obtained with different implementations
and experimental setup. The number of gait cycles necessary
to obtain these results is also practically identical among these
setups. For the peculiarity of the instrumentation features,
however, stereophotogrammetry system is only suitable for
acquiring such long gait trials when a treadmill is used.

Experimental noise and operator errors have an impact,
although small, on the results when using orbital stability
analysis based on joint angles obtained from
stereophotogrammetric systems. Further studies are needed to
determine if the stability measures obtained from analysis on
these state spaces are really capable to discriminate between
known stability conditions. Experimental noise on
accelerometer data showed no particular influence on the
stability results.

Experimental results were also coherent with the model
results in terms of number of cycles required, supporting the
validity of the stability outcomes. This result confirms the
possibility to obtain reliable orbital stability measures with a
single inertial sensor and could lead to advantages in the
development of a simple and fast data acquisition protocol,
confirming what was found in literature for treadmill walking
[16].
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There are these two young fish swimming along, and they happen to meet an older fish 
swimming the other way, who nods at them and says, ‘Morning, boys, how's the water?’ 
And the two young fish swim on for a bit, and then eventually one of them looks over at 
the other and goes, ‘What the hell is water?’ 

[…] 

The real value of a real education […] has almost nothing to do with knowledge, and 
everything to do with simple awareness. Awareness of what is so real and essential, so 
hidden in plain sight all around us, all the time, that we have to keep reminding ourselves 
over and over: ‘This is water. This is water.’ 

David Foster Wallace, commencement speech to a graduating class at Kenyon College, 
Ohio, May 21 2005. 
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We are at the very beginning of time for the 
human race. It is not unreasonable that we 
grapple with problems. But there are tens of 
thousands of years in the future.  

Our responsibility is to do what we can, learn 
what we can, improve the solutions, and pass 
them on. 

Richard P. Feynman 
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ABSTRACT 

The research field of the Thesis is the evaluation of motor variability and the analysis of 
motor stability for the assessment of fall risk. Since many falls occur during walking, a 
better understanding of motor stability could lead to the definition of a reliable fall risk 
index aiming at measuring and assessing the risk of fall in the elderly, in the attempt to 
prevent traumatic events. Several motor variability and stability measures are proposed in 
the literature, but still a proper methodological characterization is lacking. Moreover, the 
relationship between many of these measures and fall history or fall risk is still unknown, 
or not completely clear. 

The aim of this thesis is hence to: i) analyze the influence of experimental implementation 
parameters on variability/stability measures and understand how variations in these 
parameters affect the outputs; ii) assess the relationship between variability/stability 
measures and long- short-term fall history.  

Several implementation issues have been addressed. Following the need for a 
methodological standardization of gait variability/stability measures, highlighted in 
particular for orbital stability analysis through a systematic review, general indications 
about implementation of orbital stability analysis have been showed, together with an 
analysis of the number of strides and the test-retest reliability of several 
variability/stability numbers. Indications about the influence of directional changes on 
measures have also been provided. Association between measures and long/short-term 
fall history has also been assessed. Of all the analyzed variability/stability measures, 
Multiscale entropy and Recurrence quantification analysis demonstrated particularly good 
results in terms of reliability, applicability and association with fall history. Therefore, 
these measures should be taken in consideration for the definition of a fall risk index. 
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I. INTRODUCTION 

I.1. FALLS IN THE ELDERLY 

 

“A fall […] is an event which results in a person coming to rest unintentionally on the 
ground or lower level, not as a result of a major intrinsic event (such as a stroke) or 

overwhelming hazard.” [1] 

 

Considered to be one of the so-called geriatric giants, falls place a heavy economic 
burden on society, and are also responsible for a considerable loss of life quality. In 2009 
alone, falls led to costs ranging between 0.85 and 1.5 per cent of the total healthcare 
expenses within the USA, Australia, EU and the UK [2]. Falls also have a critical 
influence on health status, with approximately 81-98% of hip fractures caused by falls 
[3,4], and are the leading cause of injury-related visits to emergency departments in the 
USA [5]. 

Risk of a falling increases with age [6,7]; falls are and the primary etiology of accidental 
deaths in persons over the age of 65 years. The mortality rate for falls increases 
dramatically with age, with falls accounting for 70 percent of accidental deaths in persons 
75 years of age and older [5]. The main associated costs therefore tend to occur in higher 
age groups and in the wake of fractures, a problem that is further exacerbated by the 
increasing proportion of elderly among the population [8].  

There are currently over 400 known risk factors for falls [9], classified into extrinsic (or 
environmental), intrinsic (or personal) and task-related factors [10,11]. Extrinsic factors 
comprise all external influences and might include factors such as poor lighting, surface 
elevation, surface roughness, obstacles, clothing/footwear, lack of equipment or aids, or 
external perturbations. Task-related factors include task complexity and speed, fatigue, 
load handling. Intrinsic factors reflect individual differences in, among others, age and 
gender, muscular strength, reaction time, visual impairment (e.g. glaucoma, macular 
degeneration, retinopathy), ethnicity, use of drugs and medications (e.g. polypharmacy, 
sedatives, cardiovascular medications), living alone, sedentary behavior, psychological 
status, impaired cognition (e.g. dementia), cardiovascular issues and foot problems. In 
addition, history of falls as well as impaired stability and mobility (e.g. as a result of 
stroke, parkinsonism, arthritic changes, neuropathy, neuromuscular disease or vestibular 
disease) can be considered as higher level factors owing to their interdependency with 
both intrinsic and extrinsic factors. While knowledge of the environment is known to play 
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a role in minimizing the effect of intrinsic and task-related factors on instability, extrinsic 
factors cannot generally be controlled, tested or accounted for in clinical assessment. 
Intrinsic factors have also been identified as major risk factors for falling. In particular, 
gait instability is considered to be a major fall risk factor, particularly in geriatric patients 
[12–14]; however, the quantification of gait stability is still an issue [8]. 

Several interventions to prevent falling (and associate injuries) have been proposed [15], 
but in order to correctly select individuals to which prescribe appropriate interventions, a 
reliable identification of individuals at risk of falling is needed [16]. Since many falls in 
the elderly occur during walking [17,18], assessment of gait stability represents a 
fundamental aspect. 

I.2. ASSESSMENT OF GAIT STABILITY 

The most established techniques to quantify fall risk are (i) motor function tests, (ii) 
questionnaires, and (iii) biomechanical laboratory-based measurements. However, since 
motor function tests and questionnaires are generally not capable of providing a 
quantitative predictive assessment of gait stability or fall risk [19,20], biomechanical 
laboratory-based measurements can help defining subject-specific methods with high 
sensitivity and specificity for gait stability assessment [8]. 

As said above, assessment of gait stability can allow the identification of subjects at risk 
of falling, being an important and necessary precondition for walking without falling. 
However, while stability is a well-defined concept in mechanics, there still is no complete 
consensus on how to measure stability of gait. Several methods are currently available, 
each one having advantages and disadvantages.  

The term gait stability is comprehensive of both indirect as well as direct biomechanical 
aspects of stability during gait. These aspects can be measured and quantified, and hence 
could contribute to the definition of a subject-specific fall risk index. Indirect assessment 
of gait stability is represented by kinematic variability measures; when error corrections 
during a motor task become less effective, variability increases. It can therefore be 
assumed that variability is related to fall risk, because increased variability may bring the 
dynamic state of the person closer to the limit of stability [8]. On the other hand, direct 
stability measures not only provide information regarding the disturbances in the motor 
task performance, but also explicitly quantify the performance of the dynamic error 
correction. In addition, other stability-related measures have been recently associated 
with gait stability. 

Mathematical details about indirect, direct and stability-related measures can be found in 
Chapter IX (Appendix). 

I.2.1. Indirect assessment of gait stability 

Kinematic variability measures represent the magnitude of variability of a certain 
kinematic parameter over strides during gait. One of the most established variability 
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measure is stride time variability, expressed in terms of Standard deviation (SD) or 
Coefficient of variation (CV) [17]. 

Somehow complementary measures of stride-to-stride variability are the Inconsistency of 
the variance of the stride time (IV) and the Nonstationary index (NI) [21], which measure 
the fluctuation dynamics of the stride time. 

The Poincaré plot is a widely accepted method for the analysis of 2-D dynamic systems 
[22]; it has been extensively applied in the study of heart rate variability as a qualitative 
visualization tool, but can also be applied to other physiological signals (for example 
stride time). Stride time data plots between successive gait cycles show variability of 
stride time. Plots are used to extract indices, such as length (PSD2) and width (PSD1) of 
the long and the short axes describing the elliptical nature of the plots. 

Whereas variability measures have been shown to be positively correlated with the 
probability of falling in the elderly [17,23], decreased variability has also been reported 
for mobility-impaired subjects, suggesting that these subjects are less stable due to a less 
flexible system [24,25]. Moreover, analyzing the effects of walking speed on stability and 
variability, no relationship between variability and the time needed to recover from a 
perturbation has been found, leading to the conclusion that locomotion variability 
measures may not be dependable indicators of locomotion stability [26] and are not able 
to quantify how the locomotor system responds to perturbations [27]. Hence, the 
relationship between gait variability and stability is not as straightforward as it may seem. 

I.2.2. Direct assessment of gait stability 

Human locomotion is, in all respects, a dynamical system. To test the stability of a 
dynamical system, several tools have been developed, since dynamical systems are often 
nonlinear and complex, and human locomotion definitely is. For this reason, some 
authors applied methods coming from stability analysis of nonlinear dynamic systems to 
biomechanics [8]. 

In theoretical mechanics, stability is defined by how the system state responds to 
perturbations [28]; similarly, an appropriate definition for the stability of a motor task 
should be based on the quantification of the tendency of a subject to recover from small 
(natural or artificial) perturbations occurring during the execution of a structurally cyclic 
task (e.g. gait [29]). However, in mechanics and robotics a state variable is deterministic 
and can predict the future state of the mechanical system: while the behaviour of walking 
robots under perturbation conditions can quite easily be predicted [30], dealing with 
biomechanical time series of human locomotion variables is not as straightforward as in 
robotics. In fact, when dealing with human locomotion the equations of the system are not 
known, and such nonlinear techniques have to be applied in a numerical (rather than 
analytical) fashion. 

A motor task can hence be treated as a nonlinear dynamic system: biomechanical 
variables (e.g. joint angles, angular velocities or accelerations, marker positions, muscle 
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activations and others) vary during the temporal evolution of the task, defining a system 
that continuously changes over time. In a repetitive task, like walking, biomechanical 
variables have a cyclic behavior and recur iteratively with almost the same pattern; this 
pseudo-periodic behavior can be exploited for nonlinear analysis. For example, plotting 
the temporal evolution of knee angle against hip angle will design an orbit, which will 
vary dynamically in time but will maintain almost the same trend. In mechanical 
dynamics, the set of the variables that describe this orbit (two or more) is called state 
space, which can be defined as a vector space where the dynamical system can be defined 
at any point [31]. The number of task cycles (e.g. strides, commonly defined as the 
interval of time that starts at the heel strike of one foot and ends at the following heel 
strike of the same foot [32,33]) will determine how many times the variables will travel 
around the orbit. The locomotor pattern will force those variables to roughly travel around 
a fixed orbit, in a sort of limit cycle behavior. If a perturbation occurs during the motor 
task, the orbit will instantaneously move away from the limit cycle; in case of stability, 
the orbit will then tend back to the limit orbit, otherwise will diverge from it. For 
example, if a significant variation in knee angle occurs during walking (because of an 
obstacle), a coherent variation in hip angle will take place: simply observing the trend of 
one of these variables during the task could bring to misleading conclusions regarding 
stability, whereas embedding the two in the state space gives a more complete 
characterization of the system behavior. If a measure of only one of these time series is 
available, a proper way to obtain a characterization of the system is to embed in the state 
space the variable (e.g. knee angle) and its time-delayed copies; again, if an obstacle 
causes a sudden variation of knee angle, the orbits will reveal if the subject recovered 
stability after getting ahead of the obstacle, getting back to the limit cycle orbit after the 
destabilizing time event. Techniques of nonlinear stability analysis consist then in the 
quantification of the tendency of an orbit to diverge from or converge to the previous one 
or to an attracting limit cycle. Two main approaches for nonlinear stability analysis are 
present in literature: local and orbital stability analysis. These measures of orbital and 
local dynamic stability quantify different properties of system dynamics [34]. 

Local stability is used for systems that do not necessarily exhibit a discernable periodic 
structure, and therefore does not exploit the previously described pseudo-periodicity of 
some motor tasks. It is defined using short-term (sLE) and long-term (lLE) local 
divergence exponents (Lyapunov exponents). These indicators quantify how the system 
state responds to very small (local) perturbations continuously in real time [34]; many 
studies using this approach are present in literature [14,24,27,35–38]. Recently, an 
association between local stability and fall history have been found [39]. 

Orbital stability is defined for periodic systems with a limit cycle behavior, and can then 
be applied to cyclic motor tasks. This approach is extensively used in the study of passive 
dynamic walking robots [30], and in the last years it has been applied also to 
biomechanics [40]. Orbital stability analysis can be applied under the hypothesis of 
periodicity and assuming that motor dynamics (e.g. walking dynamics) are governed by 
central pattern generator processes yielding repetitive limit cycle behavior [41]. 
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Fundamental indicators of orbital stability are Floquet multipliers (FM) which quantify, 
discretely from one cycle to the next, the tendency of the system state to return to the 
periodic limit cycle orbit after small perturbations [34]. If maximum Floquet Multipliers 
(maxFM) have magnitude < 1, perturbations tend to shrink by the next repetition, and the 
system remains stable. Every point on the orbit represents an instant of the task cycle. To 
calculate FM, a section must be defined in some point along the orbit (Poincaré section). 
In theory, the orbital stability of a deterministic limit cycle process should be the same, 
regardless of where along the trajectory the Poincaré section is made; however, human 
walking is not strictly periodic and people respond to perturbations differently during 
different phases of the gait cycle [34]. Hence, many authors put the Poincaré section in 
the most significant phases of the motor task (e.g., for gait, maximum sagittal knee 
flexion, toe off etc.) along the orbit, in order to obtain information about stability in the 
task phases that are more likely affected by perturbations. According to the literature, 
orbital stability analysis seems a promising approach for the definition of a reliable motor 
stability index; it can represent a novel way to predict risk of fall and to identify the most 
unstable phases of a motor task, in order to plan appropriate rehabilitation therapies. The 
most interesting feature of this method is the possibility to account for the whole task 
cycle dynamics, including more variables in the state space characterising the system. 
With a proper choice of Poincaré section, that is a proper choice of interesting instants 
during the task, the stability of every phase of the task cycle can be calculated. However, 
still the use of maxFM as a fall risk index is deemed to be controversial [8]. 

I.2.3. Stability-related measures 

Other measures are present in literature that, whereas not representing a direct assessment 
of gait stability per se, are considered to be related with gait stability as they quantify 
strictly gait-correlated characteristics (such as smoothness, complexity, recurrence). 

Some measures, such as the Index of Harmonicity (IH) and Harmonic Ratio (HR), 
involve decomposing signals into harmonics by means of Discrete Fourier Transform and 
then analyze their spectral components [42,43], in order to obtain a measure of 
smoothness and rhythm of the gait pattern.  

HR, derived from trunk acceleration signals and based on amplitudes in frequency 
spectra, is an indication of smoothness of acceleration patterns and provides information 
on how smoothly subjects control their trunk during walking and gives an indication of 
whole body balance and coordination [42,44].  

Similarly to HR, IH assesses the contribution of the oscillating components to the 
observed coordination patterns by means of spectral analysis [43]. It quantifies the 
contribution of the stride frequency to the signal power relative to higher harmonics. 

Other methods that have been associated with gait stability are Multiscale Entropy (MSE) 
[45,46] and Recurrence Quantification Analysis (RQA) [47,48].  
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MSE quantifies the complexity or irregularity of a time series. Time series derived from 
complex systems, like biological systems, are likely to present structures on multiple 
spatio-temporal scales [45], and MSE has been introduced to this aim.  

RQA is a nonlinear technique that has been applied recently to various biological time 
series, including walking [47]. Based on local recurrence of data points in the 
reconstructed phase space, it provides a characterization of a variety of features of a given 
time series, including a quantification of deterministic structure and non-stationarity [48]. 

I.3. AIM OF THE THESIS 

In the last paragraph, several measures of gait variability and stability proposed in the 
literature have been illustrated; the aim of such measures is quantifying subject specific 
gait characteristics such as gait impairment, degree of neuromotor control and balance 
disorders, in both pathologic and healthy subjects.  

However, still there is no methodological standardization on how to properly implement 
variability/stability analysis measures. These measures often come from the analysis of 
dynamical systems, and depend on many input parameters. The implementation in 
movement analysis is hence not straightforward, and a methodological standardization is 
needed in order to obtain reliable, repeatable and easily interpretable outcomes for a fall 
risk index definition. 

Moreover, the relationship between many of these measures and fall history or fall risk is 
still unknown, or not completely clear. Loss of dynamic stability during gait may be 
caused by structural changes in gait patterns or by temporary modifications in balance 
control that could not be displayed while the subject is being tested. An assessment of the 
association between these measures and the two aforementioned conditions is hence 
needed, in order to define the capability of the measures to detect long- and short-term 
stability modification in relation to fall risk. 

The aim of this thesis is hence to:  

i) analyze the influence of experimental implementation parameters on 
variability/stability measures and understand how variations in these parameters affect the 
outputs; 

ii) assess the relationship between variability/stability measures and long/short-term 
fall history.  
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OUTLINE OF THE THESIS 

In Chapter II, a systematic review of orbital stability analysis in biomechanics [49] is 
presented, to provide an overview of the state of the art and of the questions raised by this 
relatively new approach. In Chapter III a model- and experimental-based study on the 
influence of the experimental input of orbital stability analysis is presented, with the aim 
to analyze the influence of experimental noise and of several implementation parameters 
on the outputs of orbital stability applied to human gait. Chapter IV is dedicated to the 
assessment of the number of required strides and the test-retest reliability of 
variability/stability measures proposed in the literature. In Chapter V an assessment of the 
association between fall history and several step detection independent nonlinear 
measures is presented. Chapter VI is dedicated to the influence of directional changes 
during gait on variability/stability measures. Chapter VII are dedicated to and the 
association between such measures with long/short-term fall risk. Finally, in Chapter VIII 
a general conclusion is drawn, and directions for future research are explored. 
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II. ORBITAL STABILITY ANALYSIS IN 
BIOMECHANICS: A SYSTEMATIC REVIEW 

OF A NONLINEAR TECHNIQUE TO DETECT 
INSTABILITY OF MOTOR TASKS1 

II.1. INTRODUCTION 

The use of maxFM in the assessment of fall risk has been deemed controversial [8], 
because of some discrepancy and incoherence in the results found in the literature. A 
possible cause of this controversy could lie in the lack of a “standard” implementation of 
this technique, being the technique relatively novel in biomechanics. Considering the 
motor task as a dynamic nonlinear system, orbital stability analysis implies the definition 
of a state space characterising the system. No unique way of defining the state space of a 
given motor task (e.g. gait) has been shown in the literature; the most crucial point seems 
to be the choice of which and how many biomechanical variables (e.g. joint angles, trunk 
accelerations) have to be inserted into the space. Even the choice of the position of the 
Poincaré section represents a critical issue when trying to obtain reliable information 
about orbital stability of a motor task. Another criticality is represented by the minimum 
and optimum number of task cycles that should be included in the analysis to obtain 
reliable stability results. 

With the aim to summarize the various applications of this approach in biomechanics and 
to analyse the solution proposed in the literature about the methodological issues stated 
above, in this paper a systematic review and a critical evaluation of the literature on the 
application of orbital stability analysis in biomechanics are provided, with particular 
focus to its application in gait analysis. 

II.2. METHODS 

II.2.1. Search strategy 

In October 2011 an electronic search was performed by one reviewer to find all articles 
on the topic of orbital stability analysis in biomechanics. The databases included 
MEDLINE (1966 - October 2011), ISI Web of Knowledge (1986 - October 2011), and 
Scopus (2004 - October 2011). Keywords used in the search strategy included "orbital 
stability", "floquet", "biomechanics" and "movement". "And" and "Or" conjunction were 
                                                
1 Published. Riva F, Bisi MC, Stagni R. Orbital stability analysis in biomechanics: A systematic review of a 
nonlinear technique to detect instability of motor tasks. Gait & Posture 2013; 37: 1–11. 
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used. Only English language article were considered. Some articles investigated other 
forms of stability in addition to orbital stability; only details from orbital stability analysis 
were considered. A manual, targeted search of reference lists of relevant studies and other 
publications from the authors of the electronically found articles was also performed. 

II.2.2. Inclusion and exclusion criteria 

A single reviewer assessed the titles and abstract of the articles. The articles included in 
the study satisfied the following criteria: i) investigation of gait, locomotor or functional 
tasks, ii) clear and documented purpose of the application of orbital stability analysis and 
iii) full scientific papers. Since this study focused on the application of orbital stability 
analysis to biomechanics, reports related to robotics were excluded. Studies published 
only as conference proceedings were excluded from the review. 

II.2.3. Data extraction 

A customised data extraction form was developed, based on previous systematic reviews 
on associated areas [50–53]. The data extraction themes were selected to give an 
exhaustive overview of each article for analysis and assessment of the quality of the 
scientific literature. Data extraction themes included the description of the sample, details 
of the experimental and analytical protocol and the key results of the study (Table II.1). 
Data were obtained independently by three reviewers. In order to compare results from 
different articles, 95% confidence intervals for each maxFM calculation in 
preferred/normal gait condition were extracted (when available). 
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Table II.1 – Data extraction results 
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Table II.1 – (Continued) 
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Table II.1 – (Continued) 
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Table II.1 – (Continued) 
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II.2.4. Quality 

Quality assessment was performed to limit bias, minimise errors and improve reliability 
of findings [74]. The quality of a study relates to aspects of the study's design, methods of 
sample recruitment, the execution of the tests, and the completeness of the study report. It 
is essential that the quality of the studies included in the review is assessed and reported, 
so that appropriately cautious inferences can be drawn [75]. Quality can be described as 
"the extent to which all aspects of a study’s design and conduct can be shown to protect 
against systematic bias, non-systematic bias, and inferential error" [76]. Some checklists 
which assist in the assessment of the quality of studies are present in literature [75,77], 
but no quality assessment tool existed for the evaluation of articles in this field. 
Therefore, a customised quality assessment tool was developed (Table II.2), based upon 
general systematic reviews principles and guidelines from other systematic reviews 
[50,51,77,78]. The tool consisted of 16 questions that concerned the major research 
purposes. A scoring system was developed to perform an overall evaluation of each 
article. Each question coming from the questionnaire was scored as follows: 2 = Yes; 1 = 
Limited detail; 0 = No. Three reviewers (FR, MCB and RS) scored each paper 
independently. 

 

Table II.2 – Quality analysis form 

Question       

1. Is the aim of the study clearly described?   
2. Is the design of the study clearly described?  
3. Are participant characteristics adequately described?  
4. Is sampling methodology appropriately described?  
5. Is sample size used justified?   
6. Are state space definitions accurately described?  
7. Is the choice of the variables set justified?  
8. Are equipment and setup clearly described?  
9. Are motor tasks clearly defined?   
10. Is the analytical technique clearly described?  
11. Are appropriate statistical analysis methods used?  
12. Are the main findings of the study clearly described?  
13. Are key findings supported by the results?  
14. Are limitations of the study clearly described?  
15. Are key findings supported by other literature?  
16. Are conclusions drawn from the study clearly stated?   
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II.3. RESULTS 

II.3.1. Search yield 

The initial search of the databases, containing all the keywords, yielded 46 results. Eight 
more articles [13,54,60,63,64,67,71,72] were identified from the manual targeted search. 
After the application of the inclusion and exclusion criteria, 23 articles related to orbital 
stability analysis in biomechanics were selected for review. Details of reviewed articles 
are summarized in Table II.1 and Table II.5. 

II.3.2. Quality 

Table II.3 summarizes the quality of the reviewed articles. The overall quality of the 
articles was high, particularly in the areas of aim and design of the study, equipment and 
setup description, motor task description, reporting of main findings and the drawn 
conclusions. Participant characteristics were generally well reported, but in many cases 
information about body mass index (BMI) were not available. Methods for participant 
sampling were rarely reported. Many articles had limited details about the choice of the 
variable set and the analytical technique. Also, many articles had limited statistical 
analysis. Meta-analysis was not performed in this review. 

Table II.3 – Quality analysis results. Each question coming from the questionnaire (Table II.2) was scored as follows: 
2 = Yes; 1 = Limited detail; 0 = No. Three reviewers (FR, MCB and RS) scored each paper independently. 

Ref Article Question number                          

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

[54] Arellano et al. 2 2 1,3
3 

0,3
3 

0,3
3 

2 1,3
3 

2 2 1,3
3 

2 1,3
3 

2 1,3
3 

2 1,6
7 [55] Arellano et al. 2 2 2 1 0,6

7 
2 1,3

3 
2 2 1,3

3 
2 1,6

7 
2 2 1,3

3 
1,3
3 [56] Bruijn et al. 1,3

3 
2 1,3

3 
1 0,6

7 
2 1 2 2 1,3

3 
1,3
3 

2 1,3
3 

2 1,6
7 

2 

[57] Bruijn et al. 2 1,3
3 

1,3
3 

0,3
3 

0,3
3 

1,6
7 

1 2 2 1,6
7 

2 2 2 1,3
3 

1,3
3 

1,3
3 [34] Dingwell and Kang 2 2 1,6

7 
0,6
7 

0,3
3 

1,3
3 

1,3
3 

2 2 1,6
7 

1,6
7 

2 2 2 1,6
7 

2 

[58] Dingwell et al. 2 2 1 0,3
3 

0,6
7 

1,3
3 

1,6
7 

1,3
3 

2 1,3
3 

2 1,6
7 

2 1,3
3 

2 1,3
3 [59] Dingwell et al. 2 2 1,3

3 
1,3
3 

0,6
7 

2 1,6
7 

2 2 1,3
3 

2 2 2 1,6
7 

1,3
3 

1,3
3 [60] Gates & Dingwell 2 2 2 1,6

7 
0,3
3 

2 1,3
3 

2 2 1,6
7 

2 2 2 2 1,3
3 

2 

[61] Gates & Dingwell 2 1,3
3 

1,3
3 

1,3
3 

0,6
7 

2 1,3
3 

2 2 1,6
7 

2 2 2 2 1,6
7 

2 

[13] Granata et al. 2 2 2 1 0,6
7 

1,3
3 

1,6
7 

2 2 1,6
7 

2 2 2 2 2 2 

[62] Hidler and Rymer 2 2 2 1,6
7 

0,3
3 

1,6
7 

1 1,3
3 

2 1,3
3 

0,3
3 

2 2 1 1 1,6
7 [40] Hurmuzlu and Basdogan 2 2 1 0,3

3 
0,3
3 

2 1,3
3 

2 1,3
3 

1,3
3 

2 1,3
3 

2 2 0,6
7 

1,3
3 [63] Hurmuzlu et al. 2 2 2 1,3

3 
0,3
3 

2 1,3
3 

2 2 1,3
3 

1,6
7 

2 2 0,6
7 

1 1,6
7 [64] Kang and Dingwell 2 2 1,3

3 
1,6
7 

0,6
7 

2 1,3
3 

2 2 1,6
7 

2 2 2 1 2 2 
[65] Kang and Dingwell 2 2 2 1,3

3 
0,6
7 

2 1 2 2 1,3
3 

1,3
3 

2 2 0,6
7 

1,6
7 

2 
[66] Kang and Dingwell 2 2 1,3

3 
1 0,6

7 
2 1 1,6

7 
1,3
3 

1,3
3 

1,3
3 

2 2 2 2 2 
[67] Marghitu and Hobatho 1 1 1 0,3

3 
0,6
7 

2 1,3
3 

1 1 1,6
7 

0 1 1,3
3 

0,3
3 

0,3
3 

1 
[68] Marghitu et al. 1,3

3 
1,3
3 

1 1 0,3
3 

1,6
7 

1,3
3 

2 0,6
7 

1,3
3 

0 1 1,3
3 

1,3
3 

0 1,3
3 [69] McAndrew et al. 2 2 1,3

3 
0 0,3

3 
2 1,3

3 
1,3
3 

1,3
3 

1,6
7 

2 2 2 1 2 1,6
7 [70] Schablowski and Gerner  1,3

3 
1 0,3

3 
0 0,6

7 
1 1,3

3 
1 1,6

7 
1,3
3 

0,6
7 

1,6
7 

2 0,6
7 

1 1,6
7 [71] Scott-Pandorf et al. 2 2 2 1,3

3 
1,3
3 

2 1,6
7 

2 2 1,3
3 

2 2 2 1,3
3 

1,3
3 

2 
[72] Scott-Pandorf et al. 2 2 2 1,6

7 
1,3
3 

2 1,6
7 

2 2 1,3
3 

2 2 2 2 2 2 
[73] van Schooten et al. 2 2 1,6

7 
1,3
3 

0,6
7 

1,3
3 

1 2 2 1 2 2 2 1,6
7 

1 2 
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II.3.3. Participants 

The reviewed articles tested participants with different ages and physical characteristics. 
Some articles provided insufficient data regarding the physical characteristics of tested 
participants. The reviewed articles tested different sized groups of participants; the largest 
group consisted of 37 [58] participants, the smallest group of four participants [62]. Ten 
articles tested ten subjects or less. Age was mostly restricted to young (mean age 25.4 
years) or old adults (mean age 71.7). One article involved children (aged 7-9, [67]), 
another one dogs [68]. Some articles involved pathologic subjects [58,62]. BMI was used 
to estimate the body composition of participants. The majority of participants had a BMI 
value lower than 25, indicating that they had a healthy weight in respect to their height. 
Where not explicitly reported, mean BMI of the participants was calculated. 

II.3.4. Orbital stability analysis 

All the subjects analyzed in the articles showed orbitally stable motor patterns (maxFM < 
1). Hurmuzlu & Basdogan [40] found that normal individuals possess stability measures 
that are substantially less than unity, confirming the theory regarding the stability of 
normal gait. Hurmuzlu et al. analyzed gait of post-polio patients [63]; their gait resulted 
significantly less stable than the gait of normal individuals. Pathologic subjects were 
involved also in a study by Hidler & Rymer [62]: they examined ankle clonus in spastic 
subjects, concluding that the periodic motion exhibited during clonus is in fact a stable 
limit cycle. In two studies orbital dynamic stability was found to be unaffected by small 
changes in walking velocity, and the authors stated that slowing down does not lead to a 
higher orbital stability [13,58]. Conversely, a study [64] reported that both younger and 
older adults exhibited decreased instability by walking slower, in spite of increased 
variability. Schablowski & Gerner [70] reported a not very strong, yet nevertheless 
significant, dependence of orbital stability on walking speed, with a weak local minimum 
at intermediate speeds. One of these studies [13] indicated also that fall-prone elderly 
show poorer stability of dynamic walking than young adults and healthy old adults. Of 
the four articles that confronted orbital stability of walking in young and old adults, three 
concluded that healthy active older adults exhibit significantly increased orbital dynamic 
instability (kinematic and muscular), independent of walking speed [64–66]. The other 
one found no significant difference between the healthy old and young adult groups in 
terms of maxFM [13]. One study [59] showed that performing an attention demanding 
task while walking on a treadmill does not affect dynamic stability. One study [66] 
analyzed muscle activation during walking, and found that maxFM measures were only 
slightly correlated between electromyography (EMG) and kinematics. However, older 
adults exhibited greater inter-stride dynamic instability of muscle activation patterns. Two 
studies analyzed sawing task [60,61], concluding that muscle fatigue does not lead to 
instability of movement. Some works analyzed the orbital stability of walking with an 
added mass, with contradictory results: one article concluded that walking with an 
external load of 30% body weight does not influence the stability of the gait pattern in the 
sagittal plane [54], while the other one stated that increasing body mass alone would lead 
to a decrease in the stability of the sagittal plane leg kinematics during steady-state 
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walking [55]. Scott-Pandorf et al. [71,72] concluded that added load have little effect on 
the sagittal dynamic stability while in simulated Martian gravity, but the gait pattern is 
more dynamically stable with loads (e.g. Portable Life Support Systems) at the side of the 
torso and low on the body.  

Trunk motion dynamics appeared to provide a more sensitive marker of the decline in gait 
function in healthy older adults compared to other body segments [65]. Trunk segment is 
known to play a critical role in regulating gait-related oscillations in all directions [79], 
hence it might also be responsible for major compensation mechanisms aimed to maintain 
stability of gait. 

One study [69] had the purpose to determine if exposing subjects to different types of 
continuous perturbations would evoke changes in orbital stability; subjects exhibited 
direction-specific responses perturbations. A study [73] tested whether (combinations of) 
measures of variability, and local and orbital dynamic stability were sensitive to 
experimentally induced impaired gait stability, during treadmill walking at several 
different speeds, concluding that FM cannot be used to assess balance control in gait. In 
the opinion of the authors this may be due to compensatory changes, and this claim would 
require additional research. Orbital stability results for young subjects walking at normal 
or preferred speed are reported in a forest plot (Figure II.1). 

Different methods and instruments of movement analysis lead to the acquisition of 
different locomotor variables; hence, the composition of the state space strongly depends 
from the chosen method of movement analysis. Different movement analysis techniques 
were used in the manuscripts. For kinematic measures, 15 articles used 3d 
stereophotogrammetry [13,54–59,64,65,70–72], two articles used 2d video motion 
analysis [67,68], four used electrogoniometer systems [34,40,59,63], three articles used 
tri-axial accelerometers [34,57,73], one article used surface electromyography [66], one 
used potentiometers and tachometers [62]. Some articles used two or more techniques. 

Orbital stability analysis in literature has been applied to different kinds of cyclic motor 
tasks. Almost every reviewed article involved overground or treadmill walking, at 
different speeds with/without carrying loads. One article analyzed subjects walking in a 
Computer Assisted Rehabilitation ENvironment (CAREN) system (Motek, Amsterdam, 
Netherlands) and exposed to continuous, pseudo-random oscillations of the support 
surface or visual field [69]. Two articles analyzed sewing task [60,61], one analyzed 
lifting task [60]. One article was about dogs trotting [68], another one analyzed a  subject 
who was seating while clonus was stimulated [62]. Although the conclusions drawn by 
these study are hardly exploitable outside their specific research field, we decided to 
include them in the review as an application example, as some author might want to apply 
the technique to different biomechanical-related research areas. 
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Figure II.1 - maxFM for young healthy subjects walking at preferred (or normal) walking speed. Error bars represent 
95% of confidence interval. 

 

All the reviewed articles used the same numerical method for maxFM calculation from 
time series, referring to the established method by Hurmuzlu et al. [63]. Some articles 
calculated the dependence on speed of maxFM. 
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Different state spaces were used in reviewed articles. Many articles included in the state 
space different combinations of joint angles and their derivatives, including or not their 
time-delayed copies. Some articles used virtual marker positions, velocities and/or 
accelerations instead of physical markers [13,64,65]. One article included EMG signals in 
the state space, and their time derivatives [66]. Articles involving tri-axial accelerometers 
included in the state space linear acceleration data [34,57,73]. Some articles included in 
the state space variables coming from both sides, some others just from the dominant 
side. 

Different choices of Poincaré sections were made in the studies. Four articles 
[63,67,71,72] used maximum sagittal knee flexion to mark the first return data. Two 
articles [13,40] put Poincaré section at the instant of different foot strike events (left-step, 
right-step, stride [13] and heel strike, foot flat, heel off, toe off [40]). Two articles [34,58] 
analyzed the values of maxFM all over the gait cycles, while one [70] took the average 
values of the maxFM over all the points of the gait cycle. Three articles calculated 
multipliers at different percentage of the gait cycle [59,64,66]. Five articles calculated all 
the multipliers in the task cycle; four [56,57,61,69] considered for statistical analysis only 
the largest FM across all different phases in the cycle, two [69,73] considered the average 
maxFM value across the cycle. Two articles [54,55] computed maxFM in the instances of 
heel strike and maximum knee flexion. One article involving spasticity [62] choose the 
point in the clonus cycle where the ankle acceleration is zero. One article involving dogs 
trotting [68] put Poincaré maps at the instant of paw strike. Some authors [40] stated that 
the stability measures are fairly insensitive to the choice of Poincaré section, while other 
authors stated that the magnitudes of maxFM vary across the gait cycle [34]. 

Just a few articles [56,63,67,69] stated explicitly the number of cycles upon which the 
analysis was conducted (Table II.4). The number of cycles analyzed in the articles varied 
from 4 [63] to 300 [56]. The majority of the articles only indicated the time duration of 
the trials. One article about precision and sensitivity of orbital stability measures [56] 
stated that an acceptable value of maxFM for human walking can be estimated within 300 
strides; viewing the multiplier as a measure of convergence towards an attractor, using 
less data could lead to less accurate estimates of the true attractor. 
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Table II.4 – Number of analyzed cycles 

Reference Article Cycles number 

[54] Arellano et al. 6 mins walking 

[55] Arellano et al.  6 mins walking 

[56] Bruijn et al. from 30 to 300 strides 

[57] Bruijn et al. 5 mins walking 

[34] Dingwell and Kang 200 m walkway (overground), 10 mins walking (treadmill) 

[58] Dingwell et al. 10 minutes walking 

[59] Dingwell et al. 3 mins walking 

[60] Gates & Dingwell - 

[61] Gates & Dingwell - 

[13] Granata et al. 50s walking (minimum of 35 consecutive steps) 

[62] Hidler and Rymer _ 

[40] Hurmuzlu and Basdogan pass on a twenty meter walkway (all the gait cycles) 

[63] Hurmuzlu et al. first 4 gait cycles 

[64] Kang and Dingwell 5 mins walking 

[65] Kang and Dingwell 5 mins walking 

[66] Kang and Dingwell 5 mins walking 

[67] Marghitu and Hobatho a minimum of 5 gait cycles 

[68] Marghitu et al. _ 

[69] McAndrew et al. 150 continuous strides 

[70] Schablowski and Gerner 90 seconds walking 

[71] Scott-Pandorf et al. 3 mins walking 

[72] Scott-Pandorf et al. 3 mins walking 

[73] van Schooten et al. 2.5 mins / 3 mins / 3.5 mins walking 
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Table II.5 – Limitations and conclusions reported by the authors 

Ref Article Limitations Conclusions 

[54] Arellano et al. _ Walking with an external load of 30% body weight about 
the waist did not influence the stability of the gait pattern in 
the sagittal plane. 

[55] Arellano et al. The vest may have assisted with 
the stability of the leg dynamics by 
providing additional torso control. 
It is also possible that small 
horizontal forces were introduced 
if the subject did not stay directly 
below the fixed pulley. Potentially, 
these horizontal forces may have 
influenced our measures of 
stability. The vertical lifting forces 
were more variable as additional 
mass was added to the subject. 

Added mass reduces the stability of the leg kinematics 
during steady state walking. These results indicate that the 
inertial state of the body plays a role in the stability of the 
leg kinematics and may be related to how the body is 
redirected and accelerated during walking. 

[56] Bruijn et al. Fatigue and/or boredom may have 
affected the walking patterns; we 
cannot exclude the possibility that 
the observed increase in precision 
reported was, at least in part, due 
to the increase in overlap in the 
samples.  

The dependence of the estimates of local and orbital 
dynamic stability upon the number of strides included in 
the analysis implies that when estimating stability at 
different walking speeds, or in different patient groups, a 
fixed number of strides should be analyzed. The increase in 
precision with increasing data series length indicates the 
need to use long data series. The gain in precision tends to 
be limited when using more than 150 strides. 

[57] Bruijn et al. The poincaré sections were not 
sampled at exactly the same time. 

The two measurement methods lead to comparable results 
and thus may be used interchangeably. Inertial sensors may 
be used as a viable and valid alternative for optoelectronic 
measurement systems. 

[34] Dingwell and Kang The additional "states" created 
were not aligned during the same 
"phase" of the gait cycle. It is 
possible this may have led to 
"averaging out" of differences at 
individual phases of the gait cycle.  

All subjects exhibited orbitally stable walking kinematics 
during both overground and treadmill walking; the 
variability inherent in human walking, which manifests 
itself as local instability, does not significantly adversely 
affect the orbital stability of walking. 

[58] Dingwell et al. _ All subjects exhibited orbitally stable walking kinematics, 
even though these same kinematics were previously shown 
to be locally unstable. Neuropathic patients do not gain 
improved orbital stability as a result of slowing down. 

[59] Dingwell et al. Subjects walked on a motorized 
treadmill; treadmill walking can 
reduce the natural variability and 
enhance the local and orbital 
stability. 

The decreased movement variability associated with the 
stroop task did not translate to greater dynamic stability. 
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Table II.5 – (Continued) 

Ref Article Limitations Conclusions 

[60] Gates & 
Dingwell 

Despite our attempt to make the tasks as 
similar as possible for the different 
subjects, significant differences in their 
responses remained, particularly for the 
MVC measures. As this task was 
inherently redundant, subjects could 
compensate for fatigue by using different 
muscles or strategies that might allow 
them to maintain their stability. Different 
subjects fatigued to different degrees. 

When performing multijoint redundant tasks, humans can 
compensate for muscle fatigue in ways that maintain task 
precision while increasing movement stability. 

[61] Gates & 
Dingwell 

It was not possible to perform maximum 
voluntary contractions during this test 
due to the continuous nature of the task. 
As such, we were not able to directly 
quantify decreased force-generating-
capacity of subjects’ muscles using this 
protocol. In this paper, we quantified a 
large number of parameters. It is likely 
that not all of these were parameters are 
independent. As such, some caution is 
likely warranted in interpreting the 
degree of statistical significance present 
in some cases. 

Subjects significantly altered their kinematic patterns in 
response to muscle fatigue. These changes were more 
pronounced when the task was performed at a higher 
height. Subjects also exhibited increased variability of their 
movements post-fatigue. Increases in variability and altered 
coordination did not lead to changes in local or orbital 
dynamic stability, however. Local stability of the shoulder 
was lower when movements were performed at a lower 
height. In contrast, orbital stability of the shoulder and 
elbow was lower for movements at the higher height. This 
research showed that people continuously adapt their 
strategies in multi-joint redundant tasks and maintain 
stability in doing so. 

[13] Granata et al. The data represent a pilot study with a 
small sample size; data were collected 
while walking on a treadmill; analyses 
were limited to kinematics of foot-strike 
with respect to the CoM. 

The fall-prone group demonstrated poorer stability of 
dynamic walking than the other groups. 

[62] Hidler and 
Rymer 

_ The involuntary rhythmic oscillatory movements 
commonly observed in spastic subjects are driven by 
peripheral stretch reflexes rather than by a central pattern 
generator, and the system under these conditions is acting 
as a stable limit cycle. 

[40] Hurmuzlu and 
Basdogan 

Fewer number joint measurements can be 
made compared to more advanced optical 
data acquisition system; it was assumed 
that the human body is composed of 
seven segments. 

Normal individuals possess stability measures that are 
substantially less than unity. 

[63] Hurmuzlu et al. _ With the measure of dynamic stability the gait of post-polio 
patients is seen to be significantly less stable than the gait 
of normal individuals. 

[64] Kang and 
Dingwell 

Since muscle activations measured using 
EMG do not represent muscle forces, it is 
not yet clear how these muscle activation 
dynamics result in the muscle forces that 
lead to the observed kinematics. 

Older adults exhibited greater inter-stride variability of 
muscle activation patterns during gait; multi-dimensional 
dynamics of muscle activations are reflected in that of 
kinematics. 
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Table II.5 – (Continued) 

Ref Article Limitations Conclusions 

[65] Kang and 
Dingwell 

This study only quantified responses to 
local perturbations. These results may or 
may not extend to global stability, where 
responses to large perturbations, like 
tripping or slipping would be assessed. 
The motorized treadmill may not 
properly reflect overground walking. 

Even active older adults who walk at the same preferred 
speeds as younger adults still exhibit significantly increased 
orbital dynamic stability, independent of walking speed. 

[66] Kang and 
Dingwell 

_ Superior segments exhibited less local instability but 
greater orbital instability compared to inferior segments. 
The superior segments are less sensitive to very small 
initial perturbations and thus its motion is initially less 
affected by these small perturbations, compared to inferior 
segments. Trunk motion dynamics appears to provide a 
more sensitive marker of the decline in gait function in 
healthy older adults compared to other body segments. 

[67] Marghitu and 
Hobatho 

_ The techniques of nonlinear dynamics used in this study 
provide an analytical tool that is easy to use in the clinical 
diagnosis of human gait abnormalities. 

[68] Marghitu et al. The 3-angle model for the animal body is 
a highly simplified model. 

The stability index and the measures used will help to 
clarify and localize the source of the instability and serve to 
document changes in severity of the condition. 

[69] McAndrew et 
al. 

- Subjects experienced decreased orbital and short- term 
local dynamic stability in a direction-specific manner when 
walking during the continuous pseudo-random 
perturbations applied in the present study 

[70] Schablowski 
and Gerner 

_ Two different mechanisms regarding dynamic stability of 
locomotion seem to exist. The increasing instability ad 
higher speeds may be one reason for the transition from 
walking to running. 

[71] Scott-Pandorf 
et al. 

True martian gravity cannot be created on 
the earth's surface; offloading the center 
of mass of an individual is not likely to 
be the same as true reduced gravity. 
Additionally, the body weight suspension 
system may supply some stabilizing 
forces. 

Adding weight to the walking system while walking in 
simulated Martian gravity had no effect on the sagittal 
dynamic stability of the walking pattern. 

[72] Scott-Pandorf 
et al. 

It is possible that the body weight support 
system may have provided additional 
stabilizing forces in the frontal plane. 

Portable life support system loads at the side of the torso 
and low on the body improve dynamic stability of the gait 
pattern in simulated martian gravity.  

[73] van Schooten et 
al. 

The time-normalization that was used 
was different between the walking 
speeds. A treadmill was used to control 
walking speed. 

Variability and FM of trunk kinematics cannot be used to 
assess balance control in gait. 
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II.4. DISCUSSION 

Although the problem of falls in the elderly is gaining increasing clinical and economical 
attention, assessment methods designed to identify fall-prone individuals remain 
controversial; biomechanical approaches for assessing gait stability seem to be able to 
quantify the dynamic stability of locomotion, but they have not been taken up as routine 
procedures in clinical settings [8]. In particular, orbital stability analysis via FM revealed 
effective identification of fall-related and age-related differences, but its use in the 
assessment of fall risk remains controversial [8]. A possible cause of this controversy 
could be the lack of a “standard” procedure for implementing this kind of analysis in 
experimental trials; different implementations could in fact lead to different results, and 
introduce difficulties in their interpretation. 

This paper provides a systematic review of the literature in the field of orbital stability 
analysis application in biomechanics, with particular focus to methodological aspects. 15 
articles out of 23 were of very high quality, proving the excellent level of the literature in 
the field.  

MaxFM resulted < 1 for all the analyzed motor tasks (human gait, sewing, dog trotting); 
hence, those tasks were demonstrated to be orbitally stable. These results showed that the 
analyzed periodic motor tasks reached a stable condition when equilibrium was attained. 
MaxFM resulting for young subjects walking at preferred or normal speed, showed in 
Figure 1, confirm this aspect. Gait of pathologic subjects like post-polio patients, fall-
prone elderly, or children with torsional anomalies of the lower limb joints have also been 
demonstrated to be orbitally stable, even if less stable than gait of healthy young subjects 
[13,63,67]. On the contrary, subjects with diabetic peripheral neuropathy did not 
experience any loss of orbital stability as a result of their sensory loss [58]. The increase 
in risk of falling of these patients may be due to their inability to develop and execute 
appropriate avoidance and/or response strategies when subjected to large-scale 
perturbations while walking [58].  Several studies showed how slowing down while 
walking does not improve orbital stability [13,58] but can eventually worsen it [70]. Only 
one study reported that older adults exhibited decreased instability by walking slower, in 
spite of increased variability [64]. These results suggest that the reduction of walking 
velocity, commonly observed in the elderly, may not be caused by the need to enhance 
orbital stability [13]. Comparison between orbital stability of gait in young and elderly 
subjects seems to confirm that old adults tend to be less stable while walking, partially 
explaining the tendency to fall. The incoherence in the results about walking with added 
mass does not allow drawing clear conclusions. 

In general, a lack of uniformity in the methodological approaches used by the authors was 
found; this could also explain the different results reported by different authors for 
basically the same task (Figure 1). Methodological quality of the studies included in this 
review was in general sufficient, but articles included in the review implemented orbital 
stability analysis in different manners. Three main factors suffered a general lack of 
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homogeneity between the analyzed studies: state space definition, Poincaré section 
location and number of cycles analyzed (Tables 3, 4).  

Whereas state space composition have been satisfactorily described by most of the 
manuscripts, the choice of the variables for the state space definition often lacked 
justification. All the state space defined in the articles seemed appropriate to adequately 
describe the analyzed dynamical systems; however, an "optimal" set of variables for the 
definition of state space for orbital stability analysis purposes have not emerged from the 
analyzed literature. A standardization of the variable set to be used for orbital stability 
analysis purposes would contribute to the interpretation of stability results and would 
allow to better compare stability results under different motor conditions.  

As stated in the introduction, the orbital stability of a deterministic limit cycle process 
should be theoretically the same, regardless of the position of Poincaré section along the 
trajectory. This is not verified when dealing with human cyclic tasks: human cyclic 
movements are not strictly periodic, and consequently the response to perturbations 
during different phases of the task is different [34]. This aspect was confirmed by 
experimental results: different choices for Poincaré section position led to different values 
of maxFM. All the authors seem to agree that positioning the section in different instants 
over the task cycle allows to obtain information about orbital stability of the different 
phases of the task, and that mean value of maxFM across the task cycle give global 
information about the stability of the task.  

One of the most critical issues regarding orbital stability analysis of human locomotion 
was found to be the number of task cycles necessary to obtain reliable orbital stability 
results. One article [56] stated that the "true" value of maxFM for human walking could 
be estimated within 300 strides; most of the articles did not report the number of cycles 
analyzed, or performed the analysis on a number of task cycles inferior to 300 (Table 4). 
When dealing with human locomotion (e.g. gait) in a movement analysis laboratory, it is 
possible to reach a similar number of cycles only by treadmill walking; however, whereas 
the use of motorized treadmill is generally justified, treadmill walking differs 
significantly from overground walking [80] and it is also known to enhance orbital 
stability [58]. Hence, conclusions obtained from treadmill walking, whereas they can be 
significant and useful in some context, cannot directly be transferred to overground 
walking. 

One of the main goals of research about stability of motor tasks is to understand the 
mechanisms that underlie motion, particularly in case of falls. Studies included in this 
review showed the state-of-art in the application of orbital stability analysis via FM 
calculations in biomechanics.  

In summary, the main explanation to the incoherence between some of the results and to 
the differences in the implementation of the method is believed to be the absence of a 
generalized methodological procedure to perform orbital stability analysis on 
biomechanical time series data.  This kind of analysis could have a major impact in the 
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prevention of falls. Future research should look for a standardized methodological 
procedure to implement this kind of analysis, identifying the best experimental setup and 
analytical procedure to obtain maxFM. In order to obtain more insights on the magnitude 
of maxFM during human gait, analytical orbital stability analysis of the equations of a full 
human rigid body model can also represent a promising approach. Another fundamental 
issue will be the evaluation of the capability of maxFM to predict falls in the elderly. 
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III. INFLUENCE OF INPUT PARAMETERS ON 
DYNAMIC ORBITAL STABILITY OF 

WALKING: IN-SILICO AND EXPERIMENTAL 
EVALUATION2 

III.1. INTRODUCTION 

The analysis of modelled physiological signals of gait (accelerations, joint angles) could 
contribute to the assessment of the influence of implementation parameters on FM, in 
relation to experimental results also. Given the similarity of the signals, influences of 
different implementations on the stability results are likely to be analogous between 
model and experimental data analysis. In order to compare model and experimental 
results, stability in both conditions must be assured. Signals extracted from a stable 
walking model are hence required. 

Some authors performed simulation studies on orbital stability of 1- or 2-link walking 
models related to fall risk [81–83]. However, these models are rather simple and simulate 
very peculiar walking condition. Simplicity is both the strength and the limitation of these 
models: their walking conditions can be easily manipulated, but they generate signals that 
are far from physiologic conditions of human walking. Stability analysis on a more 
complex model can give better insight on the orbital stability conditions of human 
walking, allowing the comparison between model and experimental results. In order to 
allow adequate comparison, stability condition must be assured for the walking model. 
The required conditions for the model are hence a continuous walk and the absence of 
falls or stumbles, in order for the model to produce kinematics as similar as possible to 
stable human gait. 

The aim of the present study was to analyse, from an applicative point of view, the 
influence on the final results of orbital stability analysis applied to walking of: 1) number 
of analyzed cycles; 2) selection of the variables for the reconstruction of the state space; 
3) experimental measurement noise on a 2-dimensional 5-link walking model [84], 
providing walking patterns of known stability. Results of in-silico analysis were 
compared to those obtained experimentally on 10 subjects performing long overground 
walks. 

                                                
2 Under review. Riva F, Bisi MC, Stagni R. Influence of Input Parameters on Dynamic Orbital Stability of 
Walking: In-silico and Experimental Evaluation. Submitted to Journal of Biomechanical Engineering. 
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III.2. MATERIALS AND METHODS 

III.2.1. Overview 

In-silico orbital stability analysis of a 5-link stable walking model [84] was performed. 
The model showed continuous walking, free of falls or stumbles, for all the simulation 
period (300 strides). This was also assured by a check on step variability, which was 
minimal following visual inspection of the phase portraits. The analysis was performed 
for increasing number of cycles (from 10 to 300), based on differently composed state 
spaces (including different joint angles and/or accelerations). Simulated experimental 
error and noise were added to the segmental kinematics of the model and the sensitivity 
of orbital stability analysis was evaluated. Orbital stability analysis was also performed 
on data collected experimentally on 10 subjects; given the impossibility to use a 
stereophotogrammetry system on a long outdoor road, only acceleration data were 
acquired experimentally. Orbital stability was calculated using an established technique 
[63]. 

III.2.2. In-silico data 

The 2-dimensional, five-link biped walking model analyzed [84] consisted of a trunk, two 
thigh and two shank segments (Figure III.1). The model orientation was described by 
supporting and swinging knee angles, supporting and swinging hip angles and upper body 
angle (φk,sw, φk,st, φh,st, φh,sw, φub, all referred to gravity direction). 

 

Figure III.1 - Schematic representation of the 5-link 2-dimensional model (Solomon et al., 2010). 
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In addition to the mentioned joint angles, the model included also the corresponding joint 
angular velocities. The model was adapted to perform 315 consecutive strides. The first 
15 strides of the simulation were discarded in order to assure stable walking condition. 
The simulation was performed using a MATLAB’s (Mathworks, Natwick, NA) fourth- 
and fifth- order variable time-step Runge-Kutta solver (ode45, with relative error 
tolerance set to 10-12). Accelerations of the trunk segment at the level of the fifth lumbar 
vertebra (L5) were obtained as the second derivative of the time history of the position of 
a point located at 1/8 of the length of the trunk segment. 

Segmental kinematics data obtained from the model were processed to simulate 
experimental data from a stereophotogrammetry system (joint angles) and a single inertial 
sensor located on the trunk (accelerations). Simulated experimental noise and errors were 
superimposed to segmental kinematics signals obtained from the model. 

Clusters of 4 markers were virtually applied to all the segments of the model (trunk, 
thighs and shanks, for a total of 20 markers) and simulated instrumental normally 
distributed noise with a standard deviation of 0.2 mm was added to the marker trajectories 
(or coordinate time histories) in 2-D space. Technical reference frames were calculated 
from the cluster positions, and the position of the segment extremities relative to these 
frames was measured. A mislocation error of anatomical landmark positions (Table III.1) 
was also added to the estimate of the position of segment extremities [85]. Joint angles 
were then calculated from the relative orientation of the anatomical reference frames [86].  

Instrumentation noise (white noise with an SNR of 10 dB and alignment errors with a 
normal distribution and a standard deviation of 0.1 degrees), compatible with the use of 
commercial accelerometers, was added to the acceleration signals of the trunk segment at 
the level of L5. Analyses on lower amounts of noise were also performed, which led to 
comparable results; hence, we chose to show results in the most potentially critical 
condition. 

Table III.1 – Precision of the palpable anatomical landmark position (in millimeters) in the relevant mean anatomical 
frame obtained by Della Croce et al., 1999. For ME, LE and MM, LM the mean value between the two was used in the 

analysis. 

Anatomical landmark x y 

   

Greater trochanter (GT) 12.2 11.1 

Medial Epicondyle (ME) 5.1 5.0 

Lateral Epicondyle (LE) 3.9 4.9 

Medial Malleolus (MM) 2.2 2.6 

Lateral Malleolus (LM) 2.6 2.4 
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III.2.3. Experimental data 

10 healthy participants [28 ± 3 years, 174 ± 11 cm, 67 ± 13 kg] were included in the 
study. Subjects gave informed consent before participating. Two synchronized tri-axial 
inertial sensors (Opal, APDM, Portland, OR, USA) were placed on the participants at the 
level of L5 and of the right shank. The range of the accelerometers was ±2g and sample 
rate was 128 Hz. The participants were instructed to walk straight at self-selected speed 
on a 250 m dead-end long road. 

III.2.4. Data processing 

For both model and experimental data, stride cycles were considered as the time between 
consecutive right heel strikes and were resampled to be 101 samples long, because 
Floquet theory assumes that the system is strictly periodic. For experimental data, right 
heel strike instants were estimated from the angular velocity of the lower limb with a 
method based on wavelet analysis [87]. Angular velocity of the lower limb was measured 
with the inertial sensor placed on the right shank. Experimental data were analyzed 
without filtering, in order to avoid the complications associated with the application of 
linear filtering to nonlinear signals [88]. Orbital stability analysis on model data was 
performed on six different state spaces (Table III.2). The analysis was conducted for both 
noise-free and noisy condition. The same analysis was conducted on experimental data. 
Mean values of maxFM across the gait cycle were calculated on increasing number of 
strides (from 10 to 300 for model data, from 10 to 160 for experimental data).  

III.3. RESULTS 

The presence of noise resulted to be critical for state spaces composed by joint angles 
(WMhk, WMk and WMh). Analysis on WMhk in noise-free conditions led to mean 
values of maxFM across the gait cycle that decay with the increase of the analyzed stride 
cycles, until reaching the value 0.3 (for about 250 stride cycles). Standard deviation 
decreased with the increase of stride cycles. WMk and WMh led to values of 0.34, with 
low standard deviation (about 0.07), independent of the number of cycles upon which the 
analysis was conducted (Figure III.2); values of mean maxFM remained stable from 10 to 
300 cycles. State spaces composed by noise-affected signals showed a different behavior. 
For WMhk, maxFM values increased until reaching the value of about 0.7, for 100 stride 
cycles. For WMk and WMh, mean maxFM value slowly decayed towards zero instead of 
stabilizing around a fixed value (Figure III.3). 
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Table III.2- Description of the state spaces. ϕk,st and ϕk,sw are flexion/extension knee angles for supporting and 
swinging limb; similarly, ϕh,st and ϕh,sw are flexion/extension hip angles. ϕt is flexion/extension trunk angle. aAP and aV 
are accelerations of the trunk at the level of L5 in anterior-posterior and vertical directions. For delay-embedded state 

spaces, τ is time delay and dE is the embedding dimension (τ = 10, dE = 5). 

Acronym Description Composition 

   WMk Swinging+supporting 
knee flexion/extension 
joint angles (model) 

𝑊𝑀𝑘 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ∈ ℜ! 

 

WMh Swinging+supporting 
hip flexion/extension 
joint angles (model) 

𝑊𝑀ℎ 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ∈ ℜ! 

WMhk Knees, hips and trunk 
flexion/extension joint 
angles (model) 

𝑊𝑀ℎ𝑘 𝑡 = 𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙!,!" 𝑡 ,𝜙! 𝑡 ∈ ℜ! 

 
WMaAP 5-dimensional delay 

embedding of AP 
accelerations of L5 
(model) 

𝑊𝑀𝑎𝐴𝑃 𝑡 = 𝑎!" 𝑡 , 𝑎!" 𝑡 + 𝜏 ,… , 𝑎!" 𝑡 + 𝑑! − 1 𝜏 ∈ ℜ! 

 

 WMaV 5-dimensional delay 
embedding of V 
accelerations of l5 
(model) 

𝑊𝑀𝑎𝑉 𝑡 = 𝑎! 𝑡 , 𝑎! 𝑡 + 𝜏 ,… , 𝑎! 𝑡 + 𝑑! − 1 𝜏 ∈ ℜ! 

 

 

 

WMa Accelerations in the 
AP and V direction of 
L5 (model) 

𝑊𝑀𝑎 𝑡 = 𝑎!" 𝑡 , 𝑎! 𝑡 ∈ ℜ! 

 
EXPa Accelerations in the 

AP and V direction of 
L5 (experimental) 

𝐸𝑋𝑃𝑎 𝑡 = 𝑎!" 𝑡 , 𝑎! 𝑡 ∈ ℜ! 
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Figure III.2 - Mean maxFM values across the stride cycle calculated on state spaces WMhk, WMk and WMh (clean 
signals) for increasing number of stride cycles. 

 

Figure III.3 - Mean maxFM values across the stride cycle calculated on state spaces WMhk, WMk and WMh (noisy 
signals) for increasing number of stride cycles. 
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MaxFM calculated on noise-free acceleration state spaces, both 2 and 5 dimensional 
(WMa, WMaAP and WMaV), behaved similarly: for less than 30 cycles, values of 
maxFM gradually decreased, starting from values near (or above) one. Starting from 
about 30 cycles, values of maxFM stabilized around the value previously found for joint 
angle state spaces (0.34 – 0.4) with a standard deviation of about 0.09 (Figure III.4). 
Results coming from analysis of noisy accelerations signals were very similar to those 
obtained from noise-free signals (Figure III.5). 

 

 

Figure III.4 - Mean maxFM values across the stride cycle calculated on state spaces WMa, WmaAP and WMaV (clean 
signals) for increasing number of stride cycles. 
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Figure III.5 - Mean maxFM values across the stride cycle calculated on state spaces WMa, WmaAP and WMaV (noisy 
signals) for increasing number of stride cycles. 

 

MaxFM calculated on experimental acceleration state space (EXPa) showed decreasing 
value for increasing number of cycles analyzed, reaching values close to 0.4 from 80 
cycles on, with a standard deviation of about 0.1 (Figure III.6). 
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Figure III.6 - Mean maxFM values across the stride cycle calculated on state space EXPa for increasing number of 
stride cycles. 

 

III.4. DISCUSSION 

The possibility to have a reliable locomotor stability index is of fundamental importance 
in early identification and treatment of older adults with high predisposition to fall, and 
possibly in real-time gait instability detection also. However, still there is no unique 
definition of locomotor stability in literature. 

Orbital stability analysis via maxFM seems promising for the analysis of cyclic locomotor 
tasks. When dealing with biomechanical time series, the equations of motion are 
obviously unknown, thus excluding the possibility to calculate maxFM in an analytical or 
semi-analytical way. Numerical calculation of maxFM from experimental time series is 
hence required, but still it is not clear how different implementations of this analysis can 
influence the stability measure. 

Beyond the mathematical implications, it is however important to highlight that applying 
this analysis to human gait implies several assumptions. Human gait is an inherently 
stochastic system, while Floquet theory applies to deterministic limit cycle systems. 
Walking trajectories are continuously being "re-perturbed" by stochastic perturbations, 
which often are internal to the system. In order to overcome this, the average trajectory is 
considered to be the limit cycle, but given the likely asymmetrical nature of the basin of 

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1
Exp

strides

m
ax
FM



48 
 

attraction of human walking, this is obviously an assumption. However, orbital stability 
analysis was found to detect gait instability [13,69], hence proving usefulness despite the 
many theoretical assumptions that must be made. 

In this explorative study, orbital stability analysis was applied to a 5-link stable walking 
model. The walking model was used in order to produce signals (joint angles and trunk 
accelerations) as similar as possible to real human gait signals. Stability was assumed, 
since the model didn’t show any fall or stumble during the simulation period. Different 
implementations of numerical orbital stability analysis were then performed on the 
biomechanical signals obtained from the model. The aim was to better understand the 
influence of number of analyzed cycles, state space composition and experimental noise 
on the stability outputs. Given the similarity between model signals and real human gait 
data, relationships between implementations and stability results are likely to be 
transferrable to experimental analysis. As a comparison, experimental data of trunk 
accelerations during gait have also been analyzed. 

The magnitude of maxFM obtained in this study was lower than values obtained in 
simulation studies present in literature [81–83]. Whereas those studies analyzed the 
behavior of 1- or 2-link walking models in presence of external/internal perturbations, in 
our study unperturbed walking of a 5-link was analyzed. These two aspects (the absence 
of perturbations and the higher complexity of the model) are likely to be the major cause 
of differences in the results. However, as also explicitly stated by Roos and Dingwell 
[82], the main aim of the cited articles was to show the general relationship between fall 
risk and stability measures, and not to give exact numerical values. 

According to the results of the present study, the number of cycles included in the 
analysis played a fundamental role when trying to obtain a reliable orbital stability 
measure from differently composed state spaces. This influence is also correct from a 
theoretical point of view: for example the number of analyzed cycles cannot be lower 
than the dimension of the state space otherwise the set of equations would be 
underdetermined. A possible explanation might be that analyzing more data leads to a 
better estimate of the true attractor [56]. Orbital stability analysis performed on noise-free 
signals from the stable walking model resulted in maxFM values that tended to the value 
of about 0.34 for state spaces composed by joint angles and L5 accelerations. The 
coherence between these results is encouraging, as it seems to lead to indicate that a 
repeatable value of the maxFM can be obtained analyzing different state spaces. The main 
difference between these results was the dependence from the number of cycles 
considered: a limited number of cycles (about 10) was sufficient to obtain the value 0.34 
with WMh and WMk, but at least 30 cycles were necessary to obtain the same result with 
WMa, WmaAP and WMaV. Using these state spaces for less than 30 cycles, maxFM 
values resulted to be high (close to or even above 1) and inconsistent, and hence are not 
believed to be reliable. The number of stride cycles needed to reach the value 0.34 was 
even higher when analyzing WMhk; it is possible that including a higher number of 
variables in the joint angle state space introduced redundancy, negatively influencing the 
results, instead of leading to a better characterization of the system. Whereas a 2-
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dimensional representation of a complex system may seem insufficient in order to provide 
a proper characterization, it may serve the applicative purpose of obtaining a repeatable 
index of stability. The relationship with the stability index obtained with this 
implementation and the actual fall risk is, however, still to be determined. 

Results coming from the analysis of noisy signals showed again a strong influence of 
number of cycles and state space composition on the maxFM, with different results 
between acceleration and kinematic data. Analysis of noisy accelerations of L5 led 
basically to the same results obtained for noise-free signals, for all the state spaces: 
simulated experimental noise on inertial sensor data did not influence maxFM calculation. 
This can lead to the conclusion that orbital stability analysis performed on state spaces 
composed by accelerations coming from inertial sensors is robust to noise, and that a high 
dimensional (5) reconstruction of the state space may not be necessary, as a lower 
dimension (2) state space led basically to the same results for the maxFM. WMk and 
WMh showed a very different behavior: maxFM tended to gradually decrease towards 
zero for increasing number of cycles, suggesting that stereophotogrammetric 
experimental noise and misplacement errors could dramatically influence maxFM 
calculation, significantly affecting their reliability. Analysis of WMhk led to the same 
conclusion, even though maxFM showed a different trend: maxFM values seemed to 
settle around the value 0.7 in about 100 strides. This value indicates very poor stability 
and is not coherent with results obtained from the analysis of clean signals. This suggests 
that the influence of noise may have had a negative impact on this result. 

A possible explanation for this could be that the peculiar simulated 
stereophotogrammetric noise characteristics may contribute in hiding the information 
relative to the distance between the orbits, due to close proximity of the orbits to the limit 
cycle. This might not happen in an experimental trial, as the orbits defined by joint angles 
are likely to be less repeatable than those obtained from the model; further experimental 
analysis on state spaces composed by joint angles obtained from different data acquisition 
techniques (e.g. inertial sensors) are needed to clarify this aspect. These results are in 
agreement with Bruijn et al. [57], who found a correlation of 0.66 (defined “low” by the 
authors) between maxFM obtained from two measurement systems (accelerometers and 
optoelectronics). 

Experimental trial results on the accelerations-based state space showed a similar trend 
with respect to the ones obtained from the analysis of the same variables derived from the 
model; nevertheless, the value of maxFM obtained was slightly higher, and so the 
standard deviation. A limitation of this experimental session was the relatively short 
length of the walks (160 strides) with respect to the model data; given the high handiness 
and portability of inertial sensor, however, future studies can analyze orbital stability of 
very long overground walks. On the other hand, 160 strides seem to be sufficient to reach 
a steady value for the maxFM. 

Based on these results, a reliable implementation of orbital stability analysis could be 
obtained from an acceleration-based state space (reconstructed with delay-embedding or 
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including in the state space accelerations in different directions) and a number of stride 
cycles not inferior to 30. 

In conclusion, the exploration of the influence of experimental input parameters in orbital 
stability analysis led to interesting results. One of the main issues relative to this 
technique is the necessity to properly describe the dynamical system, in order to obtain a 
reliable orbital stability index; hence, the definition of the state space is of crucial 
importance for the outputs. The coherence between the results obtained with differently 
composed state spaces showed that the same stability output can be obtained with 
different implementations and experimental setup, despite the fact that different numbers 
of gait cycles are necessary. On the other hand, the number of gait cycles necessary to 
obtain this result is different among these setups; in particular, analysis conducted on 
accelerometer data required more gait cycles with respect to analysis conducted on joint 
angles obtained from stereophotogrammetric data.  

Experimental noise and operator errors could represent a critical issue when using orbital 
stability analysis based on joint angles obtained from stereophotogrammetric systems. 
Further studies are needed to determine if the stability measures obtained from analysis 
on these state spaces are really capable to discriminate between known stability 
conditions. Experimental noise on accelerometer data showed no particular influence on 
the stability results. 

Experimental results were also coherent with the model results supporting the validity of 
the stability outcomes. This result confirms the possibility to obtain reliable orbital 
stability measures with a single inertial sensor and could lead to advantages in the 
development of a simple and fast data acquisition protocol, confirming what was found in 
literature for treadmill walking [57]. 
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IV. RELIABILITY OF STABILITY AND 
VARIABILITY MEASURES3 

IV.1. INTRODUCTION 

In order to perform a proper evaluation of gait variability and stability, standardization of 
implementation parameters is necessary, as outputs can be influenced by implementation 
differences (e.g. number of strides). Moreover, the consistency of results in the same 
experimental conditions between the measures must be ensured. The aim of this study is 
to assess the minimum number of required strides and the test-retest reliability of 11 
temporal variability/stability measures proposed in the literature. Analysis was performed 
on trunk accelerations acquired on a sample of 10 healthy young participants performing 
an overground walking task. In general, the overall number of strides necessary to obtain 
a reliable measure was larger than those conventionally used. For some measures (lLE 
and RQA max/diverg in the vertical direction) 150 strides were not sufficient to obtain a 
steady value. MSE and RQA showed excellent reliability.  

IV.2. METHODS 

Ten healthy participants [28 ± 3 years, 174 ± 11 cm, 67 ± 13 kg] walked straight at self-
selected natural speed on a 250 m long dead-end road (about 180 strides), wearing two 
synchronized tri-axial inertial sensors (Opal, APDM, Portland, OR, USA), one on the 
trunk at the level of the fifth lumbar vertebra and one on the right ankle. The range of the 
accelerometers was ±6g and sampling rate 128 Hz. Right foot strikes were obtained from 
the angular velocity measured by the sensor on the ankle with wavelet analysis based 
method[87]. The first and the last ten strides (time intervals between two consecutive 
right heel strikes) were excluded from the analysis, in order to exclude gait initiation and 
termination phases. The Review Board Committee of the authors’ institution approved 
this study, and informed consent was obtained from the participants. 

The following variability measures were applied to stride time: 

i. SD [89]; 
ii. CV [89];  

iii. IV [21]; 
iv. NI [21]; 
v. PSD1, PSD2 [22]. 

                                                
3 Under review. Riva F, Bisi MC, Stagni R. Gait variability and stability measures: minimum number of 
strides and test-retest reliability. Submitted to Gait & Posture. 
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The following stability measures were calculated on trunk accelerations in vertical (V) 
medio-lateral (ML) and anterior-posterior (AP) directions. 

vi. maxFM [34,49]. Four different state spaces were constructed:  one 3-dimensional 
state space composed by acceleration signals in the V, ML and AP direction and 
three (one per direction) 5-dimensional state spaces composed by delay-
embedding of each acceleration component (delay = 10). 

vii. sLE, lLE [34]. The same state spaces constructed for maxFM were analyzed. 
viii. RQA [47]. Same state space construction as for maxFM and LE was used. 

Recurrence rate (rr), determinism (det), averaged diagonal line length (avg), 
maximum diagonal line length (max) and divergence (diverg) were calculated 
from the recurrence plot (radius = 40%). 

ix. MSE [45]. Sample entropy (consecutive data points m = 2, distance r = 0.2) was 
calculated on six consecutively more coarse-grained (scale factor τ = 1, …, 6) 
time series. 

x. HR [42]. HR was not calculated stride by stride, but decomposing the whole 
signal into its harmonics. 

xi. IH [43]. 

For the quantification of the minimum number of strides, measures were calculated on 
windows of decreasing length (from 150 to 10 strides, 1 stride resolution). Percent 
interquartile/median ratio (imr) was calculated for all the windows, starting from the 150 
strides window (which gave the lowest ratio) and proceeding backwards. Thresholds for 
the imr were fixed at 10%, 20%, 30%, 40% and 50%. The required number of strides was 
defined as the smallest one at which the ratio remained below the lowest possible 
threshold. The minimum number of strides was first calculated per index and per subject, 
then for each index the largest number of strides over subjects was selected. 

The assessment of test-retest reliability was performed calculating variability/stability 
measures on a window sliding (with 1 stride steps) along the trial. The sliding window 
was sized at 85 strides because this number of strides comprised the minimum number of 
strides for most measures (51 out of 57). lLE (tot, V, ML, AP) and RQA V (max, diverg) 
didn’t satisfy this criterion. Interquartile and median values of the measures over the 
windows were calculated, and the percent imr for each measure was calculated. Measures 
were grouped in five reliability categories, ranging from very poor (imr > 40%) to 
excellent (imr < 10%). The maximum inter-subject imr was considered for grouping. 

IV.3. RESULTS 

Measures reached steady values for different number of strides, depending on the 
threshold. For MSE V (τ = 1, …, 4) and RQA (AP rr, det, avg, ML rr and V rr, det, avg), 
10 strides were sufficient to reach a 10% threshold. MSE (AP, ML, V τ = 5,6), RQA (ML 
det, avg) and sLE V reached a 20% threshold within 10 strides. Other measures showed 
lower stride number requirement with the increasing of the threshold. lLE required a high 
number of strides (> 110) even for the 50% threshold. RQA (V max, diverg), never 
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reached steady values in the analyzed range (150 strides). Detailed results are shown in 
Table IV.1. 

 

Table IV.1 - Number of required strides for each measure at each threshold. 

 
Thresholds 

Variability/stability 
measures 

10% 20% 30% 40% 50% 
SD 125 59 20 15 10 
CV 127 59 49 15 10 
NI 143 97 89 78 70 
IV 143 91 44 35 29 

PSD1 127 52 16 15 10 
PSD2 120 106 74 25 19 

MSE AP τ = 1 19 10 10 10 10 
MSE AP τ = 2 19 10 10 10 10 
MSE AP τ = 3 18 10 10 10 10 
MSE AP τ = 4 15 10 10 10 10 
MSE AP τ = 5 35 10 10 10 10 
MSE AP τ = 6 17 10 10 10 10 
MSE ML τ = 1 10 10 10 10 10 
MSE ML τ = 2 30 10 10 10 10 
MSE ML τ = 3 63 10 10 10 10 
MSE ML τ = 4 31 10 10 10 10 
MSE ML τ = 5 10 10 10 10 10 
MSE ML τ = 6 32 10 10 10 10 

MSE V τ = 1 10 10 10 10 10 
MSE V τ = 2 10 10 10 10 10 
MSE V τ = 3 10 10 10 10 10 
MSE V τ = 4 10 10 10 10 10 
MSE V τ = 5 12 10 10 10 10 
MSE V τ = 6 15 10 10 10 10 
RQA AP (rr) 10 10 10 10 10 

RQA AP (det) 10 10 10 10 10 
RQA AP (avg) 10 10 10 10 10 

RQA AP (max) 121 75 74 37 36 
RQA AP (diverg) 107 95 74 74 74 

RQA ML (rr) 10 10 10 10 10 
RQA ML (det) 78 10 10 10 10 
RQA ML (avg) 55 10 10 10 10 

RQA ML (max) 136 129 73 29 29 
RQA ML (diverg) 136 135 79 29 29 

RQA V (rr) 10 10 10 10 10 
RQA V (det) 10 10 10 10 10 
RQA V (avg) 10 10 10 10 10 

RQA V (max) 150 150 150 150 150 
RQA V (diverg) 150 150 150 150 150 

HR AP 141 26 15 10 10 
HR ML 137 30 10 10 10 

HR V 66 29 10 10 10 
IH AP 143 141 137 75 10 
IH ML 145 141 49 10 10 

IH V 140 127 120 18 11 
maxFM tot 137 135 23 10 10 
maxFM AP 138 137 132 10 10 
maxFM ML 137 131 14 10 10 

maxFM V 137 51 20 10 10 
sLE tot 105 70 10 10 10 
sLE AP 90 17 10 10 10 
sLE ML 72 10 10 10 10 

sLE V 63 10 10 10 10 
lLE tot 139 132 130 128 124 
lLE AP 141 135 132 131 129 
lLE ML 146 125 119 114 110 

lLE V 138 123 121 116 113 
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Table IV.2 - Values of the maximum inter-subjects imr with corresponding reliability grouping. Measures have been 
grouped based on the maximum inter-subject percentage imr. Reliability has been labeled as Very poor (imr > 40%), 
Poor (imr = 30-40%), Average (imr = 20-30%), Good (imr = 10-20%), Excellent (imr < 10%). As an indication of 

reference values for the measures, median values of inter-subjects medians and interquartile ranges for 
variability/stability measures are also shown. 

 

Variability/stability 
measures 

Median inter-
subject value 

of the medians 

Median inter-
subject 

interquartile 
value 

Maximum 
inter-subject 

imr 
Ex

ce
lle

nt
 

MSE AP τ = 1 0.38 0.01 0.07 
MSE AP τ = 2 0.56 0.02 0.07 
MSE AP τ = 3 0.65 0.02 0.06 
MSE AP τ = 4 0.76 0.02 0.07 
MSE AP τ = 5 0.81 0.02 0.08 
MSE AP τ = 6 0.85 0.02 0.07 
MSE ML τ = 1 0.59 0.01 0.08 
MSE ML τ = 2 0.86 0.02 0.08 
MSE ML τ = 3 1.09 0.03 0.07 
MSE ML τ = 4 1.31 0.03 0.06 
MSE ML τ = 5 1.46 0.04 0.06 
MSE ML τ = 6 1.55 0.04 0.06 
MSE V τ = 1 0.46 0.01 0.05 
MSE V τ = 2 0.63 0.02 0.05 
MSE V τ = 3 0.74 0.02 0.07 
MSE V τ = 4 0.84 0.03 0.09 
MSE V τ = 5 0.92 0.03 0.07 
MSE V τ = 6 1.00 0.03 0.09 
RQA AP (rr) 15.65 0.06 0.07 

RQA AP (det) 69.3 1.1 0.05 
RQA AP (avg) 8.94 0.12 0.07 
RQA ML (rr) 8.50 0.12 0.03 

RQA ML (det) 49.7 0.8 0.09 
RQA ML (avg) 6.67 0.12 0.07 

RQA V (rr) 13.76 0.22 0.06 
RQA V (det) 81.9 0.5 0.03 
RQA V (avg) 13.58 0.28 0.08 

G
oo

d 

HR AP 3.70 0.14 0.15 
HR ML 2.21 0.11 0.13 
HR V 4.68 0.24 0.16 
PSD1 0.021 0.001 0.14 

A
ve

ra
ge

 sLE AP 0.67 0.14 0.26 
sLE ML 0.81 0.14 0.20 
sLE V 0.89 0.19 0.28 

SD 0.02 0.002 0.23 
CV 1.94 0.14 0.23 

Po
or

 

IH ML 0.15 0.02 0.37 
PSD2 0.021 0.002 0.34 

sLE tot 0.44 0.10 0.39 
NI 0.52 0.10 0.30 
IV 0.32 0.06 0.37 

V
er

y 
po

or
 

maxFM tot 0.36 0.09 0.57 
maxFM AP 0.43 0.08 0.45 
maxFM ML 0.39 0.06 0.44 
maxFM V 0.48 0.08 0.44 

IH AP 0.04 0.01 0.50 
IH V 0.022 0.003 0.55 

RQA AP (max) 399 51 0.66 
RQA AP (diverg) 0.0025 0.0003 1.64 
RQA ML (max) 281 39 0.88 

RQA ML (diverg) 0.0036 0.0004 0.69 
RQA V (max) 1986 481 0.96 

RQA V (diverg) 0.0005 0.0002 1.76 
lLE tot 0.035 0.007 0.89 
lLE AP 0.035 0.008 1.12 
lLE ML 0.014 0.004 0.52 
lLE V 0.041 0.007 0.57 
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MSE and RQA (rr, det, avg) showed excellent reliability. HR and sLE demonstrated 
average to good reliability, with the exception of sLE (tot) that performed poorly. 
Temporal variability measures (SD, CV, IV, NI and PSD) showed from poor to good 
reliability. IH showed poor reliability, particularly in AP and V directions. lLE, maxFM 
and RQA (max, diverg) showed very poor reliability. Reliability results are shown in 
Table IV.2. Median values of inter-subjects medians and interquartile ranges for 
variability/stability measures, together with maximum imr values, are also shown. These 
values are meant to give an indication of reference values for the measures. 

IV.4. DISCUSSION 

The aim of this study was to investigate the minimum number of strides required and the 
test-retest reliability of a number of gait variability/stability measures. In general, 
measures showed comparable performances between the reliability indication and the 
threshold reached for a corresponding number of strides (85). 

MSE (ML τ = 1, 5 and V τ = 1, …, 4) and RQA (AP rr, det, avg, ML rr and V rr, det, avg) 
reached a steady value for a 10% threshold within 10 strides. MSE and RQA (rr, det, avg) 
also showed excellent reliability. sLE (ML, V) showed that the 10% threshold could be 
reached for 85 strides, but inter-subject imr was slightly higher (0.20 and 0.28 
respectively); this is likely due to the influence of the inherent variability of the trial. SD 
and CV showed average reliability and a quite high number of strides (respectively 125 
and 127) to undergo the 10% threshold. This confirms findings from other studies stating 
that a few number of strides may not be sufficient to obtain reliable measures. While 
other studies in the past tested the reliability of variability gait parameters, the 
instrumentation used was different, making it hard to directly extrapolate results from 
those studies to other instruments. A high number of required strides was found for lLE 
and RQA (V max, diverg). The former measure required at least 110 strides to reach the 
50% threshold, while the latter never reached steady values in the analyzed range. IH, 
maxFM, sLE and RQA (max, diverg) showed poor or very poor reliability.  

In conclusion, of the 11 variability/stability measures that were tested, only MSE and 
RQA (rr, det, avg) showed excellent reliability. In general, the number of strides 
necessary to obtain a reliable measure was larger than those conventionally used.  
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V. ESTIMATING FALL RISK WITH INERTIAL 
SENSORS USING GAIT STABILITY 

MEASURES THAT DO NOT REQUIRE STEP 
DETECTION4 

V.1. INTRODUCTION 

Many gait stability measures proposed in the literature are based on the identification of 
gait cycles [17,22,34,90,91]. Several methods for step detection have been presented in 
the literature [87,92,93], based on different techniques and sensor positioning. Errors in 
step detection can, however, critically affect stability outcomes, making step detection a 
possible intrinsic source of error for stability calculations; examples are present in the 
literature of inability in the detection of gait events due to irregular acceleration patterns 
[94] and incorrect identification of acceleration peaks in correspondence of foot strike 
[95]. Other temporal parameters detection systems, such as foot switches or pressure 
sensors attached to the sole, suffer from difficulties in sensor attachment when assessing 
subjects with abnormal gait; even when correctly done, several problems limit their 
applicability [87]. Step detection can hence be invalidated by unexpected gait behaviour 
resulting in atypical signals, which can reflect possible informative gait characteristics or 
anomalies in the execution of the motor task, such as a shuffling gait. Assuming that such 
anomalies are more common among people with a high fall risk, such errors may even 
cause a bias when calculating gait stability measures. To overcome this possible source of 
error, nonlinear analysis techniques may offer a powerful tool. In particular, some of 
these stability related measures do not depend on step detection and can provide insights 
into the mechanisms underlying dynamic stability of walking. In this study the HR 
[42,44], the IH [43], MSE [45], and RQA measures [48] of trunk accelerations during gait 
were calculated [42–45,47,48]. The relationship between these measures and fall risk has 
not been analyzed and reported yet. 

The aim of the present study was to investigate the association between fall history and 
the aforementioned measures during treadmill walking in a large sample of older subjects. 
The data used have been described earlier in a paper on local dynamic stability and stride 
variability of gait [39]. Both of these measures were shown to be associated with fall risk, 
but do rely on step detection. 

                                                
4 In press. SIAMOC methodological award 2012. Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën 
JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. 
Gait & Posture, in press. 
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V.2. MATERIALS AND METHODS 

V.2.1. Participants 

A total of 131 healthy subjects (age 62.4 ± 6.1 years; height 171 ± 8 cm; body mass 74 ± 
10 kg) aged between 50 and 75 participated in the study, after giving informed written 
consent. Subjects were recruited and tested at a fair aimed at people of 50 years and older. 
Subjects were included if they were aged between 50 and 75 years and able to walk on a 
treadmill without aids. Additional details have been reported by Toebes et al. [39]. Three 
subjects from the original data set were excluded from the analysis due to technical 
problems during data acquisition. 

V.2.2. Protocol 

Participants walked on a treadmill at 4 km/h for 12-17 minutes, wearing an inertial sensor 
(Dynaport Hybrid, McRoberts B.V., The Hague, The Netherlands) located on the trunk, 
below the shoulder blades. Sensing range was ± 2g and sample frequency was 100 Hz. 
The first 5-10 minutes of walking were excluded from the data collection, to allow the 
subject to familiarize with treadmill walking. Data of the subsequent 3 minutes of 
walking were acquired. Fall history was obtained by self-report; a subject was classified 
as a faller if at least one fall had occurred in the 12 months prior to the measurements. 42 
subjects (32.1%) experienced at least one fall in the year previous to the experiment. To 
estimate the habitual physical activity in daily life, the Longitudinal Aging Study 
Amsterdam Physical Activity Questionnaire (LAPAQ) was used. The LAPAQ data were 
used to calculate the total physical activity score (in MET·minutes·per day) [96]. Subjects 
were classified as experienced treadmill walkers if they had walked on a treadmill at least 
two times previously. 

V.2.3. Data analysis 

Accelerations of the trunk in the anterior-posterior (AP) and medio-lateral (ML) 
directions were analyzed. Vertical acceleration signals showed clipping artefacts (on 
average 0.34% of the signal) in 52% of the subjects, and were therefore not considered in 
the analysis. HR, IH, MSE and RQA were calculated on AP and ML accelerations of the 
trunk. 

V.2.4. Statistical analysis 

To assess differences in demographics, treadmill experience and physical activity 
between fallers and non-fallers, Mann-Whitney U-test, independent samples t-test and 
chi-square test were used. SPSS Statistics 20.0 (IBM, Armonk, NY, USA) was used for 
all statistical tests. Statistical significance for all statistical tests was declared if p < 0.05. 

A factor analysis was performed to assess to what extent the resulting 24 different 
measures (HR, IH, MSE at 6 different scales and 4 RQA measures, both in AP and ML 
directions) reflect different properties of the dynamics. To correct for non-normality, all 
measures were log transformed and then used as input for factor analysis. The scree plot 
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was used to determine the number of extracted factors, and VariMax rotation was used to 
optimize the loading of variables onto factors. 

Log transformed measures were then used as inputs for univariate logistic regression 
models, to test if measures were able to classify subjects as fallers or non-fallers, 
considering self-report as the gold standard. The resulting regression models were then 
checked for confounders (demographic variables, treadmill experience and physical 
activity score). In addition, a multivariate, forward step-wise logistic regression model 
was constructed using the most representative variables of each factor as predictors, i.e. 
the variable with the highest factor loading for each factor. Potential confounders were 
added to the models one by one and retained when they changed the coefficients by more 
than 10%. 

V.3. RESULTS 

Factor analysis on the 24 log transformed measures led to 7 factors (Table 1), accounting 
for 89% of the variance (all eigenvalues > 0.8). In general, absolute factor loading values 
were > 0.5, with the exception of HR in AP direction, which had cross loading on 3 
factors and was considered non-specific to a factor. RQA parameters in AP direction 
showed quite high (absolute value > 0.4) loading on two factors. Parameters of MSE, IH, 
RQA in the ML direction and HR in the ML direction showed loadings on different 
factors, reflecting the description of different system dynamics. Furthermore, parameters 
for the trunk kinematics in the ML and AP were largely independent as reflected in the 
factor loadings. In summary, Factor 1 mainly reflected AP entropy and recurrence 
characteristics, Factor 2 reflected ML entropy, Factor 3 reflected ML recurrence 
characteristics, Factor 4 reflected ML harmonicity, Factor 5 reflected AP harmonic ratio, 
Factor 6 reflected AP harmonicity, and Factor reflected 7 ML harmonic ratio. 

Univariate associations with fall history were found for MSE and RQA measures in the 
AP direction (Table 2). The best classification results were obtained for MSE with scale 
factor τ = 2 (p < 0.001) and for maximum length of diagonals in RQA (p = 0.002), which 
correctly classified 72,5% (sensitivity 21.4%, specificity 96.6%) and 71% (sensitivity 
16.7%, specificity 96.6%) of cases, respectively. All MSE measures in AP direction 
showed correlations > 70%. Other measures showed no significant association with fall 
history (Figure V.1, Table V.2). The multivariate model retained only AP direction MSE 
with τ = 3, and this model yielded slightly worse classification than the model using MSE 
with τ = 2. All models were checked for possible confounders (demographics, physical 
activity score, treadmill experience); none of the variables changed the coefficients by 
more than 10%. 

As reported previously by Toebes et al. [39], no significant differences were found 
between fallers and non-fallers regarding demographic variables, physical activity score 
and treadmill experience. 
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Table V.1 - Loading of log transformed variables after factor analysis. Absolute loadings > 0.4 are shown. 

Stability measure Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

HR ML 
      

0.951 
HR AP -0.498 

   
0.790 

  
MSE ML (τ = 1) 

 
0.938 

     
MSE ML (τ = 2) 

 
0.946 

     
MSE ML (τ = 3) 

 
0.970 

     
MSE ML (τ = 4) 

 
0.961 

     
MSE ML (τ = 5) 

 
0.899 

     
MSE ML (τ = 6) 

 
0.823 

     
MSE AP (τ = 1) 0.913 

      
MSE AP (τ = 2) 0.960 

      
MSE AP (τ = 3) 0.968 

      
MSE AP (τ = 4) 0.960 

      
MSE AP (τ = 5) 0.947 

      
MSE AP (τ = 6) 0.919 

      
IH ML 

   
0.860 

   
IH AP 

     
0.901 

 
RQA ML rr 

   
0.884 

   
RQA ML det 

  
0.716 

    
RQA ML avg 

  
0.848 

    
RQA ML max 

  
0.764 

    
RQA AP rr -0.837 

      
RQA AP det -0.721 

      
RQA AP avg -0.725 

 
0.448 

    
RQA AP max -0.701 

 
0.437 

    
 

Figure V.1 – Classification results 
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V.4. DISCUSSION 

Nonlinear measures can provide useful insights in the dynamics of gait, and in particular 
of gait stability. Currently, fall risk is mainly inferred from fall incidence, but this method 
obviously provides information only after the fact and has proven to be unreliable, 
especially when dealing with subjects with memory impairments [97]. Alternative fall 
risk measures are hence needed, and quantitative nonlinear dynamic measures applied to 
acceleration signals could represent a viable alternative to more traditional fall risk 
assessment methods; accelerometric systems are very useful for clinical purposes, as they 
are small, light and portable. Some of these measures (HR, IH, MSE and RQA were 
analyzed in the present study) do not require stride detection, excluding a possible source 
of error. This study aimed to explore the relationship of such measures (HR, IH, MSE and 
RQA were analyzed in the present study) with fall history. 

In the literature, one study[39] assessed the association between ’linear and nonlinear 
measures (namely gait variability and Lyapunov exponents), concluding that these 

Table V.2 - Result of the univariate logistic regression models. Regression coefficient (β), p-value (p) and 95% 
confidence interval of β (95% CIβ) are shown. 

Stability measure β p 95% CIβ 

HR ML 3.135 0.113 -0.74 – 7.01 
HR AP -2.016 0.183 -4.98 – 0.95 
MSE ML (τ = 1) 1.579 0.689 -6.15 – 9.31 
MSE ML (τ = 2) 0.208 0.951 -6.44 – 6.86 
MSE ML (τ = 3) 1.119 0.75 -5.78 – 8.02 
MSE ML (τ = 4) 1.915 0.63 -5.87 – 9.70 
MSE ML (τ = 5) 3.861 0.376 -4.68 – 12.41 
MSE ML (τ = 6) 4.525 0.312 -4.25 – 13.30 
MSE AP (τ = 1) 8.994 0.002 3.34 – 14.65 
MSE AP (τ = 2) 9.138 0.001 3.68 – 14.60 
MSE AP (τ = 3) 9.191 0.001 3.82 – 14.56 
MSE AP (τ = 4) 8.594 0.001 3.39 – 13.80 
MSE AP (τ = 5) 7.750 0.002 2.80 – 12.70 
MSE AP (τ = 6) 7.010 0.004 2.26 – 11.76 
IH ML -3.102 0.105 -6.85 – 0.65 
IH AP -4.072 0.128 -9.32 – 1.17 
RQA ML rr -2.688 0.14 -6.26 – 0.89 
RQA ML det -0.470 0.843 -5.11 – 4.17 
RQA ML avg 0.106 0.959 -3.94 – 4.16 
RQA ML max -0.001 0.999 -0.94 – 0.94 
RQA AP rr -8.510 0.999 -13.12 – -3.61 
RQA AP det -4.197 0.001 -7.34 – -1.05 
RQA AP avg -6.485 0.009 -11.04 – -1.94 
RQA AP max -2.410 0.005 -3.90 – -0.92 
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parameters were, individually and combined, positively associated with fall history. 
Another study [14] investigated the association between Lyapunov exponents and 
tendency to fall in older adults, but on a significantly smaller sample. The nonlinear 
measures implemented in our study have already been applied to gait parameters 
[42,43,45,47], but their relationship with fall history has, to authors’ knowledge, not been 
investigated yet. 

The factor analysis on the analyzed measures highlighted a quite sharp separation (Table 
V.1), supporting the hypothesis that the techniques describe different aspects of the 
system dynamics; each one of these aspects can reflect different aspects of locomotion 
features, and could contribute information related to fall risk. 

Although previously effects of age were shown for HR in AP direction [98], HR and IH 
did not show any correlation with fall history in our sample. Harmonicity of oscillations 
and rhythmicity of the accelerations of the trunk hence seem not to provide useful 
information for fall risk assessment.  

Costa et al. found that the spontaneous output of the human locomotor system during 
usual walking is more complex than walking under slow, fast or metronome paced 
protocols [45]. The association between MSE and fall history found in the present study 
seems to suggest that complexity can also be related to fall risk. Modifications in 
complexity could reflect alterations in locomotor strategy that affect stability. In 
particular, MSE with a scale factor τ = 2 led to the best classification results, suggesting 
that frequencies in the band of 17-25 Hz contribute the most; in fact, operating two coarse 
graining procedures on gait acceleration signal would filter frequencies higher than 25 
Hz, while operating three would filter frequencies higher than 17 Hz. 

The present findings seem to suggest higher complexity of gait kinematics in subjects 
with a fall history, while previous studies have associated higher entropy with better 
health [46,99]. This is perhaps not surprising, since nonlinear time series analysis often 
showed contradictory results also when applied in the same context, as it has been 
demonstrated for FM [49]. Also, non-monotonic relationships could exist. Moreover, 
results of nonlinear time series analysis of gait accelerations also strongly depend on 
sensor placement [42]. 

A previous study [47] used RQA to differentiate healthy and hypovestibular subjects; our 
findings extend this result, showing that RQA can discriminate between healthy subjects 
and fall-prone subjects. In the present study, RQA measures, and in particular the 
maximum length of diagonal structures in recurrence plots, were found to correlate with 
fall history. RQA (max) is strictly related to the mechanical concept of stability in terms 
of Lyapunov exponents; in fact, its inverse (called divergence) can roughly reflect the 
largest Lyapunov exponent [48,100,101]. These results are in line with the existing 
literature showing an association between short term Lyapunov exponents and fall history 
[39]. Whereas these two measures express theoretically similar concepts, the calculation 
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process is different; in particular, as stated above, the RQA algorithm does not depend on 
stride detection.   

For all gait variables, specificity of the associations with fall history was low (maximally 
21.4%). This may imply that the present methods are not yet suitable to identify 
individuals at risk of falling and thus the target group for interventions. Combinations 
with other variables in a multivariate prediction model, e.g. variables that reflect physical 
capacity, may be necessary. On the other hand, fall history may comprise a substantial 
number of incidental falls in subjects, exposed to high-risk events, who may not 
necessarily have an increased risk due to intrinsic factors. 

A possible limitation of the present study is the fact that subjects walked on a treadmill; 
hence, conclusions cannot be directly transferred to over-ground walking, due to the 
differences between the two motor tasks [38,102]. Moreover, no procedure was applied to 
precisely standardize the acceleration signals direction, in terms of sensor placement; 
however, due to the intrinsic nature of the task and the instrumentation, straight walking 
was assured. Another limitation is the use of self-report as a gold standard for the 
classification; despite the disadvantages, this method represents the most established 
technique for fall risk assessment [8], and hence this choice is unavoidable. 

In the literature, a standard implementation for the measures studied here is lacking. Due 
to the lack of methodological studies, there is no consensus on how to deal with 
methodological aspects such as sample frequency of the signal, instrumentation noise and 
trial length. For this reason, comparison of results from different implementations of the 
same measures is not straightforward. With respect to the length of the trials, these 
measures, particularly RQA, have often been applied to short trials (a few steps). In the 
opinion of the authors, the analysis of longer trials is preferable for several reasons: 
effects of long range dynamics, acclimatization time and the probability that occasional 
gait anomalies show up during the acquisition. On the other hand, also transfer from our 
results to less controlled acceleration data obtained during daily activities, in which stride 
detection is a major problem, needs further exploration. 

Further research should address the physiological correlates of these measures; whereas 
the analysis of acceleration time series give useful information about gait dynamics and 
fall risk, the physiological conditions leading to differences in complexity or recurrence 
of locomotion acceleration signals are yet unknown. The identification of the 
physiological correlates could lead to the development of proper targets for therapies or 
rehabilitation programs aiming at fall prevention. 

In conclusion, nonlinear dynamic measures, in particular MSE and RQA are positively 
associated with fall history and could contribute to the selection of individuals at risk for 
participation in fall prevention programs.  
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VI. ARE GAIT VARIABILITY/STABILITY 
MEASURES INFLUENCED BY DIRECTIONAL 

CHANGES?5 

VI.1. INTRODUCTION 

Directional changes represent an essential aspect of gait, since 20-50% of steps performed 
during daily activity are reported to be turns [24]. As a methodological characterization, 
an assessment of the influence of directional changes on variability/stability measures is 
needed in order to evaluate the applicability of the measures, both in controlled laboratory 
trials and in daily life activity analysis. In this study, nine variability/stability measures 
were calculated on trunk acceleration data of a sample of healthy young subjects walking 
in straight walking condition and in presence of directional changes. Since large 
differences in sampling are believed to affect stability measures [37], the influence of 
sampling frequency of trunk acceleration data on the results was also analyzed. 

The aim of this study was to assess the influence of directional changes on 
variability/stability measures calculated on trunk acceleration data acquired at different 
sampling frequencies during gait. 

VI.2. METHODS 

Fifty-one healthy young adults (23 ± 3 years, 172 ± 11 cm, 68 ± 14 kg) volunteered for 
this study. All subjects were physically active and self-reported no musculoskeletal or 
neurological disorders that could affect their performance and/or behavior. 

Participants were asked to perform one 6-minute walk test [103]. In particular, they were 
asked to walk back and forth for 6 minutes along a 30m straight pathway, turning by 180 
deg at each end of the pathway, and to cover the maximum possible distance over the 6 
minutes and, thus, walking as fast as possible. A 180 deg turn was considered in order to 
test the limit condition, as it represents the most sharp and potentially hazardous 
directional change. The Review Board Committee of the authors’ institution approved 
this study, and informed consent was obtained from the participants. 

An inertial measurement unit (FreeSense, Sensorize s.r.l) was fixed to the lower trunk of 
the subjects. Only acceleration data was taken into consideration. 

                                                
5 Submitted. Riva F, Grimpampi E, Mazzà C, Stagni R. Are gait variability/stability measures influenced by 
directional changes?. Submitted to Gait & Posture. 
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Twenty-six trials were acquired with a sampling frequency equal to 100 Hz and twenty-
five trials were acquired at 200 Hz. A third set of data was then obtained from the second 
group, down-sampling acceleration signals from 200 Hz to 100 Hz, and added to the 100 
Hz group. Foot strikes were detected from the vertical acceleration using the algorithm 
proposed by McCamley et al. [104]. Two portions of signals (about 20 strides each) were 
extracted for each subject and divided in two groups: straight walking (SW) and walking 
with directional change (DCW). The number of strides was chosen as the maximum 
number of strides reachable by the subjects in completely straight walking conditions. 

Nine variability/stability measures were calculated. Three temporal variability measures 
were applied to stride time: SD [21], CV [21] and Poincaré plots (PSD1, PSD2) [22]. 
Stride times were obtained as the time intervals between two consecutive strikes of the 
same foot. Six stability measures were calculated on trunk acceleration signals in the 
vertical (V), medio-lateral (ML) and anterior-posterior (AP) directions: maxFM [34], sLE 
[34], RQA [47], MSE [45], HR [42] and IH [43]. IV [21], NI [21], lLE [34] and RQA 
(max, diverg) [47] were also considered, but 20 strides were not deemed to be sufficient 
to draw accurate conclusions having an intrinsic variability > 50%, based on the results 
illustrated in Chapter IV. Details on the implementation can be found in Chapter IX 
(Appendix). 

In order to assess the influence of directional changes on the measures, significant 
differences in results between SW and DCW conditions were calculated. Z-scores 
between the two conditions were calculated for each measure for the two sampling groups 
(100 Hz and 200 Hz). Bonferroni-corrected p-values for each measure at each sampling 
condition were then calculated based on the z-scores. Measures were selected based on 
the capability to discriminate between the two conditions (p < 0.05) for the majority (> 20 
for 200 Hz group, > 40 for 100 Hz group) of subjects. The increasing or decreasing effect 
of directional changes has also been assessed, based on the sign of the mean value of the 
difference between measures obtained in SW and DCT conditions. 

VI.3. RESULTS 

Only HR was found to be affected by directional changes, both at 200 Hz and at 100 Hz. 
HR decreased when a directional change was present in the task. HR was affected in the 
AP and V directions for the 200Hz, but only in AP direction for the 100Hz group. 

Other measures (SD, CV, PSD1, PSD2, MSE, RQA, maxFM and sLE) were not found to 
be affected by directional changes in the walk. 

VI.4. CONCLUSION 

Variability measures based on stride time were generally found to be not affected by 
directional changes. It is likely that the stride times suffered minor modifications during 
the 180 deg turn, hence not significantly influencing measures based on its variability. 
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HR was the only measure found to be affected by directional change. In particular, it was 
affected when applied to AP and V accelerations, but not when ML accelerations were 
analyzed. 

IH, maxFM, sLE and RQA were not found to be affected by directional changes. MSE, 
sLE and RQA also recently proved to be related to fall history in treadmill walking tests 
[39,105]. 

The sampling frequency had effects on the measures, but only related to the direction of 
the acceleration. At 100 Hz, only HR in the AP direction was found to be affected by 
directional change, while at 200 Hz AP and V directions were affected. This is likely 
caused by the loss of information induced by the lower sampling frequency. 

In conclusion, temporal variability measures were not affected by directional changes. IH, 
MSE, sLE and RQA were not affected by of directional changes. In particular, MSE, sLE 
and RQA could contribute to the definition of a fall risk index in free-walking conditions, 
based on their previously demonstrated association with fall history [39,105]. Further 
research is needed to assess the capability of these measures to identify fall-prone 
subjects in an overground walking task. 
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VII. STABILITY OF WALKING AND SHORT 
TERM FALL-HISTORY 

VII.1. INTRODUCTION 

The assessment of the association between variability/stability measures and fall history 
should highlight if these indicators are capable to detect any eventual structural alteration 
in gait patterns. The application of such measures to portions of acceleration signal that 
are located in the proximity of a fall should instead assess the capability of such 
indicators to detect if the gait pattern undergo a particular modification which may cause 
a critical loss of stability. The detection of this temporary modification may become 
particularly evident in the case of fall-prone pathological subjects, which can experience 
several falls even in a short period of time. 

Ten variability/stability measures were applied to a database of trunk acceleration data 
acquired during a 24 hour monitoring of 20 parkinsonian fall-prone subjects affected by 
progressive supranuclear palsy. The subjects experienced a fall during the monitoring, 
hence allowing to know the temporal distance from the fall episode and the analyzed 
walking window. The aim of the study was to test if variability/stability measures can i) 
discriminate between the close-to-a-fall and the far-from-a-fall conditions; ii) 
discriminate between unfrequent faller and frequent faller subjects; iii) discriminate 
between the pre-fall and the post-fall conditions. In addition, a case study was analyzed in 
order to iv) observe the behavior of variability/stability measures in the very proximity (< 
30 minutes) of a fall episode compared to a far-from-a-fall condition. 

VII.2. METHODS 

Twenty elderly subjects (7 unfrequent fallers, 13 frequent fallers) affected by Progressive 
supranuclear palsy (PSP) were monitored in daily activity for 24h, using an accelerometer 
located on the trunk (data were supplied by Bagalà et al., University of Bologna). A 
subject was classified as frequent faller if his fall rate was ≥ 1 fall/month. 

Five subjects fell during the registrations. For some subjects, more than one 24h 
registration was available, and thus were considered to be additional subjects. This led to 
a total of ten subjects who fell during the registrations that were considered for the 
analysis. Trunk acceleration signals relative to three windows containing only walking 
activity were extracted. Each window included a number of strides comprised between 30 
and 70. In order to obtain comparable results among the subjects, 30 strides for each 
window were used for the analysis. 
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Ten variability/stability measures were calculated on the three windows. Six temporal 
variability measures were applied to stride time: SD [21], CV [21], IV [21] and Poincaré 
plots (PSD1, PSD2) [22]. Stride times were obtained as the time intervals between two 
consecutive strikes of the same foot, detected from the AP trunk acceleration with a peak 
detection method [92]. Four stability measures were calculated on trunk acceleration 
signals in the vertical (V), medio-lateral (ML) and anterior-posterior (AP) directions: 
Recurrence quantification analysis (RQA) [47], Multiscale entropy (MSE) [45], 
Harmonic ratio (HR) [42] and Index of harmonicity (IH) [43]. NI [21], lLE [34] were also 
considered, but the number of strides included in the windows (30 strides) was not 
deemed to be sufficient to draw accurate conclusions, having an intrinsic variability > 
50% based on the results illustrated in Chapter IV. Based on the same results, for RQA 
(max, diverg) [47] only ML direction was considered. Details on the implementation can 
be found in Chapter IX (Appendix). 

Four different analyses were performed on the sample: i) a comparison between the close-
to-a-fall (CF) and the far-from-a-fall (FF) conditions; ii) a comparison between 
variability/stability measures calculated on unfrequent fallers (UnF) and frequent fallers 
(FrF); iii) an overall analysis on the pre-fall (PrF) and post-fall (PoF) condition; iv) a case 
study analysis on a subject for which the walking windows were extracted particularly 
close to a fall (< 30 minutes). 

VII.2.1. Close to a fall / Far from a fall 

In order to define the CF and FF conditions, a threshold equal to 8 hours was set, being 
the median of the time distances from the nearest fall of all the extracted windows. Two 
windows for each subject were considered, one close to the fall and one far from the fall, 
disregarding if the fall episode occurred before or after the extracted window. Three 
subjects satisfied this criterion, and hence were selected for the analysis. 

Z-scores for each subject were calculated between the results of the measures in the two 
conditions (CF and FF), using as variance the between-subjects median value of the 
interquartile obtain in a previous study (see Chapter IV). Bonferroni-corrected p-values 
were then obtained. 

VII.2.2. Unfrequent fallers / Frequent fallers 

Two groups were created. The first was composed by measures calculated on unfrequent 
fallers windows (UnF). The second was composed by measures calculated on the 
windows that were considered to be far from a fall (time distance > 8 hours) of frequent 
fallers that experienced a fall during the registrations (FrF). To assess the differences 
between the two groups, a t-test was performed. 

VII.2.3. Pre-fall / Post-fall 

Measures calculated on the windows for all the subjects were re-grouped, disregarding 
the information relative to the subjects, in two groups (PrF and PoF), based only on the 
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sign of the time distance from the nearest fall. To assess the differences between the two 
groups, a t-test was performed. 

VII.2.4. Single subject case study 

A single subject with a favorable location of the time windows with respect to the fall 
episode was analyzed. The three time windows extracted were located at 18m before the 
fall episode (PrF), 30m (PoF) and 20h after the fall episode (FF). 

Z-scores of measures between the PrF/PoF and the FF condition were calculated, using as 
variance the between-subjects median value of the interquartile obtain in a previous study 
(see Chapter IV). Bonferroni-corrected p-values of the two conditions in relation to the 
FF condition were then obtained. 

 

VII.3. PRELIMINARY RESULTS 

VII.3.1. Close to a fall / Far from a fall 

HR, MSE AP (τ = 2, …, 6), RQA ML (diverg) and IV didn’t highlight any difference 
between the CF and the FF condition for all the three subjects. SD, CV, IH (ML, V), 
PSD1, PSD2, MSE V (τ = 2, 3, 5), RQA AP (rr, det, avg), RQA ML (rr, det, avg) and 
RQA V (det) found statistically significant differences between the two conditions for all 
the three subjects. Results are illustrated in Table VII.1. 

VII.3.2. Unfrequent fallers / Frequent fallers 

HR (AP, V), IH (AP, V) and RQA (AP det, ML det, V diverg) found statistically 
significant differences between the UnF and the FrF groups. Other measures didn’t find 
any difference. 

VII.3.3. Pre-fall / Post-fall 

Only PSD1 was found to be significantly different between the PrF and the PoF 
condition. Other measures didn’t highlight any difference. 

VII.3.4. Single subject case study 

HR, MSE AP (τ = 4, …, 6) and RQA V (max) didn’t highlight any difference between the 
PrF/PoF and the FF condition. RQA V (avg, diverg) and NI didn’t find differences 
between the PrF condition and the FF condition. MSE AP (τ = 1, …, 3), RQA ML 
(diverg), RQA V (rr) and IV didn’t find any differences between the PoF condition and 
the FF condition. All other measures were found to be significantly different between the 
PrF/PoF and the FF condition. 
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VII.4. CONCLUSION 

A possible limitation of the studies i) and ii) is the large temporal threshold (8 hours) that 
had to be fixed in order to separate subjects in the CF and FF conditions. Temporal 
variability measures (SD, CV, PSD1, PSD2) were found to be different in proximity of a 
fall episode. In particular, PSD1 was also capable to highlight differences between the 
pre- and post-fall conditions. HR, IH and RQA showed to be sensitive to the frequency of 
the falls experienced by the subjects, being capable to discriminate between frequent and 
unfrequent fallers, although not for all acceleration directions. MSE and RQA showed 
different behaviors, highly influenced by the direction of the trunk acceleration. 
Particularly interesting is the result of MSE AP (τ = 1, …, 3), which performed poorly in 
discriminating between CF and FF when the threshold was high, but was able to discern 
between the two conditions in the very few minutes before a fall. Having been associated 
with fall history [105], this measure seems capable to reflect potentially critical changes 
in the gait pattern. However this result has been obtained from a single subject, and 
conclusions must hence be drawn carefully.  

 

Table VII.1 – Significance of measures between the CF and FF condition 

Significantly different for 
3/3 subjects 

Significantly different for 
2/3 subjects 

Significantly different for 
1/3 subjects 

Non significantly 
different 

IH (ML, V) IH (AP) MSE AP (τ = 1) HR (AP, ML, V) 

PSD1 MSE ML (τ = 1, .., 6) RQA ML (max) MSE AP (τ = 2, …, 6) 

PSD2 MSE V (τ = 1, 4, 6)   RQA ML (diverg) 

MSE V (τ = 2, 3, 5) RQA V (rr, avg)   IV 

RQA AP (rr, det, avg)     

 RQA ML (rr, det, avg)     

 RQA V (det)       

SD 	  	       

CV     	  	  
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VIII. CONCLUSIONS 

Falls in the elderly pose a serious problem in society, both clinically and economically. 
From a clinical point of view, falls are often associate with injuries (e.g., hip fractures) 
[4], and have a negative psychological impact on patients [106]. Moreover, older adults 
may restrict their activities in response to a fall, leading to a loss of independence and 
ability to carry out life’s routine tasks [107]. 

In this context, reliable methods for quantifying fall risk are needed, in order to 
adequately select subject to include in fall prevention programs. Since falls often occur 
during walking [17,18], assessment of gait stability represents a crucial indicator for fall 
risk. Many methods (direct, indirect and stability-related) to quantify gait stability are 
presented in literature; however, the relationship between many of these stability 
measures and fall history/fall risk is still unknown, and there is still no consensus in the 
literature on how to correctly interpret the stability indicators and how to effectively 
implement stability analysis methods to obtain reliable stability outcomes.  

The aim of this thesis was to analyze the influence of experimental implementation 
parameters on stability measures and to understand how variations in these parameters 
affect the outputs. The assessment of the relationship between dynamic stability measures 
and long/short-term fall risk was also an objective of this thesis. 

In Chapter II a systematic review of the literature on the topic of biomechanical 
applications of a nonlinear dynamic stability measure (namely orbital stability analysis 
via maximum Floquet multipliers) is presented. The review highlighted an incoherence 
among the results of the studies present in the literature, believed to be due mainly to the 
absence of a generalized methodological procedure to implement orbital stability analysis 
on biomechanical time series data [49] and confirming the uncertainty regarding how to 
properly apply stability measures in biomechanics and the association of these measures 
with risk of fall. 

As a consequence of the results obtained from the review, an experimental- and model-
based study on the influence of experimental input parameters in orbital stability analysis 
was performed. The results are presented in Chapter III. One of the main issues relative to 
this technique is the necessity to properly describe the dynamical system, in order to 
obtain a reliable orbital stability index; hence, the definition of the state space is of crucial 
importance for the outputs. The coherence between the results obtained with differently 
composed state spaces shows that the same stability output can be obtained with different 
implementations and experimental setup, despite the fact that different numbers of gait 
cycle are necessary. On the other hand, the number of gait cycles necessary to obtain this 
result is different among these techniques; in particular, analysis conducted on 
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accelerometer data requires more gait cycles. Experimental noise and operator errors 
could represent a critical issue when using orbital stability analysis based on joint angles 
obtained from stereophotogrammetric systems, while experimental noise on 
accelerometer data showed no particular influence on the stability results. Experimental 
results were also coherent with the model results, supporting the validity of the stability 
outcomes. 

In Chapter IV, an assessment of the minimum number of strides needed and a test-retest 
reliability analysis performed on several temporal variability/stability measures is 
presented. Multiscale entropy and Recurrence Quantification Analysis showed excellent 
reliability. In general, the number of strides necessary to obtain a reliable measure was 
larger than those conventionally used. 

An analysis of the association between nonlinear stability measures and fall history is 
presented in Chapter V. In particular, in this study measures independent from stride 
detection were tested, in order to avoid a potentially critical implementation process. 
Multiscale entropy and Recurrence Quantification Analysis were found to be positively 
associated with fall history. 

In Chapter VI, the influence of directional changes on variability/stability measures was 
assessed. Only Harmonic ratio was found to be influenced by directional changes, while 
measures such as short-term Lyapunov exponents, Multiscale entropy and Recurrence 
quantification analysis were not. 

In Chapter VII, the association of variability/stability measures with short-term risk of fall 
is presented. Preliminary results showed that Multiscale entropy in the AP direction 
seems to be able to detect modification in the gait pattern immediately before a fall 
episode. 

In conclusion, several implementation issues have been addressed. Following the need for 
a methodological standardization of gait variability/stability measures, highlighted in 
particular for orbital stability analysis through a systematic review, general indications 
about implementation of orbital stability analysis have been shown, together with an 
analysis of the number of strides and the test-retest reliability of several 
variability/stability numbers. Indications about the influence of directional changes on 
measures have also been provided. Association between measures and long/short-term 
fall history has also been assessed. Of all the analyzed variability/stability measures, 
Multiscale entropy and Recurrence quantification analysis demonstrated particularly good 
results in terms of reliability, applicability and association with fall history. Therefore, 
these measures should be taken in consideration for the definition of a fall risk index. 
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IX. APPENDIX 

IX.1. STANDARD DEVIATION 

Standard deviation (SD) of stride time was simply calculated as the standard deviation of 
the stride times in the analyzed time-window [17]. 

IX.2. COEFFICIENT OF VARIATION 

Coefficient of variation (CV) was calculated as the SD normalized to each subject’s mean 
stride time [21]: 

 

 CV =   
𝑆𝐷  ×  100

𝑚𝑒𝑎𝑛_𝑠𝑡𝑟𝑖𝑑𝑒_𝑡𝑖𝑚𝑒 IX.1  

 

IX.3. INCONSISTENCY OF THE VARIANCE 

Each time series was first normalized with respect to its mean and SD, yielding new time 
series each with mean = 0 and SD = 1, but with different dynamic properties. This 
normalized time series was then divided into blocks of five strides each, and in each 
segment the (local) average and (local) SD were computed. The inconsistency of the 
variance (IV) is the SD of the local SD [21]. 

IX.4. NONSTATIONARY INDEX 

Similarly to the IV, the nonstationary index (NI) is defined as the SD of the local 
averages of the normalized time series’s five strides blocks. The nonstationary index 
provides a measure of how the local average values change during the walk, independent 
of the overall variance (the fluctuation magnitude) of the original time series. A higher 
nonstationary index indicates greater range among the local averages [21]. 

IX.5. POINCARÉ PLOTS 

Stride time data plots between successive gait cycles, known as Poincaré plots, show 
variability of stride time data. Brennan et al. [108] provided mathematical expressions 
that relate each measure derived from Poincaré plot geometry to well-understood existing 
heart rate variability indexes. Using the method described by Brennan [108], these plots 
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were used to extract indices, such as length (PSD2) and width (PSD1) of the long and 
short axes describing the elliptical nature of the Poincaré plot images. Statistically, the 
plot displays the correlation between consecutive stride times data in a graphical manner. 
Points above the line-of-identity indicate strides that are longer than the preceding, and 
points below the line of identity indicate shorter strides than the previous ones. The 
Poincaré plot typically appears as an elongated cloud of points oriented along the line-of-
identity. The dispersion of points perpendicular to the line-of-identity reflects the level of 
short-term variability [108]. The dispersion of points along the line-of-identity is shown 
to indicate the level of long-term variability [22]. 

IX.6. ORBITAL STABILITY ANALYSIS 

The first step of orbital stability analysis via maximum Floquet multipliers (maxFM) is 
the state space reconstruction. Two approaches were used: direct inclusion of acquired 
variables (joint angles/acceleration time series) into the state space, delay-embedding 
reconstruction. Delay embedding is a technique to reconstruct a dynamical system from a 
sequence of observations. Standard embedding techniques were used [27,109]; an 
appropriate state space was reconstructed from each time series and its time delayed 
copies. An embedding dimension of dE = 5 was always chosen; many studies in literature 
agree in considering this to be an appropriate dimension for gait data [27,37,56]. A fixed 
time delay τ = 10 was always used [37,56]. 

Stride cycles were considered as the time between consecutive right heel strikes and were 
resampled to be 101 samples long, because Floquet theory assumes that the system is 
strictly periodic. A Poincaré section was defined at each percentage of the gait cycle (0% 
= right heel strike). 

The Poincaré map: 

 

 𝑆!!! =   F 𝑆!  IX.2  
 

defines the evolution of the state Sk to the state Sk+1 at each Poincaré section, for each 
stride k. 

The limit cycle trajectory was defined as the average trajectory across all strides. This 
produces a fixed point in each Poincaré section: 

 

 𝑆∗ =   F 𝑆∗  IX.3  
 

A linear approximation of Eq. IX.1: 



77 
 

 

 𝑆!!! − 𝑆∗ ≈   J 𝑆∗ 𝑆! − 𝑆∗  IX.4  
 

allows calculating how system states diverge from or converge to fixed points. The FM 
are the eigenvalues of the Jacobian matrix J(S*). The maximum FM (maxFM) is believed 
to govern the dynamics of the system, and hence to be the most representative in terms of 
instability. maxFM was calculated for each Poincaré section (0 – 100% of the gait cycle). 
If the maxFM have magnitude < 1, the system remains stable; otherwise, the system tends 
to diverge from the limit cycle and become unstable. The overall mean value of maxFM 
across the gait cycle was calculated and used in the analyses. 

IX.7. LOCAL STABILITY ANALYSIS 

The first step for local stability analysis is the state space reconstruction (see description 
in Section IX.6). Local dynamic stability of walking is quantified by estimating the 
average exponential rates of divergence of initially neighboring trajectories in state space 
as they evolve in real time. These local divergence exponents provide a direct measure of 
the sensitivity of the system to extremely small (i.e., local) perturbations. Positive 
exponents indicate local instability, with larger exponents indicating greater sensitivity to 
local perturbations. Nearest neighbor points on adjacent trajectories in the reconstructed 
state space represent the effects of small local perturbations to the system. Euclidean 
distances between neighboring trajectories in state space were computed as a function of 
time and averaged over all original pairs of initially nearest neighbors. Local divergence 
exponents were estimated from the slopes of linear fits to these exponential divergence 
curves: 

 

 y 𝑖 =   
1
∆𝑡 ln𝑑! 𝑖  IX.5  

 

where dj(i) is the Euclidean distance between the jth pair of initially nearest neighbors 
after i discrete time steps (i.e., iΔt seconds) and ⟨.⟩ denotes the average over all values of 
j. Since the intrinsic time scales were different for each subject (i.e., different average 
stride times), the time axes of these curves were rescaled by multiplying by the average 
stride frequency for each subject. Short-term exponents (sLE) were calculated from the 
slopes of linear fits to the divergence curve between 0 and 1 stride. Long-term exponents 
(lLE) were calculated as the slope between 4 and 10 strides [34]. 

IX.8. HARMONIC RATIO 

The Harmonic ratio (HR) was calculated by decomposing the AP and ML acceleration 
signals into harmonics using a discrete Fourier transform [42]; the summed amplitudes of 
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the first 10 even harmonics were then divided by the summed amplitudes of the first 10 
odd harmonics for the AP accelerations, and vice-versa for the ML accelerations. This 
difference is due to the fact that whereas the AP accelerations have two periods every 
stride, showing a dominance of the second harmonic, representing step frequency and 
subsequent even harmonics, ML accelerations have only one period per stride, reflecting 
a dominance of the first (and subsequent odd) harmonics [42]. In order to avoid errors 
that might be introduced by step-detection, HR was not calculated stride by stride, but 
decomposing the whole signal into its harmonics. A higher HR is an indication of 
increased smoothness of gait, which can be interpreted as increased stability. 

IX.9. INDEX OF HARMONICITY 

Index of harmonicity (IH) was calculated according to Lamoth et al. [43]. The power 
spectra of the AP and ML acceleration signals were estimated by means of  discrete 
Fourier transform. The peak power at the first six harmonics was estimated and IH was 
defined as: 

 IH =   
𝑃!
𝑃!!

!!!
 IX.5  

 

where P0 is the power spectral density of the first harmonic and Pi the cumulative sum of 
power spectral density of the fundamental frequency and the first five super-harmonics. 
Values close to 1 indicate high harmonicity (e.g. a sine wave has a power ratio of 1, 
indicating perfect harmonicity). Power spectral density of each peak was averaged over a 
range of [-0.1…+ 0.1] Hz around the peak frequency value  

IX.10. MULTISCALE ENTROPY 

Multiscale entropy (MSE) was implemented constructing consecutively more coarse-
grained time series; this procedure implies averaging increasing numbers of data points in 
non-overlapping windows of length τ. Sample entropy (SE) [110] was then calculated for 
each coarse-grained time series, in order to obtain entropy measures at different scales; 
SE quantifies the conditional probability that two sequences of m consecutive data points 
similar (distance of data points inferior to a fixed radius r) to each other will remain 
similar when one more consecutive point is included, thus reflecting the regularity of the 
time series [45]. SE at each time scale τ is hence a function of m and r and is expressed as 
the negative of the natural logarithm of the conditional probability C(r) that two 
sequences that are close within a tolerance rδ for m consecutive points remain close at the 
next point [111], where δ is the standard deviation of the original series: 

 

 
SE = −ln

𝐶!!! 𝑟
𝐶! 𝑟  IX.6  
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MSE was hence calculated for values of τ ranging from 1 to 6, m = 2 and r = 0.2, as 
suggested by Pincus [112] and later applied by Richman and Moorman to biological time 
series [110]. 

IX.11. RECURRENCE QUANTIFICATION ANALYSIS 

The first implementation step of Recurrence quantification analysis (RQA) is the 
reconstruction of the phase space by means of delay embedding [109]. In this study, an 
embedding dimension of 5 and a delay of 10 samples were used, based on previous 
studies [14,56,113]. A distance matrix based on Euclidean distances between normalized 
embedded vectors was then constructed; the recurrence plot was obtained by selecting a 
radius of 40% of the max distance, and all cells with values below this threshold were 
identified as recurrent points. A radius of 40% was chosen to make sure that recurrence 
rate (rr) responded smoothly and was not too high, and that determinism (det) did not 
saturate at the floor of 0 or the ceiling of 100, as approaching these limits would tend to 
suppress variance in the measure [48].  

A number of measures can then be obtained by RQA; in this study, rr, det, averaged 
diagonal line length (avg) and maximum diagonal line length (max) were calculated (Eq. 
IX.7, IX.8, IX.9, IX.10), reflecting different properties of the system. 

 
rr =

1
𝑁! 𝑅!,!

!

!,!!!

 IX.7  

 

where N is the number of points on the phase space trajectory; 

 

 
det =

𝑙𝑃!!
!!!

rr  IX.8  

 

where l is the length of diagonal lines, represented through a histogram (Pl); 

 

 
avg =   

𝑙𝑃!!
!!!

𝑃!!
!!!

 IX.9  

 

 max =    𝑙!; 𝑖 = 1…𝑁!  IX.10  
 

where Nl is the number of diagonal lines in the recurrence plot.  
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SE was calculated using MATLAB (Mathworks, Natick, MA) software available on 
Physionet [114]. All other measures were calculated through custom self-made MATLAB 
(Mathworks, Natick, MA) scripts. 
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SUMMARY 

In this preliminary study, a novel method for estimating 

initial and final foot contacts (IC and FC) during gait for 

both healthy and pathological subjects using two inertial 

sensors attached just above the ankles is proposed and 

validated against the measurements obtained from an 

instrumented walkway. Data from five healthy and five 

pathological subjects walking in different conditions were 

acquired. The proposed method consists of a preliminary 

identification of trusted swing and stance phases, so that the 

search intervals for IC and FC could be narrowed. In the two 

resulting time intervals, IC and FC timings were identified 

from characteristics of the gyroscope and accelerometer 

signals. Stance and swing time were then determined. 

Differences with respect to the stance and swing timings 

obtained with the instrumented walkway are limited to an 

average of less than 0.01s for all walking conditions and all 

subjects. Additional validation work is required on gait of 

other pathological populations in order to safely adopt the 

proposed method in clinical settings. 

 

INTRODUCTION 

In recent years, wearable inertial sensors (MIMUs) have 

been extensively proposed as effective tools for measuring 

gait temporal characteristics [1-5]. In most studies the 

proposed techniques were applied to the gait of healthy 

subjects, with a few exceptions [6-8]. Discrepancies with 

gold standard were in the range of 0.03s - 0.04s in 

determining temporal events in Parkinson patients gait [6]. 

In this preliminary work we evaluate a novel technique for 

the determination of the timing of initial foot contact (IC) 

and final foot contact (FC) and the determination of 

consequent temporal gait parameters, by comparing its 

results to those obtained from an instrumented walkway 

during one-minute walking trials of both healthy and 

pathological subjects. The hypothesis of the study was that, 

by using a method able to restrict the search intervals in the 

MIMU signals in which gait events can be found, an 

adequate reliability of their estimate can be obtained for 

both healthy and pathological gait. 

 
METHODS 

Gait data from five Parkinson patients (three females, 75 ± 3 

y.o.) and five healthy subjects (one female, 36 ± 7 y.o.) were 

acquired simultaneously using body worn MIMUs (Opal, 

APDM) and an instrumented walkway (GAITRite, CIR 

System Inc). Two MIMUs were attached laterally to the 

shank (2cm above the lateral malleolus), using velcro straps, 

on both sides (x-axis pointing downward, y-axis pointing 

forward and z-axis pointing laterally). The MIMUs and the 

instrumented walkway were synchronized using a dedicated 

trigger output from the instrumented walkway and sampled 

at 128Hz and 120Hz, respectively. 

Subjects were asked to walk back and forth for about one 

minute along a 12-meter walkway in three different walking 

conditions: a) self-selected, comfortable speed, b) higher 

speed and c) comfortable speed while performing a 

cognitive task (subtracting repetitively the number three 

from a pre-assigned number). 

For every gait cycle, time intervals of trusted swing (TSW) 

and of trusted stance (TST) were first identified and the 

remaining time intervals were used as IC and FC search 

intervals (TIC and TFC). TSW was identified by isolating the 

time interval during which the gyroscope signal along the z 

direction (z) exceeded the 20% of its maximum value. TST 

was obtained by isolating, at the center of the portion of the 

gait cycle outside the TSW interval (^TSW), the time interval in 

which z showed a standard deviation 60% lower than that 

in ^TSW. Therefore, TIC and TFC were defined as the time 

intervals between TSW and TST and TST and TSW, respectively. 

For each gait cycle, IC (tIC) and FC (tFC) instances were 

identified inside TIC and TFC, respectively (Figure 1). 

 

 
Figure 1: The gyroscope signal z during approximately  

two gait cycles. Trusted swing (TSW) and trusted stance (TST) 

are identified first, so that IC and FC search windows (TIC 

and TFC) result as their complement within the gait cycle. 

The tIC was identified as the instant of minimum z [7] in 

the time interval between the beginning of TIC and the 

instant of maximum anterior acceleration ay in TIC. The 

instant tFC was defined as the occurrence of the minimum of 



ay preceding the instant of the last maximum value in TFC 

(Figure 2). Stance time (STTime) and swing time (SWTime) 

were obtained from tIC and tFC and compared against those 

obtained from the instrumented walkway. Therefore, only 

the data acquired while the subjects walked over the 

instrumented walkway were used for the analysis. 

 

 
Figure 2: IC (tIC) and FC timing (tFC) identification. (a) The 

gyroscope signal z (blue) and acceleration signal ay (red) in 

the TIC search window are shown. The vertical dashed line 

represents the instant of  maximum ay in TIC , while the solid 

vertical line identifies the IC detected. (b) The acceleration  

ay (red) in the TFC search window is shown. The dashed 

vertical line represents the instant of the last ay maximum in 

TFC, while the solid line identifies the FC detected. 

 

RESULTS AND DISCUSSION 

In Table 1, STTime and SWTime as determined by the MIMU 

and their difference () with respect to the values obtained 

with the instrumented walkway are reported for all subjects 

walking in the three conditions, for a total of more than 

1500 measurements. Results showed extremely low values 

for  across the three walking conditions: the average 

absolute value of  was always lower than 0.01s (sd =0.02s) 

in both healthy and pathological subjects. This result is 

particularly promising considering that the gait 

characteristics in the same gait condition showed a 

remarkable variability across subjects (STTime varied from 

0.62s to 0.82s at comfortable speed). Moreover, the 

proposed method was able to properly estimate STTime and 

SWTime both in very regular gait (sd =0.01s in S1 

comfortable walk) and in less regular gait (sd = 0.08s in P2 

comfortable walk). 

 

CONCLUSIONS 

The validation of the proposed method for determining 

temporal gait events and consequent parameters provided 

robust results across gait conditions and subjects. However, 

a wider range of pathologies should be tested in order to 

have a stronger validation of the method. Moreover, gait 

conditions could be extended to variations of gait such as 

obstacle negotiation and turning. 
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Table 1: Trial average (gray background) and sd (no background) values for STTime and SWTime as determined from the MIMU 

signals and the difference () with respect to the relevant values obtained from the instrumented walkway for three different 

gait conditions. Numbers are reported in seconds. 

COMFORTABLE WALK FAST WALK COGNITIVE TASK WALK 
STTIME  SWTIME  STTIME  SWTIME  STTIME  SWTIME  

S1 
0.77 0.01 0.46 - 0.01 0.58 0 0.40 0 0.66 0.01 0.42 - 0.01 

0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.02 0.02 0.02 

S2 
0.69 0 0.43 0 0.59 0 0.39 0 0.69 0.01 0.41 - 0.01 

0.02 0.01 0.02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 0.02 0.01 

S3 
0.65 0.02 0.38 - 0.02 0.53 0 0.36 0 0.71 0.01 0.42 - 0.01 

0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.01 0.02 0.01 

S4 
0.62 0 0.40 0 0.46 0 0.33 0 0.68 0 0.42 0 

0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.03 0.01 0.02 0.01 

S5 
0.67 - 0.01 0.42 0.01 0.51 0 0.34 0 0.72 0 0.43 0 

0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.04 0.02 0.04 0.02 

P1 
0.65 0 0.38 0 0.57 0 0.36 0 0.64 0 0.38 0 

0.02 0.02 0.01 0.02 0.04 0.02 0.02 0.02 0.03 0.02 0.02 0.02 

P2 
0.83 0.01 0.36 - 0.01 0.70 - 0.01 0.32 0.01 0.83 - 0.01 0.29 0.01 

0.08 0.03 0.04 0.03 0.07 0.03 0.03 0.02 0.05 0.03 0.03 0.03 

P3 
0.82 0.02 0.40 - 0.02 0.74 0 0.38 0 0.81 0.02 0.40 - 0.02 

0.04 0.02 0.03 0.02 0.04 0.02 0.02 0.02 0.05 0.06 0.03 0.04 

P4 
0.79 - 0.01 0.44 0.01 0.67 - 0.01 0.40 0.01 1.10 0 0.48 0 

0.06 0.01 0.04 0.01 0.02 0.01 0.02 0.01 0.12 0.02 0.06 0.02 

P5 
0.70 - 0.02 0.41 0.02 0.67 - 0.02 0.41 0.01 0.79 - 0.01 0.45 0.01 

0.02 0.01 0.01 0.02 0.03 0.01 0.01 0.02 0.04 0.01 0.02 0.01 
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Although the U.S. has studied space suit performance for decades, relatively little is known 
about how the astronaut moves and interacts within the space suit. We propose the use of in-
suit sensor systems to characterize this interaction and present our results using pressure 
sensors and inertial measurement units (IMUs) inside the David Clark Mobility Mock-Up 
and the Mark III space suit from NASA’s Advanced Space Suit Lab at the Johnson Space 
Center. A network of 12 low-pressure sensors are distributed over the arm to measure the 
pressure between the arm and the suit soft goods. A high-pressure sensor mat is used to 
detect the pressure between the shoulder and the suit hard upper torso (HUT). Finally, we 
place three IMUs inside directly on the person’s lower arm, upper arm and torso, with three 
corresponding IMUs outside on the space suit to measure joint angles. We perform two 
human subject experiments with 5 movement tasks focusing on upper body motions. The 5 
motions include 3 isolated joint movements (elbow flexion/extension, shoulder 
flexion/extension, and shoulder abduction/adduction) and 2 functional tasks (overhead 
hammering and multi-join cross body reach). We discuss the implementation of this 
experiment, our lessons learned, quality of the data, and follow-on work. Finally, we propose 
future improvements for the characterization of human biomechanics and injury 
mechanisms from a human-space suit perspective. 

Nomenclature 

ABF = Anthropometry and Biomechanics Facility  
DCCI = David Clark Company Incorporated 
EMU = Extravehicular Mobility Unit 
EVA = Extravehicular Activity 
HUT  = Hard Upper Torso 
IMU  = Inertial Measurement Unit 
ISS = International Space Station 
JSC = Johnson Space Center 
LCVG = Liquid Cooling and Ventilation Garment 
NASA = National Aeronautics and Space Administration 
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NBL = Neutral Buoyancy Lab 
SSA = Space Suit Assembly 

I. Introduction 

XTRAVEHICULAR activity (EVA) 
requires substantial preparation and the 
proper hardware to ensure the safety of the 

astronaut and the success of the mission. EVA 
has allowed us to perform the most important 
moments in human space flight. The space suit 
is a technical marvel, through design and 
iterative enhancements of the system assures 
each of the primary requirements to sustain life 
in the harsh vacuum of space is achieved. 
However, accumulated time in the suit causes 
fatigue, increases metabolic expenditure, and 
eventually may lead to injuries [2-11].  

The space suit that U.S. astronauts 
currently fly and train in is the extravehicular 
mobility unit (EMU), which causes a variety of 
musculoskeletal injuries. This system includes 
the space suit assembly (SSA), protective and 
comfort pieces, and the life support system.  A 
sketch of the EMU and comfort equipment is 
shown in Figure 1. A comprehensive 
description of these systems can be found in 
[12] and [13]. The EMU is gas-pressurized to 
29.6 kPa (4.3 psi), making the soft goods somewhat stiff and rigid, requiring the wearer to work to deform the suit 
itself in addition to the work required for the task he or she is performing [5, 14-18]. As a result, astronauts experience 
discomfort, hot spots, skin irritation, abrasions, contusions, and over time injuries requiring medical attention. The 
most common types of reported suit incidences are to the hands, feet, and shoulders.  The remaining reports occur 
primarily where the person impacts and rubs against the suit to articulate it.  Although most injuries have been minor 
and did not affect mission success, injury incidence during EVA is much higher than injury that occurs elsewhere 
on-orbit [6, 7, 9]. EVA-associated injuries have been further exacerbated with the increased number of EVAs and 
training sessions for the construction of the International Space Station (ISS) in the Neutral Buoyancy Lab (NBL) 
training pool [18].  Astronauts and tools are made neutrally buoyant to simulate the weightlessness of microgravity, 
allowing for realistic mission preparation with mockups of the ISS, robotic arms, and other pieces of space 
hardware.  Many hours of training are required for each EVA, and the injuries seen on-orbit are magnified as more 
time is spent inside the suit. During NBL training astronauts shift inside the suit due to gravity and hydrodynamic 
resistance  which must be overcome, both factors likely cause new injuries not seen in flight.  For example, some 
training positions when inverted cause the weight of the body to rest on the shoulders, causing discomfort and 
injury, and in some instances leading to surgical intervention. Shoulder injuries are some of the most serious and 
debilitating injuries astronauts face as a result of working in the suit [7, 8, 10, 19-21] 

In addition to the EMU, there are several prototype suits geared toward improving capabilities for planetary 
and deep space exploration. The Mark III (Figure 2B), originally built in 1987 by NASA and ILC Dover, is the most 
well characterized prototype suit. It incorporates some hard components and rotating bearings (rather than soft fabric 
pieces) over the torso and hips to improve mobility and mitigate the effects of volume change. The concept was 
originally designed with planetary exploration in mind, hence the focus on mobility. The suit has seen several 
iterations and improvements since its original design. Although the bearings reduce the joint torques required to 
move the suit, their designs give the suit additional programming, making movements less natural. This effect was 
also seen in the AX-5, a full body hard suit designed at NASA Ames [22]. Soft suits, such as the Modified ACES, 
Demonstrator Suit, and the Mobility Mockup, are designed by the David Clark Company, Incorporated (DCCI). The 
Demonstrator Suit (Figure 2A) was designed to address launch and entry requirements and contingency EVA 
situations. Their Mobility Mockup allows these concepts to be implemented on a full pressure suit rapidly to 
determine relative success or failure  of components design[1]. Additional prototype suits include the REI-Suit and 

E 

A) B )  
 
Figure 1. EMU spacesuit pieces and comfort 
garments. A) The EMU in an exploded view so the hard upper 
torso, soft pieces sizing rings, and boots may be seen. Courtesy of 
Hamilton Sunstrand. B) Each of the comfort pieces, including the 
LCVG with padding, ventilation tubes, and boot inserts. Courtesy 
of “Human Spaceflight”. 
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the Z-1 suit designed by ILC Dover for NASA. Finally, there are a few space suit concepts being developed in 
academia, such as the University of Maryland’s MX-2, the University of North Dakota’s NDX-2, and MIT’s 
mechanical counter-pressure BioSuit™, which are test-beds for advanced space suit design and operations research 
[25, 26].  

Relatively little is known about how the person moves inside the space suit to move the suit itself. We 
hypothesize that injuries occur due to improper suit fit, shifting, limited use of protective garments, and repetitive 
motions and contact working against the suit [8, 10, 27].  Suit fit is a critical element in preventing astronaut injury and 
achieving optimal comfort, but there is no universal solution for every person. Achieving the best fit is extremely 
individualized and discomfort “hot spots” may exist in an area for one crewmember but not for another. Even 
between training sessions minor adjustments are made to suit enhance fit [28]. Additionally, a person’s body 
dimensions, especially height, change as they adjust to microgravity [29], which may necessitate further suit 
adjustment. No matter which environment the astronaut is working in, movement in the suit is unnatural due to each 
space suit’s inherent programming [30] and stiffness.  Astronauts learn to change their biomechanical movement 
strategies, rather than attempting to move as they do naturally when unsuited [28].  

The difference between how a person moves as compared to the suit has not been previously quantified. 
The performance and movement of the space suit have been studied both experimentally and theoretically.  
However, evaluating how the person interacts within the space suit has not been rigorously measured. Performance 
is usually measured for the person and the space suit as a combined system. There have been many experiments to 
characterize range of motion, work envelope, reach envelope, and the strength required by a person to move the suit, 
especially for isolated joints. Previous studies use a variety of techniques, such as photogrammetry, motion capture, 
and ergomic strength measurement [5, 14, 22, 31-36]. Results from these three techniques, however, are highly variable in 
that their methodologies are inherently different. Only comparison within one technique is possible and is not 
generalizable across subjects. Experimental evaluation of the human-space suit system gives gross metrics of 
performance and the upper bound of human capabilities within the environment. Modeling EVA has been used to 
get a sense of human-suit system performance for each of these metrics over a broad range of conditions not 
possible to be evaluated experimentally, such as modeling astronaut reach and work envelope over a population or 
modeling metabolic costs [31] [11, 14, 16, 17, 37-39]. In addition, there is currently no way to evaluate human movement 
within, although some work has focused on determining body joint angles within the suit  [40, 41]. Knowing joint 
angles or where the body impacts the suit would improve performance data collection techniques through precise 
torque measurements, human range of motion inside the suit, and greater insight into metabolic cost data. Building 
from these studies could provide direct insight into resolving issues associated with EVA injury, comfort, fit, and 
mobility of future suit designs. 

Future gas-pressurized space suit designs are governed by mobility requirements as we shift focus to 
planetary exploration. Surface exploration will require greater range of motion and more frequent sorties, leading to 
more time spent in EVA. This could potentially lead to higher injury incidence if the system is not enhanced to find 

long-term, healthy solutions to prevent 
EVA injury [18, 42, 43].  

The objective of this research is to 
develop an understanding of how the person 
interacts with the space suit, and use that 
information to assess and mitigate injury. 
The approach was to quantify and evaluate 
human-space suit interaction with two 
pressure sensing tools, focusing on the arm 
and shoulders under different loading 
regimes. Additionally, inertial measurement 
units (IMUs) were placed both internal and 
external to the space suit arm to assess 
biomechanics. Both custom and 
commercially produced sensors were 
incorporated into a modified athletic 
garment to realize a wearable pressure 
sensing system inside the suit. This 
experiment establishes a precedent and 
proof of concept, opening the doorway for 

 

 
Figure 2.  Advanced concept space suits for technology 
demonstration. A)  The David Clark Demonstrator suit. Photo credit 
[1] B) The Mark III worn during the experiment presented here in. 
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future technology development. The successes, 
failures, and lessons learned in performing EVA 
experiments are presented herein, while detailed 
discussion of the data and its consequences are 
presented elsewhere.  

II. Methods  
A. Sensor Systems 

The human-suit interface is currently an 
unknown in space suit characterization. Subjectively, 
astronauts describe contact locations and areas of 
discomfort; however, there is no way to quantify the 
nature of that contact. Pressure measurements would 
allow greater insight into how these interactions occur 
and help characterize suit performance. Additionally, 
an understanding of the joint angle differences between 
the suit and the person would give us more information 
about the biomechanics of movement in the space suit. 
Sensors integrated into a wearable garment are shown 
in Figure 3. The two systems selected to measure 
pressure at different pressure sensing regimes and the 
inertial measurement units (IMUs) used to measure 
kinematics are shown in Figure 4.  

The Polipo is the system of 12 sensors 
developed as part of this research effort for the low-pressure regime expected to be measured on the body under the 
soft goods. Full characterization of sensor performance is presented elsewhere [44], but under dynamic loading 
conditions the sensors have a root mean square deviation from the applied pressure of 3 kPa, with a time constant of 
0.1 seconds, and have been measured as highly repeatable. The sensors are 2.5 cm in diameter and cover the 
pressure range from about 0-100kPa with approximately 1kPa resolution. The sensors are molded using a 
hyperelastic polymer that is cured to have a microfluidic channel into which liquid conductive metal is deposited. 
The sensors measure normal pressure by a change in resistance of the conductive metal when the channels are 
deformed. These sensors are placed over the arm in a way that targets anticipated hot spots, and secondarily for 
uniform coverage. The Polipo is integrated into a conformal athletic garment with targets into which the sensors are 
mounted with Velcro. The system is detachable, allowing independent pressure sensing system to be used on many 
differently sized people, each donning the wearable pressure-sensing garment. The experimenter can move the 
sensors to desired anatomical locations and/or concentrate them over a certain region of the body. Due to limitations 

 

 
Figure 4.  In-suit sensor systems.  A)Polipo low-pressure sensors to measure the pressure between the arm 
and soft goods. B) Novel high-pressure sensor and associated hardware to measure pressure on shoulder under the 
HUT. C) APDM Opal inertial measurement unit with three place internally and three placed externally to the suit 
to measure joint angle differences. 
 

 

 

Low Pressure 
“Polipo” sensors 

High Pressure Novel 
sensor and hardware 

APDM Inertial 
Measurement Unit  

A) B) C) 

 
 
Figure 3.  In-suit sensor systems.  Each of the 
three sensor systems are attached to the person’s body 
before donning the space suit. The two pressure sensing 
systems, the Polipo and Novel, are integrated to a 
conformal garment, while the IMUs are placed directly 
on the subject’s body. 
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of power and inability to transfer data wirelessly with multiple systems, the Polipo is wearable and run with on-
board data collection with electronics attached at the base of the back. An Arduino Microprocessor is used for data 
collection. Each sensor is powered with constant current of 0.5mA. The entire board in nominal operation with 12 
sensors runs ~100mA. The system uses a commercial off-the-shelf 9V battery encased and mounted next to the 
electronics board, giving a 4 hour test duration limit.  

The garment used to attach the Polipo sensors incorporates a pocket interface over the shoulder to house the 
Novel (Munich, Germany) pressure-sensing mat, which is used for the high-pressure sensing regime. The high-
pressure regime is at the interface between the person’s body and the hard upper torso of the suit. A Novel pressure 
sensing mat has been used previously in a study by the Anthropometry and Biomechanics Facility (ABF) on an 
Extravehicular Mobility Unit hard upper torso in unpublished work. For this experiment a modified S2073 sensor 
mat with 128 sensor points is used. Each sensor is 1.4cm in each dimension and has a pressure range between 20-
600kPa. The Novel system uses ten 1.2V nickel metal hydride batteries with 2000 mAh. The sensor is run at 
330mA. Like the Polipo, data collection hardware is mounted at the base of the back and data was stored onboard. 
Finally, a cover shirt slides easily over the entire sensor suite to prevent catching and to ensure proper sensor 
placement.  

The inertial measurement units (IMUs) chosen for this experiment are the APDM Opal IMU Sensing System 
(Portland, OR), which are commercially available and are the highest quality sensor system offered by APDM. The 
IMUs can be seen in Figure 4. Each IMU consists of three accelerometers, three gyroscopes and three 
magnetometers. An algorithm combines the measurements of the accelerometers and the magnetometers to update 
the gyroscopes readings that are subject to drift. When the magnetometers measurements are perturbed by external 
ferro-magnetic field fluctuations, the algorithm preferentially updates the gyroscope with the accelerometers. The 
algorithm is described in greater details in Yun[45], but the algorithm as implemented by APDM is proprietary. Three 
sensors were mounted internally on the upper arm, lower arm, and chest. The IMUs were placed in-plane with one 
another to optimize the output for isolated joint movements, but their relative orientations allow the detection of off -
axis rotations.  Three externally mounted IMU sensors on the upper and lower spacesuit arm and suit torso were 
attached to the suit such that they corresponded to the internal sensors. The internal sensors were attached to the 
body with a harness or straps and were secured with athletic tape to prevent them from moving during the 
experiment. The external IMUs were fixed by straps and athletic tape, or Velcro©. Each sensor is 4.8x3.6x1.3 cm 
and weighs less than 22g. The gyroscopes and magnetometers were recalibrated before each subject and each 
experiment to take into account the magnetic environment and minimize the gyroscope drift over time. They are 
powered by a lithium ion battery at 3.7V nominal. The maximum current through the sensor is approximately 56 
mA, and battery failure is highly unlikely. The data from the IMU sensors was collected wirelessly and continuously 
synchronized in real time. In addition, the unsynchronized data was saved on board the sensor in the event of a 
wireless signal failure. The sensors had 8GB of onboard storage and a battery life of 8 hours. The data was 
synchronized in real time through the IMU with a resolution of 10 μs. 
 Three high-resolution cameras were used to record the motions of the subjects from both the head on and 
profile views during the experiment. This data was helpful to review the details of the experiment and to visually 
track the kinematics to compare to IMU results. 
 
B. Subject Selection 

This experiment was performed on a total of four subjects. The first experiment was performed in conjunction 
with the DCCI where one subject was tested in their Mobility Mock-Up, which is an internal test article that was 
used in the development of the “Demonstrator Suit”[1]. The same experimental protocol was performed at NASA’s 
Johnson Space Center in the Advanced Space Suit Lab. The test was performed in the Mark III space suit. For all 
tests, the criteria for suited subject was: 1. Current fit-check in relevant suit, 2. Current test subject medical approval, 
3. Extensive experience working in the pressurized suit to aid in comfort and consistency while performing 
movements. In each instance, the subjects gained their high level of experience through being a suit design engineer, 
and therefore had performed many testing runs inside their respective suits. Their fit inside the suit had been iterated 
upon multiple times before the experiments, to achieve the optimal sizing. It should be noted, however, that for the 
DCCI experiment, the subject’s fit was noted as abnormal because the suit was not in its normal configuration. The 
experiment proceeded due to time constrains, and the fit improved once the suit was pressurized. Due to individual 
variability in the way subjects move and how the suit fits them, the data collected from the experiment cannot be 
directly compared across subjects. However, descriptively, it is instructive to look at each subject’s data side by side 
to get a sense of the variability we might see in future studies beyond this baseline analysis.  
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Each subject was briefed on the experiment and potential hazards associated with participating prior to signing 
an informed consent. This protocol was reviewed and approved by both the MIT Committee on the use of Humans 
as Experimental Subjects and NASA Johnson Space Center’s Institutional Review Board. Additionally, each sensor 
system was reviewed for electrical, encumbrance, and material hazards. The experiment could be terminated by the 
subject at any time for any reason, or by the test conductor, suit technicians or suit engineer due to any safety or 
hardware concerns or concern for the suited subject.   

C. Experimental Design 

Subjects were asked to perform a series of upper body motions inside the space suit. Experienced subjects were 
selected so they would not develop new, potentially confounding movement strategies to learn the way they move 
best in the space suits. The pressure profiles and angle histories were recorded for each subject. The test protocol 
consisted of 12 repetitions of 5 motions inside the space suit . A representative schematic of the test protocol is 
shown in Figure 5. The selected movements engage the upper body, particularly where the sensors are placed. The 5 
motions are 3 isolated joint movements (elbow flexion/extension, shoulder flexion/extension, and shoulder 
abduction/adduction) and 2 multi-joint functional tasks (overhead hammering, cross body reach). These tasks are 
described in detail in Figure 6. Prior to the test, subjects were trained on each movement and allowed to repeat it as 
many times as they desired before the experiment commenced to minimize the effects of learning. For each 
movement, the 12 repetitions were further subdivided into 3 groups of 4 repetitions each. This was done to evaluate 
subject fatigue or potential change of biomechanical strategies over the course of the test period. After each group of 
movements, the subject rested for a minimum of 5 minutes and qualitative information was gathered on subject 
comfort, subject fatigue, perceived contact with the suit, and perceived consistency of movement. This information 
was also collected prior to the experiment to determine initial contact with the suit. The experimental design was 
counterbalanced and each test condition randomized for each subject. Unsuited data was collected after the suited 
test to form the baseline pressure profile used to mitigate the effects of erroneous readings caused by movement 
without contact with the suit. For the unsuited condition, subjects were asked to perform the task matching the pace 
and range of motion while suited.  

Outside of the experimental protocol, additional data was recorded in static positions and for additional dynamic 
motions for the purposes of calibrating the IMUs and determining baseline loading from the suit. This was done 
before the subject donned the suit, while pressurized inside the suit, and in some instances while the subject was 
suited, but unpressurized. Finally, measurements were performed after the experiment to determine changes from 
the pre-experiment data. The calibration consists of 1) a static calibration where the subject was asked to maintain 
two different postures for 20 seconds each, and 2) a dynamic calibration where the subject moved through 4 specific 
isolated joint movements. The dynamic motions included: wrist pronation/supination, elbow flexion/extension, 
shoulder flexion/extension and shoulder abduction/adduction. The dynamic calibration was used to check the 

 

 
 

Figure 5.  Experimental test protocol for a single subject.  Subjects are given time to train each of the 5 
movements inside the space suit. Subjective information is taken on comfort and pressure hot spots. The 5 
movements are performed in 3 groups with subjective information taken after each group. The o rder is 
counterbalanced within the group and randomized between subjects and space suits. Each of the movements is 
repeated 4 times each. Sensor pressure profiles over time are recorded for analysis.  
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amplitude of the motions as recorded by the sensors. A steel square with level bubbles was used to ensure that 
subjects reached the requested 90° movement amplitude. 

III. Results 
A. David Clark Company Experiment 

 The first experiment was performed on one subject at the DCCI inside their Mobility Mockup space suit, 
following a pilot study in the MIT arm vacuum chamber. The DCCI Mobility Mockup suit was pressurized to 3.5 
psi and used an air cooling system. The subject wore comfort garments and padding as desired for comfort and suit 
fit. The suit is used to evaluate new suit concepts, and therefore the upper body configuration was different for each 
arm/shoulder. In addition to the test protocol outlined previously, the subject also performed the experiment suited 
while un-pressurized.  

The testing at DCCI proved extremely useful to finalize the experimental protocol for the NASA Mark III 
testing. Subjects were given very specific instructions as to arm orientation during the motion, when to focus on 
which isolated joint movements, and ensuring the subject returned to a neutral position before beginning the next 
repetition. This evolved over the course of the pilot and DCCI experiments based on the subject feedback and 
observation. We adjusted the ordering of tasks based on subject feedback, such as changing cross body reach to 4 
repetitions with the right arm followed by 4 with the left. It also became clear that taking subjective feedback after 
each motion instead of after each movement group would improve our results. Finally, it allowed us to improve our 

 
 
Figure 6.  Space suit movement tasks performed by each subject.  Three isolated joint tasks are 
performed: Elbow Flexion/Extension, Shoulder Flexion/Extension, and Shoulder Abduction/Adduction. Two 
functional tasks were performed: Cross Body Reach and Overhead Hammering. Subjects were given very specific 
instructions on how to perform the isolated joint tasks, while subjects were given way -point markers to meet and 
allowed to develop their own biomechanical strategies for the functional tasks. Subject in Mark III suit is shown.  
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data collection timing-tool so we could sync the data after the experiment, without which analyzing across sensor 
systems would not be possible.  
 The Polipo system did not produce rigorous data results for the DCCI experiment. Due to technical issues, 
the data logged once every 7 seconds, rather than the intended 0.3 seconds. Therefore detailed results corresponding 
to specific movement pressures were elusive. However, DCCI test was successful in allowing us to finalize the 
procedural aspects for the Mark III space suit experiment. The subject was asked to evaluate the garment fit and 
evaluate the degree to which the system inhibited motion. Adjustments were made in real time, a practice that was 
used in the follow-up experiment at NASA. Additionally, it was determined that turning on and beginning data 
collection prior to initializing the Novel data collection system was necessary. All hardware issues were resolved 
prior to any additional testing. 

The DCCI experiment was extremely important for evaluating the performance of the Novel pressure mat. 
Our ability to mimic the testing environment was limited in our laboratory pilot experiments, giving us very limited 
information of how the system would function in a full body pressurized suited environment. The experiment gave 
us a general idea of the durability of the system, as well as the range of pressure data, including localized pressure 
magnitudes, noise levels, and ease of identifying pressure profiles of various movements. One important aspect of 
the data was the occasional erroneous pressure readings that spiked to the maximum possible pressure value of the 
sensor. It was determined that this was likely caused by bending or folding of the sensor due to the motion of the 
arm with respect to the placement of the sensor on the subject’s body. Also of note was that nearly every sensor in 
the sensor mat was loaded during each movement, indicating that the subject is broadly loaded over the entire 
shoulder in the DCCI suit. 
 The IMU sensors recorded accurate and reliable data for the DCCI experiment. The experiment 
demonstrated the reliability of the wireless signal through the suit. The root mean square error (RMS) was calculated 
for the yaw and pitch angles over 20 seconds for all IMUs under each static calibration. The average drift was 5.8° 
(7.1° standard deviation) for the elbow joint angle and 4.9° (standard deviation 5.5°) for the shoulder joint angle. 
However, prior to the final two motions of the experiment, the IMU laptop recording the data crashed, which 
reemphasized the need to take both wireless transmission of data and onboard data storage, allowing this portion of 
the experiment to be recovered in post processing. The most effective way to mount the sensors to minimize shifting 
was to use elastic straps (APDM, Portland, OR) with athletic tape on the back of the sensor attached directly to the 
subject’s skin. Using the DCCI IMU data, the methodology for analyzing kinematics through quaternions was 
developed. However, at the time of the experiment, only five IMUs were available. The IMU located on the suit 
torso was not used, making it impossible to quantify the suit shoulder joint angle. For this reason, a comparison of 
the shoulder suit joint angle between the Mark III and the David Clark Mobility Mockup is not possible. In addition 
to establishing the final protocol, the analysis of the IMU data also showed statistically significant decrements in 
motion while suited compared to the unsuited case. A full review of the IMU data analysis can be found in 
“Feasibility of Spacesuit Kinematics and Human-Suit Interaction” (Bertrand et al., ICES, 2014). 
 

B. NASA Johnson Space Center Experiment 

 The second experiment was performed at NASA Johnson Space Center with three subjects inside the Mark 
III space suit. The suit was pressurized at 4.3 psi for these experiments, but is capable of being pressurized to 8.3 
psi. As per normal operation, the subjects also wore a liquid cooling garment, thermal comfort undergarment, 
wristlets, comfort gloves, and socks to aid in comfort and thermal control. Padding was used based on the subject’s 
normal suit requirements, however any shoulder padding was removed to prevent interference with the Novel 
system located over the shoulder.  

Static data taken prior to donning the suit was used to establish the zero-pressure value while on the 
subject’s body. Once the suit was donned and pressurized, static data collected during IMU calibration was used to 
determine the suit loading on the person’s body. After the pressurized portion of the experiment, static data collected 
during unsuited IMU calibration was used to determine any shifts from the baseline readings and to identify sensors 
that broke over the course of the experiment.   

All Polipo sensors were calibrated prior to the experiment. However, any sensors replaced over the course 
of the experiment were calibrated upon returning to MIT. Some sensors were known to give erroneous results. 
Sensor 8 is excluded from the experiment because it had a wire break inside the Polipo cover. Sensors 7 and 12 were 
known to give jumpy responses prior to the beginning of the experiment due to internal fraying of the copper wiring 
inside the Polipo’s fabric cover. With pressure on the wires, however, the connection could be reestablished. 
Therefore, these sensors were able to give responses, but their recorded profiles were treated with particular caution. 
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The 3 subjects performed 5 movement tasks spread over 3 movement groups. Data was collected by 11 sensors, for 
a total of 495 response profiles to evaluate. Each profile was examined to determine if the output was useful. Table 1 
summarizes the survivability of the Polipo sensors inside the space suit environment for all subjects across all 
movement tasks. Figure 7 shows the location of the sensors on the arm. Of the 165 possible sensor loading regimes 
(3 subjects, 5 motions, 11 sensors), 44% of the profiles were useful. The integrity of the data deteriorated as the 
experiment progressed. Subject 1 registered a sensor response for 58% of his loading scenarios, while Subjects 2 and 
3 had 44% and 29% respectively. The continual decrease in data integrity reflects deterioration of the sensor system 
with use, due primarily to breakage of the copper strands in the wiring.  

There is a distinction to be made between sensors that broke and sensors that didn’t register a response 
because the motion did not load it. Sensors broke for a variety of reasons. The first reason was due to losing the 
connection at the solder joint between the wiring and the sensor itself. This typically resulted in a total loss of signal. 
However, for some sensors, the movement itself would reestablish the circuit’s connection, allowing some 
intermittent data to be used. The most common form of failure was in the slow deterioration of the wiring. Internal 
breakage of the copper strands in the wires caused the data to be jumpy, either increasing or decreasing the 
resistance as the subject moved and copper strands came in and out of contact with one another. This progressively 
became more problematic with each subject as wear on the system increased.  Table 1 shows the breakdown of 
which sensors gave useful results not only because the sensor was not broken, but also because it was loaded during 
the movement group. Profiles are divided by subject and movement task for each sensor. The table indicates under 
which movement group the sensor was loaded and the profile was readable. Sensors which also gave a reading 
during the unsuited movement are designated with a “U”.  

In general, Sensor 1 did not provide useful information due to internal breakage of the wires. The response 
profiles were very jumpy, although occasionally a consistent response could be detected below the noise. Sensor 2 
was extremely useful for Subject 1, but broke early during the experiment for Subject 2. The wiring was repaired 
and performed well for Subject 3, although it was only loaded during elbow flexion/extension (and therefore also 
cross body reach). Although Sensor 3 survived the entire experiment, it was also nearly never loaded. The sensor 
was located on the back side of the forearm, and seemingly rarely made contact with the suit. Sensor 4 broke early in 
the experiment for Subject 1 at the solder joint. It was repaired and provided useful data for Subject 2. However, 
over the course of the experiment the wires began to break internally, making it unusable for Subject 3. Sensor 5 
was very useful for Subject 1, but broke at the solder joint late in the experiment. It broke again at the solder joint 
early in the experiment for Subject 2, but was repaired for Subject 3 and remained intact, providing useful profiles 
for the duration of the experiment. Sensor 6 remained intact for all subjects, but broke midway through the 
experiment for Subject 3. It provided some of the clearest profiles, but also exhibited an unsuited response due to its 
placement on the elbow.  This artifact should be removed from the data before considering pressure magnitudes. 
Sensor 7 was known prior to the experiment to give erratic responses due to wire breakage, and almost no usable 
profiles were detected. Sensor 8 was not included in the experiment. Sensor 9 remained intact for Subject 1, 

Table 1.  Useful movement profiles. Summary of sensors detecting pressure over each subject, movement 
task, and movement group. Movement tasks are E – Elbow flexion/extension, S – Shoulder flexion/extension, A – 
Shoulder abduction/adduction, C – Cross body reach, and O – Overhead hammering. The movement groups are 
numbered 1, 2, and 3, while an unsuited profile is listed as “U”.  

 

Sensor 1 1 2 3 U 1 2 3 U

Sensor 2 1 2 3 1 2 3 1 2 3 U 1 2 3 1 2 3 1 1 1 1 1 1 2 3 1 2 3

Sensor 3 1 2 3

Sensor 4 1 2 1 1 2 1 2 3 1 2 1 2 3 1 2

Sensor 5 1 2 1 2 3 1 2 1 2 3 1 1 2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Sensor 6 1 2 3 U 1 1 2 3 1 2 3 U 1 2 3 U 1 2 3 1 2 3 1 2 3 U 1 2 3 1 2 1 2 1 1 1 2

Sensor 7 3

Sensor 8

Sensor 9 3 1 2 3 1 1 2 3

Sensor 10 2 1 1 1 2 1 1 2 1 2 1 2 1

Sensor 11 1 2 3 1 2 3 1 2 3 U 1 2 3 U 1 2 3 1 2 3 1 2 3

Sensor 12 1 2 3 1 2 1

S A C OE S A C O E

Subject 1 Subject 2 Subject 3

E S A C O
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however was rarely loaded against the suit. Short spikes in pressure were detected on occasion, likely due to impact 
with the upper arm bearing. This was confirmed with Subject 2, whose impact with the bearing caused the sensor to 
rupture. The sensor was replaced and Subject 3 showed similar response profiles to Subject 1. Sensor 10 was 
constantly loaded for all subjects in the neutral posture, due to its placement on the back of the upper arm. 
Therefore, the response profiles detected by this sensor are in offloading, rather than in loading. For all subjects, the 
sensor broke during the course of the experiment. Sensor 11 produced very useful results for Subject 1, but over the 
course of the experiment its responses deteriorated due to internal breakage of the wires. Finally, Sensor 12 was 
nearly unusable due to internal breakage, however occasionally response profiles were able to be detected through 
the noise.  

In general, the Novel pressure sensing system proved to be very reliable in terms of quality of gathered 
data. While a few erroneous readings such as those that arose in the testing at DCCI also occurred for Subject 1, 
these were easily removed during data processing, and none occurred for Subjects 2 or 3. With regards to durability, 
the Novel system performed well, but by the end of all three days of testing there was noticeable damage to the 
sensor. Any future in-suit testing would necessitate reconditioning of the sensor. Another notable change over the 
course of the experiment was shifting of the Mark III shoulder straps inside the suit’s HUT. As the right shoulder 
pad was located directly on top of the Novel sensor, any shifting would affect the measured distribution of pressure . 
This occurred noticeably for Subject 3, although this was likely a result of performing additional tasks involving 
extensive bending and reaching that were not performed with Subjects 1 or 2. Nevertheless, slight shifting could also 
have occurred for Subjects 1 and 2. This shifting of shoulder pads does not pose a problem for our data, as it still 
represents how pressures change when humans move within the suit; however, it is an observation to consider when 
comparing pressure distributions across subjects. 

As sensor placement varied between subjects, we made a procedural adjustment during the experiment that 
involved locating and briefly applying localized pressure to pre-identified bony landmarks—the acromion, mid-
shoulder, crux of the clavicle, and corner of shoulder blade. During data analysis, we could then determine how the 
sensor was oriented on each of the subjects based on where these pressure points were detected on the sensor grid. 
Table 2 shows representative loading maps of the Novel sensor for each subject during each movement. The 
percentage of sensors loaded is also given. The orientation of the sensor anatomically is shown in Figure 8. In 
general, Subject 1 was more broadly loaded than each of the other subjects. All subjects were loaded more broadly 
on the proximal end of the shoulder near the neck, which is consistent with shoulder pad placement. The results of 
this analysis show the sensor was well positioned for measuring load, but it is not clear how additional sensors or 
changes in placement would affect the results. Considering the interface between the Novel system and the internal 
suit architecture, the internal harness with shoulder padding prevented us from measuring the pressures that would 
be directly applied to the shoulder due to contact with the hard upper torso. We anticipate more concentrated and 
potentially higher pressure readings in the absence of such padding. However, this padding is part of the Mark III 

 
 

Figure 7.  Polipo sensor locations.  The Polipo low-pressure sensing system is placed on the subject’s left 
arm and is designed foranticipated pressure hot spots and for even distribution over the sleeve. Sensors 1 and 2 are 
located on the wrist; Sensors 3 and 4 on the forearm; Sensors 5 and 6 on the elbow; Sensors 7-9 on the upper arm, 
and Sensors 10-12 near the shoulder. 
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suit design, so our measurements accurately reflect the pressures an astronaut would experience while working in 
the suit. It would nevertheless have contributed to the interpretation of our results if we had known the exact 
placement of the shoulder pad on the sensor.  

The IMU system functioned well during the experiment and gave useful data for the subjects. No sample 
drop occurred and there was no crash from the wireless signal or the computer recording the data. The root mean 
square error (RMS) was calculated for the yaw and pitch angles over 20 seconds for all IMUs for all static 
calibrations.  Subject 1 had an average drift of 1.2° (1.1°) for the elbow joint angle and 3.3° (4.8°) for the shoulder 
joint angle, while subject 2 had 1.2° (1.0°) for the elbow joint angle and 1.5° (1.6°) for the shoulder joint angle. Two 
IMUs from the first subject had a constant gyroscope offset to the raw signal due to miscalibration, causing 
erroneous readings. The data was recovered by removing the constant offset and reprocessing the signals through the 
algorithm used by APDM to calculate the orientation quaternions, but the data has yet to be analyzed. The IMUs 
were recalibrated and performed as reported for the other two subjects. The placement of the sensors on the subject 
was the same as for the DCCI experiment, with the same attachment technique. On the suit, the torso IMU was 
attached on the hard upper torso of the Mark III with Velcro®, and stayed fixed during all the experiment for the 
three subjects.  The IMU located on the suit lower arm, 
was attached with straps, and was secured with athletic 
tape just above the glove bearing. It did not move 
significantly during the all experiments. However, this 
placement disturbed the measurement of the elbow 
flexion/extension for Subject 2. Although the subjects 
were asked to perform the elbow flexion/extension 
without wrist bending, Subject 2 bent his wrist at the 
top of the elbow flexion. The IMU located internally on 
the lower arm could not bend because it was fixed on 
the forearm, while the corresponding suit IMU moved 
with wrist flexion, giving some biased results. The IMU 
located on the upper arm of the suit was attached with 
straps and athletic tape for Subject 1. The strap and 
IMU slid on the bearing over the course of the 
experiment. For the remaining subjects, the IMU was 
attached with Velcro®, which resolved the problem. 
The data analyzed from these experiments include 
measuring differences between the person and the space 
suit, the lag between the angles the subject’s move 
through, and the constant offset of joint angles during 
maxima and minima of movement. Results showed suit 
multi-axis rotations for the shoulder bearing, as 

Table 2 . Sensor mat loading for all subjects 
over each movement task. Sensor mat orientation 
corresponds to that shown in Figure 8. Individual 
variability may be due to fit and shoulder pad 
placement, but sensor coverage appears to be 
adequate. 

 

 

 
Figure 8.  Orientation of the Novel sensor 
relative to each subject’s body.  This orientation 
corresponds to the information in Table 2.  
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expected. A full review of the data analysis can be found in “Feasibility of Spacesuit Kinematics and Human-Suit 
Interaction” by the authors here-in. 

 
IV. Conclusions 

This research is, to our knowledge, the first experiment to characterize human-space suit interaction with 
pressure sensors placed inside the pressurized suit environment. Unpublished work from the NASA Anthropometry 
and Biomechanics Facility performed a similar study and future work includes comparing results and procedures. 
This research builds from previous work on measuring joint angles both internal and external to the suit. It is our 
first glimpse “inside the space suit” and will be the baseline for future studies.  

Some of the most important lessons learned from this study were regarding identifying and evaluating potential 
hazards to the test subjects, as evaluated in the Hazard Analysis performed prior to the JSC experiment. Materials, 
electrical, battery, and hardware encumbrance were each analyzed and deemed to be an acceptable level of risk with 
controls. These considerations should be incorporated in future iterations of suited experiments with wearable 
electronics. Each sensor system was designed/selected to be stand-alone and wearable in the suit environment. This 
allowed us to move beyond traditional barriers of creating a suit pass-through or potential movement inhibition. 
Demonstrating a safe, well executed experiment will allow future iterations of this work to be completed more 
rapidly and with a track record for implementation, reducing uncertainty.  

These experiments also allowed us to evaluate the sensor systems in the suit environment. As a result of these 
tests, limitations of durability were identified for both pressure-sensing systems. Improvements to the Polipo for 
future work include developing a wiring system where friction and repeated bending will not cause internal 
breakage of the wire. Additionally, the solder joint between the sensors and the wires should be improved to 
improve system resilience. Improvements may also be made for the Novel sensor. The sensor was bent and the 
cover began peeling near the edges with use. Although this did not negatively impact the results, future tests should 
not be performed until the sensor can be reconditioned. The sensor could be housed differently to prevent the cover 
peel, but the bending cannot be fixed given the sensor’s size. Potentially in the future a smaller sensor or some of 
their newly developed stretchable sensors may be better suited for these tests. To improve the IMU results, further 
study beyond our cursory analysis could be performed to quantify the magnetometer perturbations and its effects on 
the estimation of the orientation of the IMUs.  A 3D visualization tool of suit joint angles is being developed to 
better understand the multi-axis rotation of joints through the bearings, and will aid in comparing the human and 
space suit motions.  

Future iterations of this experiment should improve the integration of the three data collection systems together. 
Due to potential concerns of interference with the communications system, not all the data was collected wirelessly. 
Currently, this problem is resolved by keeping individual timelines for each system, and the data is synced post-test, 
increasing the potential for error. Coupling the data from the kinematics sensors with the pressure sensors is ideal to 
determine the contact between the human and the suit. Either a new data initialization process should be developed, 
or the data should be collected by one central processor. Additionally, future areas of study should evaluate shifting 
the placement of the Polipo sensors to areas of the body we would like to target for further study. This may also 
include other areas of the body. Decreasing sensor size would also allow an increased density of sensor placement to 
collect additional pressure values against the body. 

There were many successes in implementing this experiment that should be carried further into future 
experiments. The Polipo sensor system was built from scratch for this application. It was designed to be wearable 
through the full range of motion, stand alone for power and data collection, be transferrable between subjects, and 
was targeted at detecting pressure at the low-pressure range and resolution expected under the soft goods. Each of 
these design objectives was achieved. As a result, its applicability to the space suit environment was validated with 
this experiment. The Novel pressure sensing system also proved to be extremely useful even in the loading regime 
that was less than it was originally designed for. The experiment also proved that kinematics could be efficiently 
tracked inside the suit, wirelessly, and compared to the suit motions, with the use of inertial measurement units. 

These experiments were very successful in opening the door for this type of space suit testing. Although the 
data is presented elsewhere, the results from the experiment provide valuable insight into how motions occur, how 
consistent subjects are, and how discomfort and fatigue can build up over time while working in the suit. Future 
planned experiments include continued collaboration with our colleagues at DCCI and the ASL to characterize new 
suited motions, new suit configurations, and other areas of the body. The implications of the test are valuable in 
finding an initial baseline of human-suit interaction and will guide future tests to optimize placement of sensors. 
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The Effect of Window Size and Lead Time on Pre-Impact Fall
Detection Accuracy Using Support Vector Machine Analysis of Waist

Mounted Inertial Sensor Data

Omar Aziz, Colin M. Russell, Edward J. Park, Senior Member, IEEE, and Stephen N. Robinovitch

Abstract— Falls are a major cause of death and morbidity in
older adults. In recent years many researchers have examined
the role of wearable inertial sensors (accelerometers and/or
gyroscopes) to automatically detect falls. The primary goal of
such fall monitors is to alert care providers of the fall event,
who can then commence earlier treatment. Although such fall
detection systems may reduce time until the arrival of medical
assistance, they cannot help to prevent or reduce the severity
of traumatic injury caused by the fall. In the current study, we
extend the application of wearable inertial sensors beyond post-
impact fall detection, by developing and evaluating the accuracy
of a sensor system for detecting falls prior to the fall impact.
We used support vector machine (SVM) analysis to classify 7
fall and 8 non-fall events. In particular, we focused on the effect
of data window size and lead time on the accuracy of our pre-
impact fall detection system using signals from a single waist
sensor. We found that our system was able to detect fall events
at between 0.0625-0.1875 s prior to the impact with at least
95% sensitivity and at least 90% specificity for window sizes
between 0.125-1 s.

I. INTRODUCTION

Falls are the leading cause of injury among older adults
in Canada, including over 90% of hip fractures [2], [10]
and wrist fractures [7], and a large percentage of head and
spine injuries [6]. About 30% of older adults living in the
community and 60% of individuals living in a residential
care environment will experience at least one fall each year
[11]. Hip fractures are the most significant injury related to
falls, with approximately 23,000 annual cases in Canada, and
medical costs in excess of $1 billion [8].

Wearable kinematic sensors such as accelerometers and
gyroscopes represent a promising technology for preventing
and mitigating the effects of falls in older adults. One of
the key issues in preventing fall related injuries is to detect
a fall in its descending phase with a sufficient lead time in
order to deploy protective equipment (such as inflatable hip
protectors, helmets, etc.) to cushion the fall prior to impact
[12]. Wu and Xue [13] proposed a pre-impact fall detection
technique by thresholding the vertical velocity profile of the
waist worn accelerometer, and showed that with vertical
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velocity threshold set at -1 m/s their algorithm was able
to detect all falls with at least 70 ms lead time with only
three false positives found during approximately 13 hours
of data. Similarly, Nyan et al. [5] showed 100% sensitivity
with approximately 200 ms lead time by locating sensors
at the sternum, waist and under the arm. However, Nyans
threshold algorithm resulted in 16% of the activities of daily
living (ADLs) being misclassified as falls.

Our study diverges from traditional threshold-based meth-
ods by using a machine-learning pre-impact fall detection
method – support vector machines (SVM) – for better
adaptability and reliability. Furthermore, our study uses a
wide variety of fall and daily activity scenarios to more
rigorously test the accuracy of our SVM algorithm across a
combination of varying lead times and window sizes, using a
single waist mounted tri-axial accelerometer and gyroscope.

II. METHODS

A. Participants

Ten healthy adults (ranging in age between 22 and 32
years) participated in the study. All subjects were students at
Simon Fraser University (SFU), recruited through advertise-
ments posted on university notice boards. All participants
provided informed written consent and the experimental
protocol was approved by the research and ethics committee
at SFU.

B. Experiment Design

We examined a library of video sequences of 227 real-life
falls in older adults, acquired as part of an ongoing project
by our research team to examine the mechanisms of falls
in long-term care facilities [9]. We found that 75% of falls
were collectively due to the following seven causes: (i) slips,
(ii) trips, (iii) hit or bump by an object or another person,
(iv) collapse or loss of consciousness, (v) misstep or cross-
step while walking and (vi-vii) incorrect shift of bodyweight
while sitting down on or rising from a chair. We included all
seven of these types of falls in our laboratory experiment.
During all fall trials, the floor was covered with 30 cm thick
gymnasium mats into which we inserted a 12 cm thick top
layer of high-density ethylene acetate foam. The composite
structure was stiff enough to allow for stable standing and
walking while still soft enough to reduce the impact force to
a safe level in case of a fall.

In addition to fall trials, eight activities of daily living
(ADLs) were recorded which included: (i) walking, (ii)
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Fig. 1. Waist sensor signals for a sample slip fall trial. (a) Time of impact (dashed line) is estimated by finding the time of peak resultant linear velocity
(obtained from numerical integration of the resultant acceleration signal), and the window location (shaded region, not shown to scale) is shifted by the
lead time (not shown to scale) ahead of the time of impact. Mean and variance features are calculated within the window for each of the anteroposterior
(AP), mediolateral (ML), and inferior-superior (Inf/Sup) axes of the (b) linear velocity, (c) acceleration and (d) angular velocity signals. Note that the peak
linear velocity does not always coincide with peak acceleration.

standing quietly, (iii) rising from sitting, descending from
(iv) standing to sitting and from (v) standing to lying,
(vi) picking up an object from the ground, (vii) ascending
and (viii) descending stairs. All participants performed each
fall and ADL category three times. Accordingly, over ten
participants, a total of 210 fall trials and 240 ADL trials
were acquired.

C. Data Acquisition

In each trial, we recorded body kinematics using a single
tri-axial accelerometer and gyroscope (ranges of ±6 g and
±26.18 rad/s respectively, Opal model, APDM Inc., Portland,
OR) worn on a belt at the anterior aspect of the waist. Data
were recorded at 128 Hz for a duration of 15 s per trial and
streamed directly to a computer for storage and subsequent
analysis.

D. Data Analysis

Our data analysis focused on determining how the various
window size and lead time combinations influenced the ac-
curacy of our pre-impact fall detection algorithm (Fig. 1). We
used seventeen different data window sizes in combination
with eighteen lead times to evaluate their effect on the
sensitivity and specificity of the algorithm. The window sizes
used varied from 0.125 s to 1.125 s with an increment of
0.0625 s, while the lead times varied from 0.0625 s to 1.125 s
with the same increment.

In order to determine the base window location for fall
trials, we estimated the instance of the body impacting the
floor due to a fall by finding the time of peak resultant
velocity from the waist sensor [3]. The resultant peak ve-
locity was calculated through numerical integration of the
high-pass filtered (cut-off frequency of 0.25 Hz to remove
gravity signal) resultant acceleration signal. We then shifted
the base window location a fixed amount back from the
impact timepoint according to the chosen lead time (Fig.
1a). For increasing window sizes, we shifted the start time
point of the base window back in time by the corresponding
amount.

For ADL trials, we visually identified the start and end
time points of activity motion from the sensor signals, and
then set the base window location at a random position within
that time frame. ADL window start and end time points were
shifted symetrically from that base window as window sizes
were increased. Lead times were not used in the analysis of
ADL trials, as they do not contain a timepoint of interest
analagous to the fall impact time.

Within each window we calculated the means and vari-
ances of X-, Y- and Z-axis accelerations, velocities and
angular velocities to form the 18 features for use in our
Support Vector Machine (SVM) analysis (Fig. 1b-d). We
used the SVM implementation in LIBSVM [1] with a Radial
Basis Function (RBF) kernel for pre-impact fall detection.
The features (i.e. means and variances) were then split into
training and testing sets of equal size by choosing the data
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Fig. 2. Overall sensitivity and specificity of trial classification for each combination of window size and lead time. Subfigures (a-f) show results for
triplets of increasing lead time size. Note that sensitivity and specificity are relatively stable across all window sizes for the three smallest lead times
between 0.0625-0.1875 s (a), with sensitivity consistently above 95%. For larger lead times (b-f), sensitivity and specificity varied dramatically depending
on window size, indicating the algorithm performance was less robust for these cases.

from the first five subjects for training and the following
five for testing. The best combination of the two RBF kernel
parameters C and γ was selected by a grid-search with expo-
nential growing sequences (i.e. C ∈ {2−5,2−4, . . . ,214,215};
and γ ∈ {2−15,2−14, . . . ,22,23}). Each combination of pa-
rameter choices was tested using a 10-fold cross-validation
and the parameter with the best cross-validation accuracy
was picked. The final model, which was used for classifying
test data, was then trained on the entire training set using the
selected parameters. The process of training and testing the
SVM model was repeated for every combination of window
size and lead time.

After creating classification sets of test data for all window
size and lead time combinations, we evaluated algorithm per-
formance by calculating the sensitivity and specificity of each
classification set. To assess typical algorithm performance
per trial, we calculated the mean and standard deviation
of each trial’s classification sensitivity (for fall trials) or
specificity (for ADLs) across all combinations of window
size and the three smallest lead times (0.0625-0.1875 s).

All data analysis was performed in MATLAB (R2013a,
The MathWorks Inc.).

III. RESULTS

Overall sensitivity and specificity of trial classification for
each combination of window size and lead time are shown in
Fig. 2. We found that our algorithm yielded relatively stable
sensitivity and specificity values across all window sizes

for the three smallest lead times between 0.0625-0.1875 s
(Fig. 2a), with sensitivity consistently above 95% and with
specificity above 90% (for window sizes 1 s or smaller). For
larger lead times (Fig. 2b-f), sensitivity and specificity varied
dramatically depending on window size, indicating algorithm
performance was less robust for these cases.

Table I shows the individual trial means and standard
deviations (SDs) of classification sensitivity (for falls) and
specificity (for ADLs), as calculated across combinations
of all window sizes and the three smallest lead times. Our
algorithm typically had very high classification sensitivity
(means >97% and SDs <4%) for all fall trials, with the
exception of incorrect transfer while rising from sitting
(ITRS) which had a mean sensitivity of 93.5% and SD
of 7.5%. Classification specificity for ADLs was very high
(means >97% and SDs <4%) for rising from sitting to
standing (RSS), descending from standing to sitting (DSS),
and standing quietly (SQ); moderately high (means >94%
and SDs <5%) for normal walking (NW), ascending stairs
(AS), and descending stairs (DS); but were relatively low
and/or variable for descending from standing to laying (DSL,
mean of 93.2% but SD of 9.1%) and picking up an object
from the ground (POG, mean of 85.6% and SD of 11.3%).

IV. DISCUSSION

In this study we evaluated for the first time, to the best
of our knowledge, the effect of data window size and lead
time on pre-impact fall detection accuracy using data from a
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TABLE I
INDIVIDUAL TRIAL MEANS AND STANDARD DEVIATIONS (SD) OF CLASSIFICATION SENSITIVITY (FALLS) AND SPECIFICITY (ADLS)a .

Falls ADLs

CS HB ITDS ITRS LCC Slip Trip NW AS DS RSS DSS DSL SQ POG

Sens. (%) 99.3 100.0 97.4 93.5 98.2 99.3 99.9 Spec. (%) 94.5 96.3 94.6 99.7 97.8 93.2 100.0 85.6
SD (%) 2.0 0.0 4.0 7.5 3.5 2.4 0.9 SD (%) 4.6 4.7 4.6 1.3 3.7 9.1 0.0 11.3

aDescriptive statistics calculated by including all combinations of window sizes from 0.125-1.125 s and lead times from 0.0625-0.125 s (0.0625 s
increments), as shown in Fig. 2a. CS = cross-step, HB = hit or bumped, ITDS = incorrect transfer while descending from standing, ITRS = incorrect
transfer while rising from sitting, LCC = loss of consciousness or motor control, NW = normal walking, AS = ascending stairs, DS = descending stairs,
RSS = rising from sitting to standing, DSS = descending from standing to sitting, DSL = descending from standing to laying down, SQ = standing quietly,
POG = picking up an object from the ground.

waist-mounted inertial sensor. Furthermore, we employed a
machine learning algorithm (SVM), as opposed to traditional
threshold based techniques, to allow for more adaptability
and robustness across subject and motion variability.

Based on the analysis of data collected in lab experiments
with young adults, our system provided at least 95% sensitiv-
ity and at least 90% specificity for combinations of window
size from 0.125-1 s and lead time from 0.0625-0.1875 s.
However, we found that for lead times 0.25 s or greater,
sensitivity and specificity varied dramatically with choice of
window size, indicating poor robustness of the classification
performance. Therefore, we would recommend the use of a
target lead time around 0.1875 s or less, and window size
1 s or less for robust pre-impact fall detection.

Furthermore, we believe estimating the time of initial im-
pact for fall trials based on the instant of peak resultant linear
velocity is a more intuitively precise method than based
on peak acceleration as done prevously, since the largest
accelerations would typically occur shortly after impact [3].

There are several limitations of our study. Due to safety
concerns, all fall and ADL trials were performed by young
adults under controlled laboratory conditions and atop gym-
nasium mats. While there are important differences between
falling patterns from typical laboratory studies of young
subjects compared to real-life falls among older adults [4],
we attempted to minimize these differences by having our
subjects simulate a variety of falls most commonly observed
among older adults [9]. Also, our analysis did not attempt to
analyse sensor signals by sliding a sampling window along
the datastream, as would be necessary in a real-time im-
plementation for triggering device deployment, however, our
study design allowed for a controlled method of testing the
effects of window size and lead time. Finally, our system pro-
vided relatively low overall specificity, likely due to our wide
range of ADLs tested (with individual specificities ranging
from 85.6%-100%) and a modest testing sample from five
subjects. Future work is required to compare the accuracy
of machine learning versus threshold-based approaches on
the same data set. While current performance is too low for
practical use in device deployment, it may be improved in
the future through the use of larger training datasets of falls
and ADLs recorded from older adults, or with the use of
complementary signals from other physiological sensors.

Our results provide a template for future developement of
a robust pre-impact fall detection system, which is necessary
for the developement of ‘smart’ next generation inflatable hip
protectors or helmets for improved force attenuation and user
acceptance.
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A QUANTITATIVE EXAMINATION OF THE 20 METER SPRINT TEST IN JUNIOR 
WHEELCHAIR BASKETBALL BY INERTIAL SENSING 
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INTRODUCTION 

Improved wheelchair design and increased attention to the enhancement of physical conditioning in athletes 
with disabilities have increased the popularity of wheelchair sports in general and of wheelchair basketball in 
particular [1]. Extensive research has been conducted to assess and improve adult players’ performance [2]. 
However, only few papers focused on young athletes [3]. This study proposes a method for the quantitative 
characterization of a performance field test, the 20 m sprint test, in junior wheelchair basketball players, and 
aims at providing a contribution in identifying performance-related factors. 
 
METHODS 
Ten athletes (2 females, 8 males; age=16±3 years; mass=59±23 kg; functional classification score: from 0.5 to 
4.5) participated in the study. Upper arms maximal muscle power was measured through arm crank ergometry to 
assess the athletes’ physical capacity. Each participant was equipped with four Magnetic Inertial Measurement 
Units (MIMUs) (Opal, APDM Inc. -128 frames/s) containing 3D accelerometer, gyroscope and magnetometer 
and positioned with elastic belts on the sternum, and on both wrists. The fourth MIMU was attached to the 
backrest of the wheelchair. After a 10-minute warm up, subjects were asked to perform a 20-m sprint trial, a test 
validated for the assessment of specific wheelchair basketball skills in young populations [4]. The time to 
complete the test was recorded by means of a chronometer. MIMU data were low-pass filtered (4th-order zero-
lag Butterworth, 10 Hz) and the pushing phase cycles identified, as determined from the wheelchair MIMU 
acceleration forward component. The following parameters were computed for the steady-state portion of the 
test: pushing phase frequency, from the wheelchair MIMU forward acceleration; upper limb symmetry indexes 
(Root Mean Square Error: S1, Pearson’s Correlation Coefficient: S2) from the norm of the wrist MIMUs 
accelerations (Fig.1); peak-to-peak trunk inclination from the orientation of the sternum MIMU estimated with 
the unit built-in algorithm. The correlation between the time to complete the test, the normalized arm maximal 

power, and the MIMU based parameters was assessed 
using the Pearson’s correlation coefficient (ρ).  
 
RESULTS 

The time to complete the test was strongly correlated 
with the arm maximal muscle power (ρ=-0.85), the 
symmetry indexes (ρ=0.96 for S1 and ρ=0.90 for S2,), as 
well as with the pushing frequency (ρ=-0.88). The 
symmetry indexes were also significantly correlated with 
the arm maximal muscle power (ρ=-0.76 for S1 and 
ρ=0.70 for S2), and with the pushing frequency (ρ=0.87 
for both S1 and S2). No significant correlation was found 
for the peak-to-peak trunk inclination. 

 
DISCUSSION 

The proposed method allowed for a detailed characterization of a validated field test for the assessment of 
specific wheelchair basketball skills in young players. Better performances on the 20 m sprint are associated to 
adequate upper arm muscle power, higher pushing frequency and symmetry between upper limbs while pushing. 
The young players that better coordinate the upper arms and manage to increase the pushing frequency are the 
most efficient in completing the test. Control of trunk movement does not seem to be a key sprint performance 
factor. In conclusion, the proposed instrumented test provided quantitative information about the subject-specific 
player skills that allow for an optimal performance and can be used to improve wheelchair basketball training in 
young players. 
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Fig. 1: Right (solid line) and left (dashed line) wrist 
acceleration norm for three pushing phases (vertical lines). 
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Abstract—Humans are living longer but morbidity has also 

increased; threatening to create a serious global burden. Our 

approach is to monitor gait for early warning signs of 

morbidity. Here we present highlights from a series of 

experiments into gait as a potential biomarker for Parkinson’s 

disease (PD), ageing and fall risk. Using body-worn 

accelerometers, we developed several novel camera-less 

methods to analyze head and pelvis movements while walking. 

Signal processing algorithms were developed to extract gait 

parameters that represented the principal components of vigor, 

head jerk, lateral harmonic stability, and oscillation range. The 

new gait parameters were compared to accidental falls, mental 

state and co-morbidities. We observed: 1) People with PD had 

significantly larger and uncontrolled anterioposterior (AP) 

oscillations of the head; 2) Older people walked with more 

lateral head jerk; and, 3) the combination of vigorous and 

harmonically stable gait was demonstrated by non-fallers. Our 

findings agree with research from other groups; changes in 

human gait reflect changes to well-being. We observed; 

different aspects of gait reflected different functional outcomes. 

The new gait parameters therefore may be complementary to 

existing methods and may have potential as biomarkers for 

specific disorders. However, further research is required to 

validate our observations, and establish clinical utility. 

I. INTRODUCTION 

Decreased mobility levels are prevalent in older people, 
and the predicted aging of the world’s population will 
increase the global burden of these conditions on morbidity 
and mortality [1]. Changes in gait may prelude major events 
[2], for example, strokes, cognitive decline, falls, or death, 
which may be preventable. Accelerometers have previously 
been connected to the head [3], pelvis [4], trunk [5, 6], and 
even ski boots [7] to provide an inexpensive way to monitor 
human movement [8]. In clinical settings, accelerometers 
have been used to identify between-group differences in the 
gait of old and young [9, 10], fallers and non-fallers [11], and 
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people with and without Parkinson’s disease (PD) [3, 12]. 
Statistical associations, however, do not necessarily translate 
into biomarkers, if prevalence is low, as for PD, and false-
positive rates are high.  

Previous research with accelerometers has generally 
focused on the direct interpretation of acceleration [8]. Here, 
novel signal processing algorithms were developed to extract 
new measures of gait jerk, harmonic stability, and oscillation 
range, using accelerometers attached to the head and pelvis. 
We investigated if these measures revealed a high level of 
discrimination between groups and therefore the potential of 
gait as a biomarker for PD, aging, and increased fall risk.  

II. METHODS 

Approval by the Human Studies Ethics Committee at the 
University of New South Wales was given and informed 
consent was obtained prior to participation. Participants were 
eligible if they were able to walk 20 meters unassisted, had 
normal hearing and vision and scored ≥24 on the Mini 
Mental State Examination [13]. With respect to people with 
PD, only mild idiopathic clinical stage I-II of illness 
according to Hoehn and Yahr [14] were assessed. Falls in the 
previous 12 months were recorded. Fallers (one or more falls) 
were compared to non-fallers (no reported falls). 

Age differences in gait were investigated using data from 
43 young people, mean age 29 (SD 4) years and 100 older 
people, mean age 80 (SD 4) years. Potential biomarkers for 
PD were investigated using data from 10 people with 
idiopathic PD, mean age 67 (SD 4) years, and 10 healthy age-
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Fig. 1. Pelvic accelerations transformed into the frequency domain by 
discrete Fourier transform. A high-pass filter cut-off frequency of 0.25 

times the step frequency (Fo) preserves most within-stride information. 
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matched, mean age 66 (SD 7) years. Potential biomarkers for 
falls were investigated using data from 96 independent-living 
older people: 35 fallers, mean age 79 (SD 4) years, and 61 
non-fallers, mean age 80 (SD 4) years.  

Tri-axial accelerometers were attached to the head and 
pelvis (Opal™ by APDM, sampling frequency 128 Hz). The 
data from the middle 15 meters of a 19 meter walkway were 
marked with an external trigger [15]. Results from two repeat 
walks were combined prior to statistical analysis. 

A. Signal Processing 

The acceleration signals were processed to extract 
parameters that represented the principal components of 
vigor, head jerk, harmonic stability, and oscillation range. 
Calculations were performed in MATLAB. Step frequency 
(Fo) was determined by the dominant VT peak in the 
frequency domain after a discrete Fourier transform (Fig. 1). 

A continuously rotational correction was applied to align 
the vertical axes of the sensors with the global vertical (VT). 
Accelerations were transformed into the body centered 
coordinate system [16], whereby anterioposterior (AP) 
accelerations act in the direction of ambulation, and 
mediolateral (ML) accelerations act right to left in the 
horizontal plane. A fourth order low-pass Butterworth filter 
with cut-off scaled to a quarter of the step frequency (dashed 
line, Fig. 1) was used to obtain the changing low frequency 
error matrix (R). The corrected accelerations (ACorr) were 
then obtained by rotating the raw accelerations (A), see 
equation (1).  

 

 (1) 

 

The new continuous correction may provide greater 
reduction in gravitational ‘cross-talk’ relative to previous 
static methods [4].  

Head and pelvic oscillations (Fig. 2) were calculated by 
integrating the corrected body centered accelerations with 
respect to time, and filtered to remove any accumulated 

integration drift. A fourth order high-pass Butterworth filter 
with cut-off scaled to a quarter of the step frequency (dashed 
line, Fig. 1) was used to obtain both velocity and 
displacement oscillations during gait, which may be 
visualized as similar to the paths swept out during treadmill 
walking. The new scaled cut-off approach was developed to 
preserve most within-stride information while filtering out 
most accumulated integration error. Optical motion capture 
was used to determine any accuracy improvements. 

Linear head jerk was calculated by differentiating the 
corrected linear acceleration with respect to time. Root Mean 
Square (RMS) head jerk was calculated over the AP, ML, 
and VT axes. The log ratio (2) of lateral to vertical ML/VT 
jerk was calculated in decibels (dB) creating a normally 
distributed and dimensionless gait parameter [18]. 

 

             (
            

           
) (2) 

 

Lateral harmonic stability of the pelvis was calculated 
using spectral decomposition to identify the magnitude and 
dispersion of “stabilizing” ML acceleration peaks. Different 
to previous analyses using harmonic ratios [15], overlapping 
eight-step data windows were used instead of two-step data 
windows, therefore, better adjusting for the monophasic basis 
of ML movements while walking, providing increased 
spectral resolution, incorporating measurement of between 
stride variability, and reducing any noise associated with 
taking Fourier transforms over finite data windows [19]. 

B. Statistical Analysis 

Classification accuracy (with sensitivity equal to 
specificity) was assessed using two-fold cross validation boot 
strapped 5000 times. Group differences between young and 
old people, between people with PD and healthy controls, 
and between fallers and non-fallers were assessed using 
ANOVA. Subspace clusters were partitioned by medians. 
Principal component analysis (PCA) using the Varimax 
rotation method was used to investigate which gait 
parameters were most representative of different gait 

RAACorr 

Fig. 2. Head and pelvic (sacrum) oscillations while walking for PD affected and healthy gait. Left (L) and right (R) heel strikes (HS) and toe-offs (TO) are 

represented by circles and stars. 
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constructs. Extraction of components was terminated by an 
Eigenvalue value below unity. Pearson’s correlations were 
used to assess the independence between different aspects of 
gait.  

III. RESULTS 

When pelvic movements using accelerometers were 
compared to the optical motion capture analysis of walking: 
The continuous rotational correction and new scaled filter 
cut-off approach reduced errors by approximately 10-fold 
relative to a fixed approach that used a static correction and 
0.1Hz high-pass filter cut-off (Table 1).  

Within our data, PCA (Table 2) revealed gait parameters 
reflecting vigor, for example walking speed and step length, 
were largely independent of gait parameters that described 
head or pelvic stability.  

On average, older people presented increased RMS lateral 
head jerk and took shorter steps than younger people. ML/VT 
jerk correctly classified 89% of participants (Fig. 3) and was 
superior in this regard to all other gait parameters including 
step length, which was the best established gait parameter we 
tested. A step length of 67 cm correctly classified 71% of 
participants. ML/VT jerk and step length were only weakly 
correlated (r

2
=0.03) suggesting they largely reflect different 

aspects of gait.  

People with PD presented significantly (p=0.02) faster AP 
head movements (33.2 cms

-1
), as measured by the velocity of 

AP head oscillations, than the healthy age matched group 
(24.5 cms

-1
), which was uncorrelated (r

2
=0.008) with the 

significant (p=0.02) slower walking speed (1.2 ms-1 for PD, 
vs. 1.4 ms-1 for the healthy age matched). 

With respect to falls, when different walking speeds were 
taken into account, a significant subspace clustering effect 
was observed for lateral harmonic stability (Fig. 4). The fast 
and stable group (top right quadrant) were 5.3 times less 
likely to have fallen than all other participants: relative risk 
0.19, 95% confidence interval 0.06-0.57. 

IV. DISCUSSION 

Measurement noise was reduced 10-fold using the new 
method. The scaled filter cut-offs were generally around 0.5 
Hz and were significantly higher than previous approaches 
that have used fixed cut-offs around 0.1 Hz [17]. For both 
methods VT position error was least because gravitational 
cross-talk has least effect along this axis. For measurements 
of head and pelvic stability in gait, we suggest scaling the 
filter cut-offs with step frequency is optimal because it 

TABLE 1. ERROR AS A PERCENTAGE OF MEASUREMENT 

RANGE. THE NEW SCALED APPROACH RESULTED IN AN 

APPROXIMATELY 10-FOLD REDUCTION IN ERROR. 

 Pelvis 

 AP ML VT 

95% Range of Movement 

Optical System [cm] 4.62 6.55 4.17 

Root Mean Square Error (RMSE) 

Scaled Method [cm] 0.76 1.06 0.22 

Error [%] 16% 16% 5% 

    

Fixed Method [cm] 8.03 5.51 2.01 

Error [%] 174% 84% 48% 

 

TABLE 2. PRINCIPAL COMPONENT ANALYSIS OF GAIT. 

NORMALIZED WEIGHTINGS ARE SHOWN AND SORTED FOR 

EACH COMPONENT. HIGHLIGHTED HAVE A WEIGHTING 
GREATER THAN 0.5.  

Principal Components 

of gait 

1) Gait  

Vigor 

2) Pelvic 

Stability 

3) Head 

Stability 

Head Jerk VT .88 -.03 -.21 

Head Jerk ML .77 .09 .47 

Cadence .75 .24 -.12 

Speed .74 .39 -.28 

Head Jerk AP .57 -.24 .53 

Step Length .56 .39 -.29 

Harmonic Ratio AP -.08 .87 -.00 

Step Time Variability -.20 -.82 -.09 

Harmonic Ratio VT .19 .70 -.12 

ML/VT Jerk -.08 .17 .86 

AP/VT Jerk -.20 -.25 .79 

 

Fig. 3. Classification of age, ML/VT head jerk was 89% accurate. 

 

Fig. 4. Better separation, the fast and stable walkers (top right quadrant) 
had a 5.3 times lower risk of falls. 
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preserves most information about the movements of interest, 
within strides, while rejecting most measurement noise. Such 
error reduction was important for the subsequent 
investigation into gait as a biomarker.  

In our experiments, we observed; different aspects of gait 
reflected health status and different functional outcomes such 
as fall risk. Similar to previous research [3, 8, 10-12], we 
observed that younger people, non-fallers, and those without 
PD walk faster, and take longer steps, with reduced 
variability of step time. However, when we assessed these 
established gait parameters using univariant statistical 
analysis, we found substantial overlap between the 
distributions from different groups [18, 19], which limits 
their utility as specific biomarkers at an individual level. 

The PCA revealed that head and pelvic stability were 
distinct and were largely independently of walking speed. 
Therefore, we investigated if these new measures could 
provide additional information about gait impairments in 
different populations. Both as independent variables and 
through non-linear subspace clustering with walking speed, 
an existing measure of gait vigor. Each new parameter may 
quantify a different aspect of “steadiness” while walking and 
is different to other measures such as local dynamic stability, 
step time variability, or existing harmonic ratios.  

Relative to traditional measures including step length 
[18], superior group separation, reflecting age differences in 
gait, was achieved using the log ratio of ML/VT head jerk. 
Older people presented an increased ratio, indicating greater 
lateral head jerk which was largely independent of reduced 
walking vigor. The jerkier lateral head movements therefore 
suggest that the older people were less able to rely on their 
mechanical (inverted pendulum) stability as they oscillated 
side-to-side in time with their stepping.  

People with PD walked with increased AP head 
oscillations, which were uncorrelated to their decrease in 
walking speed. This suggests motor impairment symptoms 
relating to gait instability maybe distinct from hypokinetic 
gait symptoms. Potentially this provides separate targets for 
therapy. 

Separation between fallers and non-fallers was 
significantly improved when above average walking speed 
was combined with above average lateral harmonic stability 
of the pelvis [19].  An observation that suggests fast walking 
alone may not always be protective of falls. Therefore, future 
research should investigate if interventions aimed at reducing 
fall risk and improving mobility should also focus on 
enhancing lateral stability.  

V. SUMMARY 

We found the new gait parameters were associated with 
different principal components and were sensitive to different 
conditions. Different measures of gait “steadiness” may 
quantify different aspects of gait and may be complementary 
to existing measures of walking speed or vigor. Combining 
measures using subspace clustering (Fig. 4) enables more 
homogeneous subgroups to be identified, which increases the 
potential for gait to be used as a biomarker. However, further 
research is required to validate our observations in larger 
populations, and to establish utility in clinical practice. 
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Stepping to the beat improves spatiotemporal characteristics of gait 
in stroke patients with hemiparesis: A proof of concept case study of 

a home-based training intervention 
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Abstract 

Hemiparetic gait due to stroke is characterized by temporal asymmetry and variability. Research shows this can be improved by 
auditory cueing, whereby participants train to step in time and space with a visual or auditory cue. This particular method is 
effective in training a symmetrical gait and helps to improve coordination and speed. We describe a pilot study that investigates 
the possibility of training with an auditory rhythmical metronome embedded in music, during stepping in place within a home-
based setting. Stepping in place incorporates aspects of movements that are also important for a successful gait, such as 
reciprocal flexion and extension of the legs in timely coordination and synchronization, creating a step frequency, a swing phase 
and single limb support. Stepping in place may also provide a valuable method for home-based training, as little space in the 
home is required and, therefore, participants are less likely to fall. This case study seeks to obtain proof of the concept that 
stepping in place within a home setting may be a useful tool for locomotor training after stroke. 
 
A hemiparetic stroke patient, PF, successfully completed 6 weeks of home-based training for 15 minutes a day, 5 days a week 
(with 5% weekly increments in music tempo). PF (aged 58) is a male, right handed, chronic stroke survivor, who presented left 
sided hemiparesis. He was recruited from a local stroke club based on the inclusion criteria that he was able to walk 
independently without supervision (but able to use a gait aid such as a cane or walker) and was free from hearing impairments. 
Finally, PF was also able to complete a 3 m Timed Up and Go, which is typically used as an indicator of falls and provides an 
indication of the patient’s ability during turns. He was assessed five times during the 12 week period of the study, which included 
baseline, three weeks of training, three weeks of rest (used to measure resting effects), a second three-week training period and 
finally after another three weeks of rest. During each assessment, PF was tested for his gait speed during a 10 m walking task. 
During these tests, we also captured the spatiotemporal parameters of his gait using six accelerometer sensors (OPAL, APDM). 
The sensors were placed around the trunk, the lumbar, and the left and right shins and feet and have been designed to measure 
walking. The use of such motion capture systems is intended to provide a more sensitive and objective measure of the changes in 
movement that might occur following gait rehabilitation, compared to the use of standard clinical measures. We also used the 
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following clinical assessments: The Dynamic Gait Index (which measures balance during walking), and The Rivermead Motor 
Scale (measuring general walking ability).  
 
The results showed significant improvements in all spatiotemporal aspects of PF's gait. There was a 10 s speed increase in his 10 
m walking, between his baseline and final assessment. Furthermore, changes in PF's gait cycle were shown after 6 weeks of 
training stepping in place, suggesting improvements towards a more symmetrical gait pattern. For example, an increase in 
cadence was revealed, which likely follows increases in the gait speed during 10 m walking. A decrease in the overall gait cycle 
time, decreases in double support, and further decreases in stride length asymmetry and swing asymmetry were also observed. 
These findings might be expected based on previous work investigating changes in spatiotemporal parameters after gait 
rehabilitation and suggest that training stepping in place generalizes to walking ability. Furthermore, no changes were observed 
in any of the clinical assessments, suggesting the need for more sensitive measures of functional ability in capturing 
improvements of lower limb function after training stepping in place. These preliminary data show promising results for stepping 
in place in the home, as a method of training a symmetrical gait after stroke. This method also provides a cheap addition to other 
rehabilitation techniques such as physiotherapy, as it can be conducted within the home, without the need for a therapist and will 
provide patients with more intensive rehabilitation after stroke. Lastly, it is important to note, based on patient feedback that 
presenting the rhythmical beat in a music context was likely a key factor in motivating the patient to complete his training. As 
compliance is of high importance in rehabilitation, incorporating music should be taken into consideration for future 
investigations whereby the training provided may be repetitive in nature. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Organizing Committee of the International Conference on Timing and Time 
Perception. 
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Abstract— Monitoring balance and movement has proven 

useful in many applications ranging from fall risk assessment, 

to quantifying exercise, studying people habits and monitoring 

the elderly. Here we present a versatile, wearable instrument 

capable of providing objective measurements of limb 

movements for the assessment of motor and balance control 

abilities. The proposed device allows measuring linear 

accelerations, angular velocities and heading either online, 

through wireless connection to a computer, or for long-term 

monitoring, thanks to its local storage abilities. One or more 

body parts may be simultaneously monitored in a single or 

multiple sensors configuration.  

I. INTRODUCTION 

Balance control is a very complex task, involving several 
sensory systems and motor responses which interact 
dynamically. As shown by several studies, postural and 
balance control abilities gradually decline with age. Older 
people affected with balance disorders typically suffer from 
multiple impairments, e.g. multi-sensory loss, weakness, 
orthopedic constraints and cognitive impairments [1-3]. 
Typically, balance control is assessed by means of clinical 
balance scales, that consist in the scoring of a set of simple, 
everyday-life movements executed in sequence by the 
patient. The most common scales are: the Tinetti test [4,5], 
the Berg balance scale [6], and the BEST test [7]. The 
subject's performance is currently evaluated by the physiatrist 
or the physiotherapist, who give his/her judgment by means 
of a numerical score on a predefined scale. The evaluation is 
therefore affected by subjective factors causing possible 
inter- and even intra-evaluator variability of judgment. The 
continuing development of reduced size, weight, and cost 
MEMS inertial sensors has offered the possibility of using 
them for human activity monitoring, recognition and 
classification through body-worn devices [8-14]. We 
designed and built a novel, portable, low-cost system, 
embedding a three axial accelerometer, a three axial 
gyroscope, and a three axial magnetometer, aimed at 
providing objective measurements of limb movements for the 
assessment of motor and balance control abilities (figure 1).  

The developed instrument has been conceived as a 
modular device which can be used in different scenarios: i) 
single unit wirelessly connected to a PC or handheld device 
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(laboratory experiments, short-term monitoring); ii) single 
unit capable of storing the acquired data on a local memory 
(patient’s home, long-term monitoring); iii) body network , 
i.e. multiple units deployed on the subject’s body and wired 
to a gateway unit which can have a local memory or a 
wireless connection to a PC or handheld device (full body 
monitoring of exercises, several scenarios). Although a 
number of wearable IMU devices that can be used for 
monitoring posture and movements are available on the 
market, we preferred to build our own IMU “platform” for 
having the possibility of adding custom features. This is 
hardly possible with commercial devices, as they generally 
come with their own software and, in particular, their 
firmware cannot be modified as needed. Among them, 
Lumoback (Lumo BodyTech, Inc., CA, USA) seems a very 
interesting system, but can only be connected to an Apple 
device with a proprietary application. Sapphire, Emerald and 
Opal wearable sensors (APDM Inc., OR, USA) come with a 
development kit allowing researchers to build their own 
applications; nevertheless, it is impossible to act on the 
firmware in both cases. This limits the possibility to add 
features to the system, e.g. an onboard custom processing or 
the capability of connecting the IMU to command external 
devices (e.g. electro stimulators). 

II. SYSTEM DESCRIPTION 

The electronic device described in the presented work is 
an autonomous system able to detect and monitor the 
movements of the subject. In order to obtain a system capable 
of acquiring inertial signals generated by the activity of the 
wearer without impeding his/her movement, the circuit layout 
and the battery were designed and selected to minimize both 
dimensions and weight of the final device. Also the physical 
magnitude of the signal has been investigated to properly 
choose the sensors for this type of measurement. Our 
instrument is based on a STM32F303VC microcontroller (by 
ST Microelectronics) which has a high performance ARM 
Cortex M4 32-bit RISC core operating at a frequency of up to 
72 MHz. This microcontroller is able to interact with external 
devices through an extensive range of peripherals, while 
maintaining relatively small dimensions (7x7x1.6 mm, 48 pin 
package). The same package hosts also a 256 Kbytes flash 
memory, where data can be permanently stored, and 40 
Kbytes of SRAM for temporary data storage [15]. The 
measurement of human body movements is made possible by 
means of three inertial sensors: an accelerometer; a 
magnetometer and a gyroscope. The three dimensional 
angular rate is provided by the L3G4200D (ST 
Microelectronics), a digital low-power three-axes angular 
rate sensor including a MEMS sensing element and an I2C 
interface capable of providing the measured angular rate to 
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the external world through a I2C or a Serial Peripheral 
Interface (SPI). Full scale values are selectable among the 
following: 250 °/s, 500 °/s, 2000 °/s. Sensitivity values are, 
respectively, 8.75 °/s/digit, 17.50 °/s/digit, and 70 °/s/digit 
[16]. The LSM303DLHC (ST Microelectronics) allows the 
measurement of the three-dimensional accelerations and 
magnetic field; it is a system-in-package featuring a 3D 
digital linear acceleration sensor (selectable full-scales from 
±2 g to ±16 g, sensitivity from 1 mg to 12 mg, where g is the  

 

 

Figure 1.  The assembled device and casing: battery (left) and circuit board 
(right). 

 

Figure 2.  System architecture. 

gravitational acceleration) and includes a 3D digital magnetic 
sensor (selectable full-scales ranging from ±1.3 G to ±8.1 G, 
and magnetic gain setting ranging from 1100 to 205 digit/G, 
where G is the abbreviation for gauss) embedded in a 14 lead, 
3x5x1mm-sized package. Magnetic and accelerometer parts 
can be enabled or put into power-down mode separately, 
allowing to reduce the power consumption when one of these 
features is not required. An Inter-Integrated Circuit (I2C) 
serial bus interface is included, that supports standard (100 
kHz) and fast (400 kHz) speed mode [17]. The 
microcontroller can manage these external sensors through 
two different kinds of synchronous serial communication 
internal interfaces: the I2C and SPI. The latter is a 
communication based on 3 digital lines and is used to send 
commands and receive data from the LSM303DLHC, while 
the I2C, that uses only two digital lines, allows to share data 
with the gyroscope. The SPI interface is also used to store 
data in ASCII files on a micro Secure Digital (µSD) card 
which can then be extracted for data visualization and 

processing. Otherwise, the acquired data can be sent to a 
remote device (such as notebook, tablet or smartphone) 
thanks to a RN-41 class 1 Bluetooth® radio module (by 
Roving Networks). This small (13.4x25.8x2mm), low power 
(30 mA connected, < 10 mA sniff mode) module exchanges 
data with the microcontroller through a Universal 
Asynchronous Receiver/Transmitter (UART) interface, and 
delivers a data rate of up to 3-Mbps for distances up to 100 
meters [18]. A 4 layers, 55x30x2mm, printed circuit board 
allows the above listed components to work properly and to 
exchange data. The circuit is powered by a very small 
(5x25x35mm), extremely lightweight (9 g) 3.7 V Polymer 
Lithium Ion battery with a nominal capacity of 400 mAh, 
including a built-in protection against over voltage, over 
current, and minimum voltage. The battery can be recharged 
by connecting the unit via USB to a PC or a 5 V power 
adapter. Current consumption of the inertial unit is shown in 
Table I (data measured in worst case conditions). The system 
is currently capable of continuously acquiring and 
transmitting data to a PC for about 10 hours, but we are 
implementing power saving techniques in order to further 
extend the battery life. The circuit board, the Bluetooth 
module and the battery are enclosed in a 60x35x20 mm box, 
which is made in translucent plastic, in this way the LED 
indicators on the board are totally visible. The developed 
prototype is lightweight and unobtrusive, and its packaging 
allows to wear it on the body part to be monitored using 
elastic Velcro straps. and it is adaptable to different kinds of 
monitoring purposes: long term monitoring thanks to the 
µSD card and real-time monitoring through a Bluetooth 
wireless connection. The device can also be used as a node of 
a body area network in this way it is possible to monitor the 
activity of more than one limb. 

TABLE I.  DEVICE CURRENT CONSUMPTION (WORST CASE) 

Components 

Current 

Consumption 

(mA) 

Microcontroller 27 

Accelerometer and magnetometer (measuring) 0.11 

Gyroscope (measuring) 6.1 

Bluetooth module (peaks data transmission) 65 

Bluetooth module (average) 30 

uSD (Page Write1) 60 
1 Page Write Time = 3ms 

III. SYSTEM APPLICATION 

As mentioned in the Introduction, we conceived this 
instrument for three kinds of scenarios. 

In the first one, a single unit is exploited in a typical 
laboratory or clinical environment: the instrument is attached 
to the limb of interest or to the trunk and connected via 
Bluetooth to a PC, notebook, tablet, or smartphone on which 
the researcher can visualize in real time the acquisition 
signals when the subject performs a set of movements (e.g. 
exercises included in a clinical balance test). 
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Figure 3.  Application Scenario 1: the subject wears a single unit during a 

trial performed in a clinical environment; data are transmitted via Bluetooth 
to a PC/tablet/smartphone. 

 

Figure 4.  Application Scenario 2: the subject wears a single unit at home, 

the Bluetooth module is switched off and data are stored on the local 

memory. 

In the second scenario, the basic unit is used for long-
term monitoring, while the patient is at home, for instance. In 
this case the Bluetooth® module is not necessary, therefore it 
is simply switched off. Data are recorded on the local µSD 
memory, where they are arranged in text spreadsheet files. 
When the device is returned back to the laboratory/clinic, the 
µSD is extracted so that the files can be downloaded to a PC 
for further processing. 

In the third, and most complex, scenario many basic units 
are positioned on the body of the subject, e.g. one at the level 
of L3, two on the thighs, two on the wrists or arms and one 
on the head. One of these devices, typically the one on L3, 
acts as a gateway and relay node, so that it is wired to all the 
other devices and collects their data. It then extracts 
parameters of interest if needed, and then it either stores data 
and computed figures on the µSD or transmits them 
wirelessly to a PC. The peripheral units are connected to the 
gateway unit by means of a multiprocessor serial 
communication, implementing a single master – multiple 
slaves system. With our design, the body network can be 
composed by up to ten (9 slave and 1 master) units, with 9 
signals (3 accelerations, 3 angular velocities, 3 magnetic field 
signals) provided by each unit, sampled at 400Hz per 
channel. 

IV. EXPERIMENTAL TRIALS 

In order to carry out preliminary tests of the system’s 
performance, we have recorded a population of 10 control 
subjects performing exercises, i.e. items, drawn from the 
Tinetti test for balance control assessment, with the single 
sensor configuration attached to the subjects’ back at the 
level of L3-L4. With this setup the sensor’s data were 

acquired at 100Hz sampling frequency through the Bluetooth 
connection to a laptop computer and saved in a text file. 
Subjects were simultaneously recorded using a Microsoft 
Kinect (30 fps recordings) system positioned at about 2.5 m 
in front of each subject, through a custom developed C++ 
application. 

 

 
Figure 5.  Application Scenario 3: the subject wears a body area network 

of inertial units. In a clinical environment, the gateway unit collects all 

units’ data and transmits them wirelessly to the remote station. While the 
subject is at home, instead, data are gathered by the collector unit and stored 

locally in its µSD memory card. 

Using custom developed Matlab functions we then exploited 
the 3D accelerometer as an inclinometer by low-pass filtering 
its data with a 1Hz cutoff frequency and computing its pitch 
and roll angles in an gravity-referenced coordinates system. 
These data were then compared to the roll and pitch trunk 
inclination angles computed based on the 100Hz-resampled 
Kinect data. An example of such comparison on a 
representative subject performing the “Stand Up” and the 
“Reaching” exercises is shown in Figure 6, where the pitch 
angle computed from the sensor mounted on the subject’s 
lower back is shown together with the trunk inclination 
computed based on the Kinect data. Table II presents the 
correlation coefficients between the two signals for the 10 
subjects while performing the Stand Up, Sit Down and 
Reaching exercises. 

V. CONCLUSION 

The acquired data show very good correlation coefficients 
between the sensor’s data and the Kinect, which was used 
here as a control instrumentation. These preliminary   
experimental tests prove the reliability of the proposed sensor 
in such configuration. The system (single unit for short-term 
acquisition, first scenario) is being used in an experimental 
campaign where both its quantitative measurements, and 
expert examiners’ judgments are recorded while a group of 
patients and controls carry out motor tasks included in the 
most common balance scales exercises (e.g., Tinetti test, 
Berg Balance Scale, BESTest). 

In these tests the instrument has proven to be very 

comfortable to the subjects and easy to use by the operators. 

A proper computational framework is being devised for 

processing the acquired signals which will provide, at the 

end of the experimental session, a quantitative assessment of 

a subject’s performance in carrying out the exercises 

prescribed by the various clinical scales for the assessment 

of balance and fall risk. 
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Patient’s home

 
Hospital Patient’s home

periperal unit
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Figure 6.  Comparison of trunk pitch inclination measurements performed 
with the developed sensor wirelessly acquired throught the bluetooth 

connection and simultaneous Kinect recordings. Panel A: data from a 

representative subject performing a reaching forward exercise; Panel B: 
data from a representative subject performing a stand up exrcise. 

TABLE II.  EXPERIMENTAL CORRELATION COEFFICIENTS (r) 

Subject Stand Up Sit Down Reaching 

S1 1.000 0.894 0.989 

S2 0.993 0.995 0.986 

S3 0.989 0.995 0.997 

S4 0.988 0.857 0.998 

S5 0.995 0.976 0.998 

S6 0.972 0.907 0.993 

S7 0.993 0.963 0.941 

S8 0.999 0.847 0.996 

S9 0.986 0.988 0.987 

S10 0.972 0.945 0.993 
 

ACKNOWLEDGMENT 

The authors would like to thank R. Gandolfi for providing 

technical support and assembling the device prototype. 

REFERENCES 

[1] C. A. Laughton et al, Aging, muscle activity, and balance control: 

physiologic changes associated with balance impairment, Gait. 
Posture., 18:2,101-108, 2003 

[2] S. R. Lord et al, Physiological factors associated with falls in older 

community-dwelling women, J. Am. Geriatr. Soc., 42:10,1110-1117, 
1994 

[3] M. E. Tinetti et al, Shared risk factors for falls, incontinence, and 

functional dependence. Unifying the approach to geriatric syndromes, 
JAMA, 273:17,1348-1353, 1995 

[4] L. Panella et al, Towards objective evaluation of balance in the 

elderly: validity and reliability of a measurement instrument applied to 
the Tinetti test, Int. J. Rehabil. Res., 31:1,65-72, 2008 

[5] M. E. Tinetti, Performance-oriented assessment of mobility problems 

in elderly patients, J. Am. Geriatr. Soc., 34:2,119-126, 1986 
[6] K. O. Berg et al, Measuring balance in the elderly: validation of an 

instrument, Can. J. Public Health, 83 Suppl 2,S7-11, 1992 

[7] F. B. Horak et al, The Balance Evaluation Systems Test (BESTest) to 
differentiate balance deficits, Phys. Ther., 89:5,484-498, 2009 

[8] K. Altun et al, Comparative study on classifying human activities with 

miniature inertial and magnetic sensors, Pattern Recognition, 

43:10,3605-3620, 2010 

[9] A. Turcato, S. Ramat, A computational framework for the 

standardization of motion analysis exploiting wearable inertial 
sensors, Conf. Proc. IEEE Eng Med. Biol. Soc., 2011,4963-4966, 

2011 

[10] M.J. Mathie et al, A system for monitoring posture and physical 
activity using accelerometers, Proceedings of the 23rd Annual 

International Conference of the IEEE Engineering in Medicine and 

Biology Society, 2001, vol.4, no., pp.3654,3657 vol.4, 2001 
[11] B. Ying-Wen et al, Design and implementation of a fall monitor 

system by using a 3-axis accelerometer in a smart phone, 2012 IEEE 

16th International Symposium on Consumer Electronics (ISCE, 
pp.1,6, 4-6 June 2012 

[12] [12] S.S. Intille et al, Design of a wearable physical activity 

monitoring system using mobile phones and accelerometers, 2011 
Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, EMBC, Aug. 30 2011-Sept. 3 2011 

[13] M. Schulze et al, Development and clinical validation of an 

unobtrusive ambulatory knee function monitoring system with inertial 

9DoF sensors, 2012 Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), 
pp.1968,1971, Aug. 28 2012-Sept. 1 2012 

[14]  .  ech et al,  ead position monitoring system design,        th 
International Conference Radioelektronika 
(RADIOELEKTRONIKA), pp.1,4, 19-21 April 2010 

[15] STMicroelectronics (2013). RM0316 Reference manual: 

STM32F302xx, STM32F303xx and STM32F313xx advanced ARM-
based 32-bit MCUs [Online]. Available: 

http://www.st.com/web/en/resource/technical/document/reference_ma

nual/DM00043574.pdf 
[16] STMicroelectronics (2010). L3G4200D MEMS motion sensor: ultra-

stable three-axis digital output gyroscope [Online]. Available: 
http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/datasheet/CD0026505

7.pdf 
[17] STMicroelectronics (2013). LSM303DLHC: Ultra-compact high-

performance eCompass module: 3D accelerometer and 3D 

magnetometer [Online]. Available: 
http://www.st.com/web/en/resource/technical/document/datasheet/DM

00027543.pdf 

[18] Roving Networks (2013). RN41/RN41N Class 1 Bluetooth Module 
[Online]. Available: 

http://ww1.microchip.com/downloads/en/DeviceDoc/rn-41-ds-

v3.42r.pdf 

3499



ORIGINAL RESEARCH ARTICLE
published: 08 April 2014

doi: 10.3389/fnhum.2014.00188

Neural decoding of expressive human movement from
scalp electroencephalography (EEG)
Jesus G. Cruz-Garza1,2 †, Zachery R. Hernandez1,3*†, Sargoon Nepaul4, Karen K. Bradley5 and

Jose L. Contreras-Vidal1,3

1 Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
2 Center for Robotics and Intelligent Systems, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
3 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
4 Department of Neurobiology, University of Maryland, College Park, MD, USA
5 Department of Dance, University of Maryland, College Park, MD, USA

Edited by:

Klaus Gramann, Berlin Institute of
Technology, Germany

Reviewed by:

Joseph T. Gwin, University of
Michigan, USA
Julie A. Onton, Institute for Neural
Computation, USA

*Correspondence:

Zachery R. Hernandez, Laboratory
for Noninvasive Brain-Machine
Interface Systems, Department of
Electrical and Computer
Engineering, University of Houston,
4800 Calhoun Rd., Houston,
TX 77004, USA
e-mail: zrhernandez@uh.edu

†These authors have contributed
equally to this work.

Although efforts to characterize human movement through electroencephalography (EEG)
have revealed neural activities unique to limb control that can be used to infer movement
kinematics, it is still unknown the extent to which EEG can be used to discern the
expressive qualities that influence such movements. In this study we used EEG and
inertial sensors to record brain activity and movement of five skilled and certified Laban
Movement Analysis (LMA) dancers. Each dancer performed whole body movements of
three Action types: movements devoid of expressive qualities (“Neutral”), non-expressive
movements while thinking about specific expressive qualities (“Think”), and enacted
expressive movements (“Do”). The expressive movement qualities that were used in
the “Think” and “Do” actions consisted of a sequence of eight Laban Effort qualities as
defined by LMA—a notation system and language for describing, visualizing, interpreting
and documenting all varieties of human movement. We used delta band (0.2–4 Hz)
EEG as input to a machine learning algorithm that computed locality-preserving Fisher’s
discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture
models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models
to classify all the possible combinations of Action Type and Laban Effort quality (giving
a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type
and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential
relations between the EEG and movement kinematics of the dancer’s body, indicated
that motion-related artifacts did not significantly influence our classification results. In
summary, this research demonstrates that EEG has valuable information about the
expressive qualities of movement. These results may have applications for advancing the
understanding of the neural basis of expressive movements and for the development of
neuroprosthetics to restore movements.

Keywords: EEG, neural classification, mobile neuroimaging, neural decoding, dance, Laban Movement Analysis

INTRODUCTION
In recent years, neural engineering approaches to understanding
the neural basis of human movement using scalp electroen-
cephalography (EEG) have uncovered dynamic cortical contri-
butions to the initiation and control of human lower limb
movements such as cycling (Jain et al., 2013); treadmill walk-
ing (Gwin et al., 2010, 2011; Presacco et al., 2011, 2012; Cheron
et al., 2012; Petersen et al., 2012; Severens et al., 2012; Schneider
et al., 2013), and even robotic assisted gait (Wagner et al., 2012;
Kilicarslan et al., 2013). Most of these studies however have been
limited to slow walking speeds and have been constrained by
treadmills or the cycling or robotic devices used in the tasks, and
have yet to examine more natural, and therefore less constrained,
expressive movements. To address this important limitations, a
mobile EEG-based brain imaging (MoBI) approach may be a
valuable tool for recording and analyzing what the brain and the

body do during the production of expressive movements, what
the brain and the body experience, and what or how the brain
self-organizes while movements of physical virtuosity are modi-
fied by expressive qualities that communicate emotional tone and
texture—the basic language of human interactions. These expres-
sive patterns are unique to each person, and we organize them in
such particular ways that they become markers for our identities,
even at great distances and from behind (Williams et al., 2008;
Hodzic et al., 2009; Ramsey et al., 2011).

Interestingly, studies of the so-called human action obser-
vation network, comprised of ventral premotor cortex, inferior
parietal lobe, and the superior temporal sulcus, have shown disso-
ciable neural substrates for body motion and physical experience
during the observation of dance (Cross et al., 2006, 2009). Orgs
et al. (2008) reported modulation of event-related desynchroniza-
tion (ERD) in alpha and beta bands between 7.5 and 25 Hz in
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accordance to a subject’s dance expertise while viewing a dance
movement. Tachibana et al. (2011) reported gradual increases in
oxygenated-hemoglobin (oxy-Hb) levels using functional near-
infrared spectroscopy (fNIRS) in the superior temporal gyrus
during periods of increasing complexity of dance movement.
While current neuroimaging research aims to recognize how the
brain perceives dance, no study has described the various modes
of expressive movements within a dance in relation to human
scalp EEG activity. Thus, the current study focuses on extract-
ing information about expressive movements performed during
dance from non-invasive high-density scalp EEG.

The study emerged from many questions about the differences
in neural engagement between functional and expressive move-
ment in elite performers of movement; specifically, dance, and
movement theatre. The questions are important, because dance
has been studied primarily as elite athletic movement, located
in the motor cortex. And yet, dancers train for years to express
nuanced and complex qualities in order to tell a story, express
an emotion, or locate a situation. Where do these various com-
municative messages, manifested in expressive movers, fire? Are
they part of the motor functions, or are other aspects of cog-
nition involved? The questions therefore became the basis of an
emergent inquiry, using the high-density scalp EEG. Since no pre-
vious data on the differences between these two modalities of
movement have been found, the study is nascent. As the inves-
tigators planned for the research, it became clear from the lack
of any prior studies making these distinctions that we would be
gathering baseline data and demonstrating feasibility for further
studies.

Our study utilized expert analysts and performers of expres-
sive movement, all trained in Laban Movement Analysis (LMA)
(Laban, 1971; Bradley, 2009). LMA is composed of four major
components: Body, Space, Effort, Shape, which make up the
grammar for movement “sentences,” or phrases. In this study,
we focus on the Effort component, which represents dynamic
features of movement, specifically the shift of an inner atti-
tude toward one or more of four factors: Space (attention or
focus), Weight (impact, overcoming resistance), Time (pacing),
and Flow (on-goingness). Each factor is a continuum between
two extremes: (1) Indulging in or favoring the quality and (2)
Condensing or fighting against the quality. Table 1 illustrates the
Laban’s Effort qualities, each factor’s indulging and condensing
element, respectively with textual descriptions and examples.

LMA differentiates between functional and expressive move-
ment. Functional movement is perfunctory, task-oriented, non-
expressive movement. It can be highly skill-based and technically
complex, but it does not communicate an attitude or express an
emotion. An example of functional movement might be cycling
or treadmill walking; when such activities are primarily about
the mechanics of executing the action. Expressive movement
occurs through shifts in thoughts or intentions, and communi-
cates something about the personal style of the mover. Human
beings communicate in both verbal and nonverbal ways; the
nonverbal expressive aspects of movement are “read” as indica-
tors of our unique personalities and personal style. For example,
movement analysts would describe individuals as “hyper” or
“laid-back” based, in part, on their Effort patterns. Individuals

Table 1 | Effort factors and effort elements (Zhao, 2001; Bishko, 2007;

Bradley, 2009).

Effort Element Description

Space Attention to the surroundings. “Where.”
Spatial orientation

Indirect All-round awareness, three–dimensionality of
space, flexible
Example: waving away bugs, scanning room
for misplaced keys

Direct Straight, linear action, attention to singular
spatial possibility
Example: pointing to a particular spot,
threading a needle

Flow Amount of control. “How.”
Feeling of how movement progresses

Free Uncontrolled, unable to stop in the course of
movement
Example: flinging a rock into a pond, waving
wildly

Bound Rigid, controlled, restrained, resisting the flow
Example: carrying an filled up of hot tea,
moving in slow motion

Weight Sensing, Intention. “What.”
Attitude of movement

Light Buoyant, weightless, sensitive
Example: dabbing paint on a canvas,
movement of feather

Strong Powerful, bold, forceful, determined
Example: punching, pushing, wringing a towel

Time Intention, decision. “When.”
Lack or sense of urgency

Sustained Leisurely, lingering
Example: yawning, smelling the flowers

Quick Unexpected, surprising, urgent, fleeting
Example: swatting a fly, grabbing child from
path of danger

might have recurring moments of a Strong, Direct stance. Others
may demonstrate recurring moments of Quick, Free, Light ges-
tures that accent a sparkly or lively presence. These expressive
components of movement do not occur in isolated ways from the
other aspects of movement analysis (Body, Space, and Shape), but
rather, modify movement events. They are capable of a wide range
of such modifications, and the complex patterns of expressiveness
make up unique movement signatures. In this way, familiar peo-
ple can be identified from even great distances, simply from their
Effort qualities. Unfortunately, prior research investigating natu-
ral expressive movement has been limited to motion capture tech-
nology (Zhao and Badler, 2005; Bouchard and Badler, 2007). The
markers that track the body in movement are tantalizingly close to
being able to trace movement qualities, but have not yet achieved
legibility of the shift into expressive movement. Thus, the goal of
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this study is two-fold: (1) Identify those efforts and individual dif-
ferences in such qualities from brain activity recorded with scalp
EEG, and (2) further develop MoBI approaches to the study of
natural unconstrained expressive movement.

Certified Laban Movement Analysts were used as subjects
because of the extensive training in distinguishing between cat-
egories of movement as both observers and performers. The five
subjects were also teachers of LMA, and had extensive experience
in demonstrating the differences and unique qualities of each fea-
ture of expressive movement to students of the work. One of the
researchers (Bradley) is a Certified Laban Movement Analyst and
has been teaching the material for 30 years. Such experienced sub-
jects and researcher allowed for the identification (and labeling)
of shifts in performance from functional to expressive moments.

MATERIALS AND METHODS
EXPERIMENTAL SETUP
Subjects
Five healthy Certified Movement Analysts (CMAs) proficient in
the expressive components of LMA participated in the study after
giving Informed Consent. All subjects were professional teachers
and performers of movement; either dancers or movement-based
actors. One man and four women were studied with ages rang-
ing from 28–62 years. Data from subject 2 were discarded due to
technical issues during the recording that resulted in missing data
or data of bad quality.

Task
The study consisted of three-trial blocks where synchronized
scalp EEG and whole-body kinematics data were recorded during
a ∼5 min unscripted and individualized dance performance. Each
trial block consisted of three Action Types (“neutral,” “think,”
“do”). During “neutral” action, subjects were directed to perform
functional movements without any additional qualities of expres-
sion. This was followed by the “think” condition where subjects
continued to perform functional movements, but now imagined
a particular Laban Effort quality instructed by the experimenter.
Lastly, subjects executed (i.e., enacted) the previously imagined
expressive movement during the “do” condition. Dancers were
instructed to begin and end each Laban Effort quality cued by
the experimenter, a professional movement analyst, in addition to
a monotone auditory trigger at the onset of each condition. The
sequence of Laban Effort qualities varied from trial-to-trial as well
as from subject-to-subject. Nonetheless, all efforts were arranged
such that the indulging (favored) element was preceded by con-
densing element of the Laban Effort quality. As we were interested
in inferring expressive qualities, all the “neutral” instances, which
were devoid of willed expressiveness, were collapsed within a
superset “neutral” leaving therefore a total of 17 distinct classes
of expressive movements to infer from scalp EEG (“neutral” +
“think” × 8 efforts + “do” × 8 efforts).

DATA ACQUISITION AND PREPROCESSING
Brain activity was acquired non-invasively using a 64 channel,
wireless, active EEG system sampled at 1000 Hz (BrainAmpDC
with actiCAP, Brain Products GmbH). Electrode labeling was pre-
pared in accordance to the 10–20 international system using FCz

as reference and AFz as ground. The kinematics of each dance’s
movements were captured using 10 wireless Magnetic, Angular
Rate, and Gravity (MARG) sensors (OPAL, APDM Inc., Portland,
OR) sampled at 128 Hz mounted on the head, upper torso, lum-
bar region, arms, thighs, shanks, and feet. Each sensor contains a
triaxial magnetometer, gyroscope, and accelerometer (Figure 1).
A Kalman filter was used to estimate the orientation of each IMU
with respect to the global reference frame. Using this information
about sensor orientation, the tri-axial acceleration data, which
had been compensated for gravitational effects, was estimated
(Marins et al., 2001).

Peripheral EEG channels (FP1-2, AF7-8, F7-8, FT7-10, T7-
8, TP7-10, P7-8, PO7-8, O1-2, Oz, PO9-10 in the extended
10–20 EEG system montage) were rejected as these channels
are typically heavily corrupted with motion artifacts and scalp
myoelectric (EMG) contamination. In addition, time samples of
500 ms before and after the onset of each condition were removed
from further analysis to minimize time transition effects across
conditions. EEG signals were resampled to 100 Hz, followed by
a removal of low frequency trends and constrained to the delta
band (0.2–4 Hz) using a 3rd order, zero-phase Butterworth band-
pass filter. The EEG data were then standardized by channel by
subtracting the mean and dividing by the standard deviation.
Finally, a time-embedded feature matrix was constructed from
l = 10 lags corresponding to a w = 100 ms window of EEG data.
The embedded time interval was chosen based on previous stud-
ies demonstrating accurate decoding of movement kinematics

FIGURE 1 | Dancer wearing the 64 ch. EEG cap and the 10 ch. magnetic,
angular rate, and gravity (MARG) inertial sensors for data collection.
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from the fluctuations in the amplitude of low frequency EEG
(Bradberry et al., 2010; Presacco et al., 2011, 2012). The feature
vector for each time sample tn was constructed by concatenat-
ing the 10 lags (tn − 9, tn − 8, . . ., tn) for each channel into
a single vector of length 10 × N, where N is the number of
EEG channels. To avoid the problem of missing data, the fea-
ture matrix was buffered by starting at the 10th EEG sample of
the trial. All EEG channels and time lags were subsequently con-
catenated and standardized to form a [t0 − w] × [N ∗ l] feature
matrix.

DIMENSIONALITY REDUCTION
Once feature matrices were generated for all trial blocks, training
and testing data were randomly sampled in equal sizes for each
class for cross-validation purposes, and reduced in dimension-
ality (Bulea et al., 2013; Kilicarslan et al., 2013). Local Fisher’s
Discriminant Analysis (LFDA) is deployed here to reduce the
dimensionality of a sample set of classes by minimizing and
maximizing samples within and between classes, respectively,
while preserving the locality of the samples that form each class
(Sugiyama, 2006, 2007). Details of the technique adopted here
(LFDA) are described in Sugiyama (2006, 2007).

NEURAL CLASSIFIER ALGORITHM
A Gaussian mixture model (GMM), capable of representing arbi-
trary statistical distributions as a weighted summation of multiple
Gaussian distributions, or components (Paalanen et al., 2006),
was employed to classify the Laban Movement (LBM) Efforts
from scalp EEG. As the name implies, GMM represents each
class as a mixture of Gaussian components whose parameters
and component number are approximated using the Estimation-
Maximization (EM) algorithm and Bayes Information Criterion
(BIC), respectively (Li et al., 2012). The two main parameters
for this algorithm include the number of reduced dimensions r
and k-nearest neighbors knn (from the LFDA) and thus must be
optimized for this particular application of expressive movement
classification (Li et al., 2012; Kilicarslan et al., 2013).

The probability density function for a given training data set
X = {xi}n

i = 1 ∈ R
d is given by:

p(x) =
K∑

k = 1

αkφk (1)

φk(x) = e−0.5(x − μk)
T�−1

k (x − μk)

(2π)d/2|�k|1/2
(2)

where K is the number of components and αk is the mixing
weight, μk is the mean, and �k is the covariance matrix of the
k-th component. The parameters of each GMM component K,
including αk, μk, and �k, are estimated as those which maximize
the log-likelihood of the training set given by:

Lk =
n∑

i = 1

log pk (xi) (3)

where p(x) is given in (1). Maximization of (3) is carried out using
an iterative, greedy expectation-maximization (EM) algorithm

(Vlassis and Likas, 2002), with the initial guess of the parame-
ters αk, μk, and �k established via k-means clustering (Su and Dy,
2007), until the log-likelihood reaches a predetermined threshold.
The determination of K is critical to successful implementation
of GMMs for classification. The BIC has been reported as an
effective metric for optimizing K (Li et al., 2012).

BIC = −2Lmax + 2 log (n) (4)

where Lmax is the maximum log-likelihood of each model from
(3). During training, the maximum value of K = 10 was cho-
sen based on estimates from prior work in our lab (Kilicarslan
et al., 2013). We then computed Lmax for each value of K ∈
{1, 2, . . . , 10} and estimated the optimal value of K as the model,
using the minimum BIC from (4). In this manner, class-specific
GMMs representing each Effort could be specified for use in a
maximum-likelihood classifier. The parameters for each class-
conditional GMM were specified using an optimization data set
(classifier optimization). The posterior probability of each new
data point was computed using the optimized model for each
class, and that data point was then assigned to the class that
returned the largest value.

Neural classification from scalp EEG was performed using two
schemes of class initialization. We defined the Scheme 1 (Action
Type) as a differentiation of n time samples into one of three
classes corresponding to the conditions of “Neutral,” “Think,”
and “Do.” In a similar initialization for Scheme 2 (Laban Effort
quality Type), each condition of “Think” and “Do” were segre-
gated into each of the eight Laban Effort quality elements, thereby
forming an accumulation of 17 classes. The results of each classi-
fication could be observed by obtaining the confusion matrix of
each classification scheme. This matrix provides the user with a
detailed understanding of the overall accuracy rate in terms of the
accuracy, or sensitivity and precision, for each class.

CROSS VALIDATION
Overall classification accuracy and class precision rates were aver-
aged by implementing a random sub-sampling cross validation
scheme. That is, samples from the concatenated feature matrix of
three trial blocks were randomly selected and placed into an equal
number of samples per class based on a percentage of samples
from the least populated class. This process was then repeated 10
times (Figure 2) in order to minimize the effects of random sam-
pling bias, avoid over-fitting, and demonstrate replicability of the
algorithm. A sampling of 10 accuracies was found to be sufficient
as it usually resulted in a low standard error (ε < 1).

FORWARD SELECTION OF EEG CHANNELS
In an attempt to identify the EEG channels that contributed most
to classification accuracy, the iterative process of forward selection
was introduced upon the EEG channels and their correspond-
ing lags that comprise the feature matrix. This was performed by
computing the mean classification accuracy of each EEG chan-
nel independently using the LFDA-GMM algorithm, and ranking
them in descending order of accuracy values. The highest ranked
channel was added to the selected channels list (SCL), and tested
against each of the remaining channels. The channel that ranked
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FIGURE 2 | Flow diagram depicting the computational approach to neural decoding of expressive movements. The sample sizes n and m are equivalent
to a percentage of the least populated class size.

highest in classification accuracy when tested along the SCL was
added to the SCL for the next iteration. This procedure was
repeated until all remaining non-SCL channels were exhausted.

EXAMINATION OF POTENTIAL MECHANICAL ARTIFACTS ON EEG
DECODING
To assess the potential contribution of mechanical/motion arti-
facts to decoding, we performed a series of analyses including
time-frequency analysis, cross-correlation analysis, and coherence
analysis to compare the EEG signals with the motion signals
acquired with the MARG sensors. First, we performed principal
component analysis (PCA; Duda et al., 2012) on the accelera-
tion data (d = 10 sensors). A cross-correlation analysis was then
performed between the raw EEG (resampled to 100 Hz) and the
first “synergy” (i.e., first PC) of acceleration data. Histograms
and box plots of each EEG channel by PC1 calculated corre-
lation values were subsequently assessed to observe differences
across the distribution of each class. Second, we performed a
time-frequency analysis to compare the raw EEG signals over
selected frontal, lateral, central, and posterior scalp sites and
the gravity-compensated accelerometer readings from the MARG

sensor placed on the head. Then, we estimated the coherence
between the raw EEG signals and the accelerometer signals.
Finally, we computed a whole-scalp cross-correlation of the EEG
signals and the head accelerometer readings to examine the con-
tribution of head motion to EEG.

RESULTS
KINEMATIC ANALYSIS
Figure 3 depicts a sample set of EEG and motion capture record-
ings for Subject 4, Trial 2 comprising all Action type classes for
the Laban Effort quality of Flow, which includes the opposing ele-
ments of free and bound flows. PCA was performed upon the full
time series of acceleration data from all 10 MARG sensors. The
PCs whose cumulative variability summed to at least 80% were
also featured within the sample set of signal data in Figure 3. Time
series provided for both “neutral” blocks in Figure 3 appear to be
relatively “smooth” (less varying) in terms of both neural activity
and kinematic movement. One exception to this includes rapid
changes in acceleration around 169 s as confirmed by the accel-
eration plots. EEG signal patterns are visually distinct between
“think” time segments of free and bound flow elements, especially
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FIGURE 3 | Sample EEG and MARG recordings for Subject 4, Trial 2 with video recording (see Supplementary Materials). EEG and accelerometer data
are segmented by each condition (Neutral, Think, Do) of the Laban Effort quality of Flow. The first four PCs of acceleration data are also shown.
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with unique areas of modulation of neural activity at 185 s (free
flow) and 209 and 214 s (bound flow) which contained little to no
effect of motion artifacts, as confirmed by the kinematics signal
data. By contrast, the “do” section of the Laban Effort quality of
free flow was found to contain the greatest influence of motion
embedded in the EEG signal data, as demonstrated by the large
excursions in signal magnitude for both EEG and kinematics data.
These differences between classes are more prominent when the
distribution of PC values can be observed for every class in the
trial, as shown in Figure 4. Key features to note include the small
variance accounted by “Do Light Weight” and “Do Sustained
Time” classes, which reflects the low movement the subject effec-
tuated for the particular action. Other classes such as “Do Free
Flow” and “Do Quick Time” have a higher variance due to the
nature of these efforts as they cover a greater range of motion.
Potential motion artifacts produced by the subject’s movements
appear to contaminate EEG signal patterns, however the effect
appears to be localized to specific classes of Laban Effort qual-
ities (e.g., “Do Free Flow”) and thus not consistent over the
entire time series. A more detailed analysis of potential mechan-
ical/motion artifacts based on cross-correlation, coherence and
time-frequency analyses are thus provided next.

The distribution of correlation values between raw EEG chan-
nels and the first PC of the raw acceleration data returned a range
of median correlation coefficients between 0.02 and 0.15 across
classes (Figure 5A). Outliers were identified for some efforts, and
thus may be indicative of a close relationship between a particu-
lar EEG channel and the first PC “synergy” of acceleration. The
coefficient of determination was obtained by squaring each cor-
relation coefficient ρ. This coefficient is defined as the percent
variation in the values of the dependent variable (raw EEG) that
can be explained by variations in the values of the independent
variable (acceleration). Coefficients of determination (ρ2) values
were generally low and ranged from ∼0.0 to ∼0.23 (that is, ∼0
to 23% of the total variation of the raw EEG can be accounted
for by changes in the PC1) across all subjects and electrodes.
Spatial distributions of ρ2-values were plotted as scalp maps to
indicate the relationship between the raw EEG and the head accel-
eration across scalp channels. Peaks of highest accounted variance
(Figure 5B) were observed for certain Laban Effort qualities, most
notably in the occipital regions for “Think Quick Time” and
“Think Light Weight” and temporal regions for “Do Sustained
Time” for Subject 4 (See Supplementary Material for ρ2 data from
other subjects).

FIGURE 4 | Normalized histogram distribution of time sample data for

the first principal component of magnitude acceleration data recorded

from Subject 4, Trial 2 (n = number of samples, k = kurtosis). A boxplot

representation excluding outliers of the distribution is shown below each
histogram. Note that the distributions for PC1 are a combination of
super-Gaussian and sub-Gaussian distributions as estimated by their kurtoses.
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FIGURE 5 | The boxplots (A) and scalp maps (B) show the distribution of

the cross-correlation coefficients and coefficients of determination

between raw EEG signals and the first PC of the magnitude acceleration

data across subjects and efforts. The first PC of the acceleration data
accounted for 64.5, 39.3, 59.8, and 44.9% of the variance for subjects 1, 3, 4,
and 5 respectively. Asterisks (∗) indicate outliers within the set of ρ-values.

A similar analysis comparing the raw EEG signals and the head
accelerometer (which directly recorded EEG electrode move-
ments), rather than the first PC “synergy,” was also conducted
(Figure 6). This resulted in correlation values generally below
ρ = 0.15, though many boxplot distributions varied by sub-
ject throughout each Laban Effort quality (Figure 6A). Although
strong relationships between the accelerometer and EEG signals
may be expected, the relatively low ρ2 scores indicate otherwise.
Low correlations between neural activity and head motion were
observed for classes such as “Bound Flow,” which is reasonable
given the rigid-like movements that this effort entails. In contrast,
much higher correlation coefficients remained for “Light Weight”
and “Indirect Space” time segments. Figure 6B depicts scalp maps
with ρ2-values between head accelerometer and raw EEG data
for Subject 4. In the scalp maps some classes show channels with
slightly high correlation ρ2 = 0.1 (which account for ∼10% of
the total variation of the EEG due to the head motion), specif-
ically in “Think Light Weight,” “Think Direct Space,” “Think
Quick Time,” and “Do Sustained Time,” for Subject 4. Overall,
these analyses showed a slight contamination, for some classes of
Laban Effort qualities, of EEG signals due to head movement (see
Supplementary Material), but the amount of total variance in the
EEG signals explained by head motion was relatively small.

Additionally, time-frequency and coherence analyses were per-
formed upon the raw signals of three selected EEG electrodes (Cz,
C6, and POz) representing a sampling of the spatial assortment of
neural activity across the scalp, as well as the gravity-compensated
acceleration magnitude of the head MARG sensor by generat-
ing two spectrograms, as shown in Figure 7. The spectrograms

were generated by computing the short-time Fourier transform
(STFT) over a time window of samples with overlap at each PSD
computation of the FFT. We used a frequency range between
0.1–40 Hz and a time window of 1024 samples with 93% over-
lap. The mean-squared coherence between the head acceleration
and each corresponding EEG electrode at each frequency value
was computed using Welch’s overlapped-segment averaging tech-
nique (Carter, 1987). From the spectrograms it can be observed
that the actions “Do Quick Time,” “Do Think Free Flow,” “Do
Strong Weight,” and short-lived portions of “Neutral” tasks con-
tained higher power in the head accelerometer readings that may
affect decoding. However, coherence estimates were generally low
(<0.3; see Figure 7) with some transient increases in coherence
between EEG and head acceleration during some Laban Effort
qualities. Given that relatively high levels of coherence were short-
lived and localized to a few classes of Laban Effort qualities,
and that random sampling of EEG signals were used for train-
ing and cross-validation of our neural classifiers, we argue that
motion artifacts, if present, had only a very minor contribution
to decoding. We further discuss these results below.

DECODING ACTION TYPE FROM SCALP EEG
We first examined the feasibility of inferring the action type
(“neutral,” “think,” “do”), irrespective of Laban Effort quality,
from scalp EEG. Analyses showed the “think” condition had the
highest sensitivity than the other two action types. Based on the
optimization of LFDA parameters, the mean accuracy rate (10
random subsampling cross-validation iterations were used for
each subject) was 56.2 ± 0.6% by Action Type for Subject 1
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FIGURE 6 | (A) The boxplots show the distribution of the
cross-correlation coefficients between raw EEG signals and the
magnitude acceleration data from the head MARG sensor across
subjects and efforts. (B) Scalp maps of coefficient of determination

(ρ2) values between raw EEG signals and the magnitude acceleration
data from the head MARG sensor across Laban Effort qualities for
Subject 4. See Supp. Materials for other subjects. Asterisks (∗)
indicate outliers within the set of ρ-values.

(r = 300, knn = 21), which was well above 33% chance proba-
bility. Similar classification accuracy results were obtained for the
rest of the subjects, namely 57.0 ± 0.4% for Subject 3, 62.1 ±
0.5% for Subject 4, 62.4 ± 1.0% for Subject 5. Figure 8 shows the
mean classification accuracies for the different data sets tested.

Predicted samples were summed across all four subjects and
normalized by dividing each predicted sample size by the actual
class sample size, as indicated by the percentages within each
confusion matrix block (Figure 9). Figure 9 depicts the confu-
sion matrix for the Action Type decodes. Classification of EEG
patterns corresponding to the “think” class achieved the high-
est classification rates (88.2%), followed by both “neutral” and
“do” classes. Note that the highest misclassifications occurred
for class “neutral,” which were classified as belonging to the
“think” (32.9%) class. The worst performance was for the “do”
class as instances of “neutral” (23.5%) and “think” (50.7%) were
misclassified as “do.”

DECODING LABAN EFFORT QUALITY TYPE FROM SCALP EEG
We then examined the classification accuracy for Laban Effort
quality Type (8 Think about Laban Effort quality + 8 Do Laban
Effort quality + Neutral = 17 classes). In this case, nearly all
test samples were accurately classified into their respective classes,
which resulted in 88.2% classification accuracy across subjects.
Figure 8 (black bars) shows the mean classification accuracies
for Laban Effort qualities across subjects. Interestingly, most test
samples were misclassified under the “neutral” class as shown by
the relatively high percentages for all non-“neutral” classes in the

first column (Figure 10). Based upon Figure 10, classes related to
actions of “do” were more difficult to classify (relative to actions
of “think”) except for “Do Quick Time,” which contained the
highest sensitivity rate overall (96.5%).

TRAINING SAMPLE SIZE EFFECTS ON CLASSIFICATION ACCURACY
The effect of training sample size on classification accuracy was
also examined in Subject 1. The training sample size constituted
a percentage (20–90) of the least populated class. Classification
of Action type was not significantly affected by percentage of
training samples (Figure 11); however, classification of Laban
Effort quality type showed a non-linear increase as a function of
percentage of training samples.

RELEVANT EEG CHANNELS FOR CLASSIFICATION
A forward selection approach was employed per subject in order
to identify the EEG channels with the most useful information for
classification (Pagano and Gauvreau, 2000). While maintaining
the number of reduced dimensions (r) and k-nearest neigh-
bors (knn) constant (r = 10, knn = 7) and operating under the
Effort Type classification scheme, the mean classification accu-
racy was computed for all 39 channels and corresponding lags
independently. The channel that yielded the highest classification
accuracy (channel A) was then selected. Classification accura-
cies were then re-computed by adding channel A to each of the
remaining 38 channels independently. The channel-pair yield-
ing the highest accuracy was again selected and added to each
of the remained channels to find the channel-triplets yielding
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FIGURE 7 | Spectrograms and short-term coherence between

selected (raw) EEG channels (Cz, C6, and POZ) and the acceleration

magnitude of the head MARG sensor for Subject 4. Frequency axes
are shown in logarithmic scale. Note the generally low coherence

values (<0.3) across most Laban Effort quality classes with some
short-lived increases in coherence for some Efforts. Bold vertical black
lines above each figure indicate the efforts windows in Figures 3, 4 to
compare to each spectrogram plot.

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 188 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Cruz-Garza et al. Decoding expressive movements from EEG

FIGURE 8 | Mean (SD) classification accuracies for 10 iterations and

optimized LFDA parameters for both Action (3 classes) and Effort (17

classes) Type decoding. The gray middle bars show the mean classification

accuracy for the 10 electrodes that individually yielded the highest classification
accuracy using the forward selection algorithm with constant LFDA parameters
(r = 10, knn = 7, See Relevant EEG channels for classification for discussion).

the highest accuracy, and so on. This process continues until no
channels remained, and classification accuracy was shown to stop
increasing after selecting approximately 10 electrodes for each
subject (shaded gray region in Figure 12). Hence, 10 electrodes
were retained for further analysis per subject, as illustrated by the
scalp maps depicted in Figures 13A–D. Electrodes common to
at least two subjects were highlighted in Figure 13E, which span
over scalp areas above bilateral premotor and motor cortices and
dorsal parietal lobule areas. This is consistent with previous stud-
ies seeking to associate dancing movements with cortical regions
(Cross et al., 2006, 2009). Though peak accuracies at 10 electrodes
(Figure 12) were low (40–50%) relative to optimized Effort Type
accuracies (Figure 8), this was largely due to the lower reduced
dimension parameter for LDFA. This suggests that a higher-than-
chance classification accuracy can be obtained by using as few
as 10 electrodes. Nevertheless, relevant information within all 39
EEG channels ultimately allows the classifier to reach more than
90% decoding accuracy (Figure 8).

EFFECTS OF HEAD MOTION ON NEURAL CLASSIFICATION
We examined the relationship between classification performance
and motion artifact contamination. Taking the ρ-values from
Figure 5A, we compared them with each class’ F1 score in clas-
sification. If classes with higher ρ-values showed a higher F1
score, this would mean that the classifier was able to better clas-
sify the classes that were modulated by motion artifacts. However,
Figure 14 shows no evidence of a correspondence between the F1
score and the correlation coefficients per class.

The F1 score (5) is a weighted average of the sensitivity and
precision rates, and thus reflects the overall accuracy of a partic-
ular class (Hripcsak and Rothschild, 2005). For purposes of this

FIGURE 9 | Normalized Summed Confusion Matrix across subjects for

three classes (Action Type decodes). The bottom-right corner provides
the overall mean classification accuracy (59.4%).

study we use the balanced F1 score equation, defined as:

F =
(
1 + β2

) × sensitivity × precision(
β × precision

) + sensitivity
, β = 1 (5)

where β is used as a weighting factor between sensitivity and
precision. Overall, a direct relationship between classification
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FIGURE 10 | Normalized Summed Confusion Matrix across

subjects for 17 classes (Laban Effort quality Type). The
bottom-right corner provides the overall mean classification

accuracy across subjects (88.2%). This was obtained by summing
each subject’s normalized confusion matrix and normalizing the
summed result.

success and the median correlation coefficient of EEG channels-
to-acceleration data does not seem to occur, but rather a tendency
exists for high successes of neural classification in classes that also
contain low correlations with accelerometer data.

EFFORT TYPE CLASSIFICATION REPRESENTED IN 4D LABAN SPACE
Figure 15 illustrates the highly predictive power of the Laban
Effort quality Type neural classification scheme. Using a normal-
ized variant of the GMM probability density function, we placed
weightings to the four coordinates in the Laban Effort quality
space. Each axis corresponds to a Laban Effort quality of Space,
Flow, Weight, and Time. Some testing samples were found to
be misclassified between Indirect Space, Light Weight, and Quick
Time axes, as shown by the ellipsis in Figure 15. This may suggest

shared characteristics between the expressive movements that
cause such misclassification. Non-expressive, or non-classifiable,
samples are depicted as green foci falling near the center of the
plot, as indicated by the small arrows. The small amount of non-
classified samples reflects the overall error of the classifier to
predict Laban Effort quality using neural recordings.

DISCUSSION
CLASSIFICATION OF EXPRESSIVE MOVEMENTS FROM SCALP EEG
In this study we demonstrate the feasibility of classifying expres-
sive movement from delta band, EEG signals. Classification rates
ranged from 59.4 ± 0.6% for decoding of Action Type (“neutral,”
“think,” and “do”) to 88.2 ± 0.7% for decoding of Laban Effort
quality (17 classes). Surprisingly, only the “think” class was
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FIGURE 11 | Mean accuracies (for 10 iterations) across varying

percentage of training samples for classification by Action (3 classes)

and Laban Effort quality (17 classes) types for Subject 1. LFDA
parameters: (r = 180, knn = 7) for both classification schemes. ∗Training
data samples constitute a percentage of the least populated class.

FIGURE 12 | Growth of the mean accuracy (for 30 iterations) as n

channels were added to the new set for subjects 1, 3, 4, and 5 using

forward selection with constant LDFA parameters (r = 10, knn = 7) and

the Effort Type classification scheme. The approximate peak in accuracy
rate at 10 electrodes, highlighted by the vertical gray bar, was displayed in
Figure 8 to demonstrate the extent of classifying using only 10 electrodes
at such a relatively low dimensionality.

reliably decoded from EEG whereas classes “neutral” and “do”
were poorly decoded. It should be noted that subjects were not
instructed to perform a particular pattern of movement, but
rather a mode of action (“neutral,” “think,” and “do”) and Laban
Effort quality as a component of LMA. Thus, subjects performed
highly individualized changing movement patterns throughout
the recording session irrespective of mode of action. We note
that our neural decoding framework uses a within-subject
approach where neural classifiers are trained for each subject.
Such neural decoding approaches are subject specific (Lotte et al.,
2007; Bradberry et al., 2010; Presacco et al., 2011, 2012; Wagner

et al., 2012; Bulea et al., 2013), and thus common and unique
neural patterns are to be expected to influence classification.
Conventional statistical analyses can therefore be difficult to
interpret in the context of this framework because many factors
affect the resulting estimates of significance (i.e., assumptions
underlying response distribution, sample size, number of trials,
data over-fitting, etc.) (Tsuchiya et al., 2008). Given the cross-
validation procedure (i.e., separate random sampling of data
for training and test trials) used in our methodology, the risk
of over-fitting is minimized. By deploying our methodology
for investigating differences in cortical EEG activity patterns,
especially as a function of within-subject training, valuable
information could be learned about the adaptation/learning
trajectories of those patterns and their relationship to perfor-
mance and training. On the other hand, the consistency of the
underlying neural representations, within a subject, would be a
valuable metric in longitudinal studies.

DECODING OF ACTION TYPE AND LABAN EFFORT QUALITIES
The mean decoding accuracy for action type (“neutral,” “think,”
“do”) was near 60%, which was well above chance level.
Interestingly, classification rate for the “think” actions was high-
est (88.2%), followed by “neutral” (64.3%) and “do” actions
(25.8%). We note that individualized and unscripted functional
movements were performed across all the three action types.
Thus, the lowest classification rate for the “do” actions may reflect
neural patterns that contain integrated elements of “thought”
expressiveness and functional movement that were enacted by
the dancers. This would have likely introduced “noise” to these
patterns as diverse functional movements were performed irre-
spective of the Laban Effort qualities being imagined. On the
other hand, the “neutral” actions, albeit unscripted and varying
across time, contained separable information for the classifiers to
discriminate them from the other action types. Only the “think”
actions contained separable information about functional move-
ment and Laban Effort qualities, which could be decoded by the
classifiers. Thus, it is expected the “neutral” class to yield the worst
classification rate given the stochastic pattern of functional move-
ments it contains. Likewise the poor classification of the “do”
class may be due to the heterogeneous mixture of functional and
expressive movements co-occurring, which may introduce some
neural noise within the neural activity evoked by this action.

Interestingly our results demonstrate a greater predictive
power toward the classification of each Laban Effort quality ele-
ment rather than the aggregation of all Laban elements into a
singular condition-defined class (Figures 9, 10) suggesting that
the neural internal states associated with these efforts contain dif-
ferentiable features, beyond the movements performed, that can
be extracted from scalp EEG.

INFLUENCE OF MOTION ARTIFACTS
Given the nature of the experimental setup, it is reasonable to
assert the assumption that the EEG data may be plagued with
motion artifacts. To examine this possibility we performed a series
of analyses to uncover any potential relationship between the
EEG signals and the dancers’ body and head movements. We
found that in a few instances the correlation between the raw
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FIGURE 13 | Binary scalp maps for each subject depicting the first 10

electrodes identified as yielding the highest combined accuracy as

computed by the forward selection algorithm. (A) S1. (B) S3. (C) S4. (D)

S5. (E) Electrodes common to a least two subjects, as indicated by the

circles above a particular electrode channel. Given the subject-specific nature
of neural decoding schemes, common, and unique neural patterns were
expected (Lotte et al., 2007; Bradberry et al., 2010; Presacco et al., 2011,
2012; Wagner et al., 2012; Bulea et al., 2013).

FIGURE 14 | Scatter plot of F1 score vs. median correlation for each of

the 17 possible classes (Effort Types). The F1 score represents the
weighted average between the precision and sensitivity rates of each class.

EEG and the dancers’ movements assessed via the MARG sensors
was moderately high; however these effects appear to be local-
ized to particular segments of time (see Figures 3, 4). We also
note that periods of intense unscripted and varying functional
movements may have been responsible for the periods of higher
correlation and coherence estimates. However, we hypothesize
that for the same reason, neural activity related to the “think-
ing” of Laban Effort qualities may have occurred or modulated
varying body and head movements, thus making these motions
likely irrelevant for classifiers. Additionally, the relatively low
coefficients of determination between EEG and kinematics data
demonstrated that the % variability of EEG signals accounting
for head motion was rather small. Moreover, the random sam-
pling of both training and testing datasets would have precluded

FIGURE 15 | Visualization of classification results for delta-band

processed EEG data from “think” actions in 4D space of Laban Effort

qualities. Classification data from Subject 1, trials 1–3 are shown. Test
samples were classified using the LFDA-GMM algorithm (r = 70, knn = 7,
using training samples per class that constitute 50% of the least populated
class). Decisions of correspondence between Laban Effort qualities were
made using a probability density function of the output of the GMM. The
respective probabilities were used as weightings for the four coordinates in
this space. Clusters of data in the extremes of the octahedron for each
Laban Element-Factor are clearly visible, while some samples remain not
clearly distinguishable as pertaining to a specific class.

the introduction of kinematic influences in both calibration and
testing of the classifier, as the temporal nature of kinematic arti-
facts would have not been included in the training or testing
data. This however warrants further investigation to develop bet-
ter strategies of implementing MoBI approaches to capture neural
mechanisms behind general movements.

Overall, our results show the feasibility of inferring the
expressive component of movements (according to the
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Laban categorization) from scalp EEG, especially when those
components are imagined as subjects perform unscripted natural
body movements. These results may have implications for
the study of movement training, disease and brain-computer
interfaces for restoration of expressive movements.
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Figure 6.S1 | Mapping of the coefficient of determination (ρ2) between the

head accelerometer magnitude and unprocessed EEG data for each Laban
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Abstract

Purpose of review

Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor
skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based
procedures and self-reports. Mobile health devices may reverse these confounders of daily care and
research trials.

Recent findings

Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe
the type, quantity, and quality of mobility-related activities in the community. Data transmission from
sensors to the cell phone and Internet enable continuous monitoring. Remote access to laboratory-quality
data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as
cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive,
personalized therapies with feedback about performance. Clinical trial designs will be able to include
remote verification of the integrity of complex physical interventions and compliance with practice, as
well as capture repeated, ecologically sound, ratio-scale outcome measures.

Summary

Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other
physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous
as cell phones for health care. Neurorehabilitation can develop these mobile health platforms for daily care
and clinical trials to improve exercise and fitness, skills learning, and physical functioning.

Keywords: mobile health, stroke rehabilitation, outcome assessment, physical activity, accelerometer,
gyroscope, activity monitor, signal processing, telemedicine

Introduction

Mobile health or mHealth is a growing endeavor to improve healthcare services via mobile communication
devices.  The cell phone enables continuous access to the Internet over broadband and WiFi for data1
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transmission of physiologic variables, physical activity, blood tests, images, social interactions, mental
states, and environmental conditions.  By simultaneously assessing behavioral, physiological, and
psychological states in the real world and in real-time, mHealth also aims to quantify states of health and
well-being. Feedback, cues, and updated instructions via graphics and text messages can be provided in
real time based on the flow of information from and back to a patient. The result will be high throughput,
multi-streamed, longitudinal data sets to facilitate disease prevention, diagnostics, compliance,
personalized management, and behavioral change.  A global aim is to use this technology to reduce
healthcare disparities, especially for patients with chronic diseases, and lower the long-term cost of more
personalized care. This long-term management capability is especially important in neurologic
rehabilitation after disabling spinal cord and traumatic brain injury, as well as in stroke, multiple sclerosis,
and any progressive or neurodegenerative disease. Thus, the rehabilitation team may find remarkable
opportunities in mHealth, just as it has for other assistive technologies.

Mobile health smartphone apps take advantage of external sensors and the camera, microphone, GPS, and
accelerometer built into these communication devices. The phone already serves as a transmission relay
for Bluetooth equipped weight scales, blood pressure and heart rate devices, equipment for exercise, and
mental and social health state assessments. Bio-monitoring of blood chemistries, embedded lab-on-a-chip
sensors, and tele-monitoring for remote personal health advice by professionals are moving forward as
well. Evidence for efficacy is growing, if slowly.  For example, the first mHealth Cochrane analysis of
randomized clinical trials (RCTs) for self-management of type 2 diabetes found larger effects on glucose
and HgbA1C control for cell phone-based interventions compared to conventional information and
computer use.  Studies of efficacy, however, are sparse. Across all health conditions at the end of 2012,
176 RCTs of mHealth technologies were listed at clinical trials.gov,  but few have been published or relate
to neurologic disability.

This review describes efforts to bring wearable, wireless sensor networks to bear on community-based
assessments and treatments to improve walking, exercise, fitness, and other mobility-related activities after
neurologic injuries and diseases. It addresses the challenge of a white paper  from the National Institute of
Child Health and Human Development, which concluded, “Advanced technology/sensors must be
developed to establish better tracking of compliance and clinical outcomes, at several International
Classification of Functioning, Disability, and Health levels. New, low-cost, portable sensors may
ultimately replace prevailing clinical instruments used for outcome assessments.” Inexpensive
smartphones and tablets are lowering the complexity of this challenge since they can communicate with
multiple sensors placed on the body; initiate, store or transmit data for processing; provide a variety of user
interfaces; download instructions and reminders; and remotely update applications.

Sensor Platforms

A wide range of wearable sensors (Table 1) are available commercially that provide the raw data to
describe arm, trunk, and lower extremity actions outside of a motion analysis gait laboratory.  The choice
of sensors, number, and placement will depend on the activity and movement variables to be ascertained.
Practical sensor systems must meet many complex design requirements, from cosmetic, privacy and
technology acceptability by users to signal processing, data transmission, annotation, and scalability for
easy use (Table 2). Especially important for motion sensing is the accuracy and speed of feature detection
and classifier algorithms that turn a sequence of inertial signals into a recognizable movement pattern to
measure clinically important details of gait and other purposeful activities.

Commercial devices

Recently, fitness, exercise and wellness gadgets have come to the social networking market. Can they be
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used for patient care? In general, these cosmetically striking devices detect successive movements by a
single biaxial or triaxial accelerometer placed in a pocket or on a wristband (e.g., FitBit, BodyMedia,
FuelBand). Results are summarized by downloading data to a computer or smartphone usually via
Bluetooth. Episodic and cyclical body movements are then calculated as activity or step counts or
converted into calorie counts. Each swing of the arm or forward propulsion of the trunk is interpreted as a
stride during repetitive exercise. Actions with low gravitational force or unusual combinations of
acceleration-deceleration of short duration may be misinterpreted, however. Adventitious movements may
be interpreted as the motion of interest. Reliability and validity are uncertain in healthy persons in real-
world settings and yet to be studied in disabled persons. At best, a wrist-worn accelerometer may
distinguish sedentary, household, walking and running as distinct activities and correctly classify intensity
of activity 50% of the time.  In their present configuration, these are not suitable for research on patients
with neurologic impairments.

Single accelerometer-based step counters have been available for 2 decades for outpatient use (e.g.,
Actigraph, Pensacola FL; StepWatch Activity Monitor, Oklahoma City, OK).  Their count of steps
over time generally correlate with the degree of walking impairment for patients with stroke (e.g., slower
walkers take fewer steps)  and other neurological diseases. Like even less sophisticated pedometers, they
may not detect all steps when the cadence falls below 50/minute, walking speed slows below 0.6 m/s  or
the gait pattern includes irregular movements. None measure walking speed or have yet been enabled to
download to a smartphone. Triaxial accelerometer systems placed posteriorly at the midline of the waist
use proprietary algorithms to detect the gait cycle and walking speed (e.g., Actibelt, Munchen, Germany),
but so far, tend to be less accurate in patients with greater impairment who walk slowly.  Indeed,
multi-sensor systems are significantly more accurate than any of these single accelerometers to measure
activity and estimate energy expenditure.

Research devices

An important goal for rehabilitation is to be able to remotely classify human activities and quantitatively
measure the quality of their component movements outside of a motion analysis laboratory. Wireless gait
laboratory systems (e.g., APDM, Portland, OR) that integrate from 2-7 accelerometers and gyroscopes
worn on the wrists, ankles and chest or waist, plus additional types of sensing, are said to be accurate for
revealing the gait cycle and walking speed. Combinations of accelerometers are also sufficient to detect
postural imbalance,  and may help detect or predict falls. Wheelchair activity and energy consumption
measurement also requires multiple sensors, on each arm and the chair.  These systems, due to cost and
complexities in management, have primarily been used in controlled settings, but not for continuous
community usage enabled by automatic downloading to a smartphone.

Comfortable, user-friendly sensor network designs compatible with the notion of mHealth are becoming
available.  In one study, low-cost, miniaturized triaxial accelerometers with electronic circuits were
placed over the tibia just above both ankles in healthy and hemiplegic participants. A template walk at
several speeds for 10 m was used to help train the activity-pattern-recognition algorithm for each
subject.  The synchronous bilateral raw inertial signals were examined for features related to the timing
of components of each stride, including heel-off, toe-off, peak swing, end of swing, and foot flat. A
machine learning, Bayesian activity-recognition classifier was developed that grouped activities and set the
features that distinguished them. The algorithm then recognized subsequent bouts of walking across a day's
activity and calculated walking speeds in the stroke patients as low as 0.1 m/s, along with distance and
duration of each bout, and limb asymmetries in stance and swing times. This protocol led to high
correlation with ground truth measures during walking in the community.  This sensor and analysis
system was then used to provide feedback over the Internet about daily walking bouts in terms of speed,
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duration and distance in a RCT during inpatient stroke rehabilitation at 15 sites in 12 countries.  Over
2100 hours of activities were identified and quantified in 140 subjects, revealing the progression of
walking-related measures and the actual amount of physical therapy provided for mobility. A Bluetooth
connection from the sensors can download the data to a smartphone as well, then to a remote server for
algorithm processing. Another research group placed bilateral accelerometers at mid-leg along with a
gyroscope to try to eliminate the template walk, but their algorithm was only accurate when walking speed
exceeded 0.6m/s.  Other sensor placements and approaches to feature extraction from the accelerometer
signal have been reported for subacute stroke,  Parkinson's,  and multiple sclerosis.

Thus, much progress is being made for personalized motion technologies. A smartphone with a
continuously running software application that compresses and transmits data to a central server can be an
effective hub to manage multiple streams of sensor and other physiological data.  Practical sensing for
the study of patients, however, requires technical and logistical development and planning.  In addition to
features listed in Table 2, cultural acceptance of technologies must evolve to optimize utilization. For
inexpensive, wide utilization, interoperability of software and communication systems, publicly open
standards, and qualitative and quantitative evidence about what works for what population under specified
conditions seems essential.  For neurology and rehabilitation, efficacy and effectiveness trials are
necessary before a final iteration of hardware, software and infrastructure should be scaled for wide usage.

Motion Sensing for Daily Care

Disabled persons, such as those after stroke, take far fewer steps daily, with fewer and shorter bouts of
walking compared to healthy peers.  Critical research to understand how to reduce risk factors for
vascular disease, for example, and to reduce disability and increase daily participation will benefit from the
ability to quantify the type, quantity, and quality of daily activities.  Sensor networks that monitor upper
and lower extremity  activities should facilitate accurate ongoing assessment during community
functioning and enable frequent recommendations about how to progress exercise and skills practice from
remotely located professionals. Sensors, then, may alter behavior by offering feedback and personal
activity auditing that encourages self-efficacy in the form of graphics and instruction from anywhere the
Internet reaches. When particular exercises and skills practice are prescribed during long-term
rehabilitation efforts, both patients and caregivers may benefit from remote supervision that addresses their
concerns about safety and how best to work to advance the reacquisition of skills.

Although this level of monitoring could be viewed as an invasion of privacy, disabled persons are likely to
applaud the accessibility of rehabilitation supervision in the context of their home and community at low
cost. Tele-neurology  and tele-rehabilitation  could interface with wearable sensor technology to
complement home-based care and compliance with medical recommendations.

Sensors for Clinical Trials

Having ground truth about activity levels, in terms of frequency, duration, intensity, and energy
consumption, will turn assumptions about the quantity of exercise and practice during trials into
certainties. For example, all of the large recent RCTs of treadmill and robotic training to improve walking
after stroke,  spinal cord injury,  Parkinson's,  and multiple sclerosis  have assigned
subjects in the control and experimental groups to a specified number of hours of weekly treatment. None
of the studies, however, can report with confidence how much walking and exercise occurred during
planned practice sessions or whether participants practiced locomotor skills and exercised outside of
formal training times.  Exercise trials that take place in the community are even less likely to be able to
capture the quantity of practice.  Yet a bias toward high or low levels of practice beyond what the
investigative team sees may have a confounding impact on the effects of the experimental therapy. For

22

23

24 25 17

26

2

4,27

28

8 29

20

30 31

12,32-34 35,36 37,38 39

40

41,42

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035103/table/T2/


example, participants who practice more may gain better skills; incorrect practice could reduce the effect
of the formal therapy. The quantity and quality of an experimental physical intervention may also vary
across the multiple sites of an RCT or change when a new therapist replaces the one who was trained at
onset of the trial. Good trial design recommends that extensive training in provision of a complex physical
intervention take place before an RCT starts and that videotaping of the intervention or in-person,
intermittent monitoring be part of the protocol at subsequent intervals. The conventional approach to these
monitoring needs may be less reliable and cost more than intermittent remote sensor monitoring of actual
practice (how much, how well) during formal training sessions and in between therapies.

Continuous monitoring of what subjects actually perform enables other benefits to trial integrity and
design. Serial sensor measures can provide dose-response assessments or be used for imputation by
statisticians when a participant drops out. Real-world sensing also offers ecologically sound, interval and
ratio scale assessments to augment questionnaires and ordinal scales about disability, participation in
fulfilling personal goals and roles, and physical functioning (Table 3). Quality of life tools for this have
become a requirement as primary or secondary outcomes in neurologic trials. Most diseases have their
own tool, often derived from questions developed for the Medical Outcomes Study's SF36 and now
represented in the NIH's NeuroQOL toolbox.  These Likert-scaled measures of change in daily physical
activity and ratings of difficulty (climbing stairs, walking 1 block, etc), however, have usually not been
confirmed by real-time studies of these activities. For example, the reported level of independence by
persons with SCI differed from what clinicians found on testing.  Wearable sensors can provide that
ground truth.

Just as self-reporting scales stand as a partial surrogate for actual activity and participation, so do other
commonly used walking-related outcome tools, such as the timed short-distance walk (6-15m) and the
distance walked in 2-6 min in a laboratory setting. In general, improved effects on surrogates do not
necessarily transfer into health benefits; indeed, the surrogate may fail as a guide to the most clinically
meaningful and effective therapies.  In neurorehabilitation trials, a pre- to post-test gain of >20% in 10-m
speed or 6-min distance often reaches statistical significance and favors one intervention over another. The
clinical meaningfulness of such change, however, is uncertain. The gain may generally correlate with self-
reported functional measurement tools,  but outliers are common, because reliability of self-reports are
uncertain. The ability to serially capture walking-related variables in the home and community, to examine
changes in speed and leg symmetry on varied surfaces, and capture changes in exercise capacity, for
example in relation to pain, fatigue or adverse effects of medications, should provide greater insight into
the effectiveness of new therapies in all patients for whom an evidence-based trial suggests efficacy.

The frequency at which patients might be monitored by wearable activity-sensing networks depends on the
object of the study. Levels of walking activity using pedometers require about 7 days of data collection to
obtain a stable and representative average for healthy persons  to as little as 2 days for those with
incomplete SCI.  For a clinical trial of a walking intervention of 3 months duration, a minimal data set
might include 2 weeks of daily monitoring prior to starting the comparison treatments, then for one week
monthly or at the time of scheduled outcome measures. For a drug trial, activity might be measured
continuously for at least a month – two weeks prior and at least 2 weeks after initiation to detect
fluctuations in response to medications (e.g., dyskinesias or freezing of gait in Parkinson's disease, leg
spasms in SCI). Skills practice at home might be assessed for 1-2 sessions a week to monitor quality of
movements. Schedules for feedback about performance to motivate compliance will have to be empirically
derived.

Conclusion

Wireless remote sensing to monitor the type, quantity, and quality of physical activities, daily
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participation, and skill reacquisition offers great potential for neurologic and neurorehabilitation patient
care and clinical trials. Progressive reductions in the cost, size and energy requirements of gyroscopes,
accelerometers, other physiologic sensors and data transmission over the Internet, along with empirical
work on activity-recognition algorithms, suggest that wearable systems may become ubiquitous tools.
Efficacy and effectiveness trials are necessary, however, before clinicians can utilize sensor data for
ecologically sound monitoring and outcome measures.
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Figures and Tables

Table 1

Types of wearable sensors to assess physical activity

Triaxial accelerometer: accelerations/decelerations, velocity and displacement of a body segment in x, y, z axes.

Gyroscope: angular velocity and rotation.

Global positioning satellite (GPS) signal: location primarily outdoors; may calculate speed and distance of continuous
walking with smartphone app.

Magnetometer: directional vectors of spatial orientation.

Electromyography: dry electrodes for surface EMG of timing and amount of muscle group activation.

Goniometer: joint angular range of motion.



Resistive flex and pressure sensing: fiberoptic or deformable textile across a joint detects angular change; piezoelectrode for

distribution of weight on sole to define stance in the gait cycle.

Environmental context: ambient sound, light, motion-activated photo or video.

Table 2

Technical features for practical remote motion-sensing systems

Sensors:

 Type, number and position depend on specific body metrics sought

 Design – e.g, piezoelectric or capacitive microelectro-mechanical-system accelerometer

 Cosmetic acceptability; ease and reproducibility of placement.

 Raw signal structure and sensitivity to events

 Firmware instructions for device components

 Partial data processing on sensor chip

Platforms:

 Interoperability by using common software, communication, data processing and confidentiality protocols

 Open source, publically available standards

 End-to-end system reliability

Data transmission:

 Choice of wireless standards – Bluetooth, Zigbee, Wi-Fi, voice channels, Short Message Service, Universal Mobile
Telecommunications Systems

 Cost

 Frequency of data sampling

 Bandwidth

 Power consumption; energy source

 Reliability

 Data time stamping

 Error check

 Storage capacity

 Secure data at each stage of collection, transfer, and storage

Signal processing:

 Temporally fuse data synchronously from multiple sensors and body sites

 Analytic algorithms

  Features assessed include mean of signal, peak frequency, correlation of axis, signal energy, standard deviation

  Classifier models include naïve Bayes, support vector machine, decision tree, hidden Markov, neural networks,
spectrum analysis, random forest

  Integrate multiple layers of the classifier, e.g., activity, context, sensor location

  Artifact recognition; examine outliers

 Environmental context of activity

 Speed of processing

 Machine-learning analysis



Resolution of data:

 Software to interpret data from sensors and other sources of information to provide new insights into health states

 Normalized for matched population and sensitive to individual's daily functioning over time

 Discern trajectory of change and clinically meaningful gains and declines

 Visualize data using customizable tools and reports

Annotation:

 Describe changes in health, mood, behavior, social circumstances, environment

 Ontological encoding of data across studies, e.g., Unified Medical Language System for standard description of medical
condition, treatments, responses and contexts

Methods to scale up applications:

 Simplify instructions, minimize time and effort by user; keep cognitive load low

 Minimize steps and increase automaticity in data flow during acquisition, processing, analysis and search

 Conceptualize summary data for practical uses, such as feedback, monitoring and outcome tools

Data accessibility in common databases:

 NIH or Research Electronic Data Capture (REDCap) databases

 Annotated raw data repository for data mining

Data privacy and security:

 Encryption

 HIPAA requirements

Table 3

Comparison of conventional scales and wireless, wearable sensor-derived tests of mobility-related
functioning

DATA USUAL METHOD mHEALTH SENSORS

Type of physical
activity

Self-report diary or checklist; observe in lab;
video; short distance timed walk or distance
walked in 2-6 min.

Activity pattern-recognition algorithms; walk,
cycle, leg exercises identifiable by sensor data
processing

Quantity
Frequency/duration

Observation; inertial movement/step counts if
accelerations high enough

Directly measure wave forms of individual
components and whole actions

Quality Laboratory motion analysis or pressure mat system Compare each leg during step cycle in context of
environs

Location of
activity

Self report; lab Anywhere; global positioning & ambient context
sensing for site identification

Reliability Inter-rater; test-retest Ground truth measurement v. sensor-based
algorithm

Validity Content/construct for each scale Face validity; responsiveness

Statistical testing Ordinal scales of physical functioning Interval / ratio scale data

Data entry Computer Smartphone, tablet

Human factors Train examiners in test administration Train participants in a culture of technology

Regulation Local Institutional Review Board and HIPAA Local IRB & HIPAA; possibly Food and Drug
Administration
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Vı́ctor Elvira, Alfredo Nazábal-Renterı́a, Antonio Artés-Rodrı́guez

Department of Signal Theory and Communications, Universidad Carlos III de Madrid,
Avenida de la Universidad, 30, Leganés 28911 (Spain)

ABSTRACT

This work presents a novel feature extraction technique for
human activity recognition using inertial and magnetic sen-
sors. The proposed method estimates the orientation of the
person with respect to the earth frame by using quaternion
representation. This estimation is performed automatically
without any extra information about where the sensor is
placed on the body of the person. Furthermore, the method is
also robust to displacements of the sensor with respect to the
body. This novel feature extraction technique is used to feed
a classification algorithm showing excellent results that out-
perform those obtained by an existing state-of-the-art feature
extraction technique.

Index Terms— Activity Classification, Ambulatory
Monitoring, Features Extraction, Inertial Sensors, Magnetic
Sensors, Orientation Estimation, Quaternions.

1. INTRODUCTION

The task of Human Activity Recognition (HAR) using wear-
able sensors has recently become a popular topic of research
in context-aware monitoring applications, such as home-
based rehabilitation, or ambulatory monitoring of elderly or
patients with brain disorders [1]. The low cost, small size,
and low energy consumption of the devices allow pervasive
data acquisition without disturbing daily activities.

The most popular approach for HAR using sensors uses
inertial based sensory systems (see [2] for a review). A ba-
sic Inertial Measurement Unit (IMU) consists on a 3-axis ac-
celerometer and a 3-axis gyroscope enabling the measuring of
acceleration and angular velocity, respectively. A Magnetic,
Angular Rate, and Gravity (MARG) sensor is an extended
IMU that also integrates a 3-axis magnetometer.

In this work, we focus on the feature extraction of the
signals acquired by a MARG sensor, since it is the one that
provides more information for indoor scenarios (i.e., without
GPS signal). A MARG sensor provides the measurements
referenced to the sensor frame. However, these raw signals
are sensitive to the placement of the sensor on the body of the

This work has been partly supported by the Spanish government’s
projects COMONSENS (CSD2008-00010), ALCIT (TEC2012-38800-C03-
01) and COMPREHENSION (TEC2012-38883-C02-01)

person, in terms of position and orientation. Most of the clas-
sification algorithms for HAR proposed in the literature are
fed with raw or mildly processed signals [2, 3]. Few of them
try to extract the orientation of the sensor or the person in or-
der to feed the classification algorithms [4]. In this paper, we
propose to use as inputs of the classification algorithms the
orientation of the person w.r.t. the earth frame, and the ac-
celeration in the person frame. To that end, a novel scheme
of feature extraction for HAR algorithms is presented, includ-
ing an efficient algorithm based on quaternion representation
that computes the orientation of the person from the measure-
ments of the MARG sensor.

This paper is organized as follows: In Section 2, we pro-
pose the algorithm for feature extraction based on estimating
the orientation of the person. In Section 3, the classification
results obtained with the proposed algorithm are presented.
Finally, in Section 4, conclusions and future work are dis-
cussed.

2. PROPOSED ORIENTATION ESTIMATION
ALGORITHM

2.1. Quaternions and Notation

Throughout this paper we use quaternions to represent three-
dimensional orientations and rotations. Quaternions retain
several advantages compared to Euler rotation matrices: they
do not suffer from problematic singularities such as gimbal
lock [5], and they are more compact, computationally effi-
cient, and numerically stable.

Quaternions constitute a four-dimensional space over the
real numbers. They are composed by the real axis and three
imaginary orthogonal axes. Here we list some relevant quater-
nion properties, where the ⊗ operator denotes the Hamilton
product, and the ˆ accent denotes a normalised vector:

1. A rotation through an angle of α around a unit vector û
is represented by the unit quaternion

q̂ = cos
(α
2

)
+ sin

(α
2

)(
uxi+ uyj+ uzk

)
. (1)

2. Two rotation quaternions q̂1 and q̂2 can be combined
into one equivalent quaternion, q̂ = q̂2 ⊗ q̂1 that rep-



resents a rotation given by q̂1 followed by a rotation
given by q̂2.1

3. For any unit quaternion q̂, its inverse is equal to its con-
jugate q̂−1 = q̂∗.

4. If a quaternion q̂ represents a rotation, and v is a three-
dimensional vector, the rotated vector v′ can be com-
puted as p′ = q̂⊗ p⊗ q̂∗, where p = pxi+ pyj+ pzk
and p′ = p′xi+ p′yj+ p′zk.

2.2. Coordinate Systems

Three different three-dimensional frames are described in
order to compute the orientation of the person w.r.t. the
earth. First, the sensor frame (S) is defined along the or-
thogonal axes of the physical device, {Sx,S y,S z}. The
recorded signals are referred to this frame. Secondly, the
earth frame is defined by the orthonormal set of vectors
{Ex,E y,E z}={North, West, Up}. Finally, we define the
person frame, defined by an orthonormal set of vectors
whose directions when the person is standing are aligned
as {Px,P y,P z}={Forward, Left, Up}.

We use a notation system of leading superscripts and sub-
scripts to describe relative frame orientations and vector rep-
resentations adopted from [6]. A leading subscript denotes
the frame being described, and a leading superscript denotes
the frame this is with reference to. For example, ABq̂ describes
the orientation of frame B relative to frame A while Av rep-
resents a vector described in frame A.

2.3. Feature Extraction Algorithm

The proposed feature extraction scheme processes the mag-
netic, angular rate, and accelerometer signals provided by the
MARG sensors in order to excerpt

1. the orientation of the person w.r.t. the earth frame, and

2. the acceleration in the person frame, Pa.

In contrast to other feature extraction schemes [4, 7], we
consider that angular rate measurements provided by gyro-
scopes are not valuable signals any longer for the classifica-
tion algorithms, since their information is incorporated to the
orientation of the person.

Therefore, the main goal consists in computing P
Eq̂, i.e.,

the orientation of the earth frame (E) relative to the person
frame (P ). The proposed algorithm makes use of quaternion
property 2., decomposing the estimation of P

Eq̂ as a concate-
nation of the estimation of the orientation of Ez w.r.t. to P z,
P
Eq̂z, followed by the estimation of the orientation of the plane
Exy w.r.t. the plane Pxy, P

Eq̂xy, i.e.,

P
Eq̂ =P

E q̂xy ⊗P
E q̂z, (2)

1Note that quaternion multiplication is not commutative

where P
Eq̂z is also decomposed as

P
Eq̂z =S

E q̂⊗P
S q̂z. (3)

The orientation of the earth frame relative to the sensor
frame, S

Eq̂, is computed by means of the gradient descent al-
gorithm proposed in [6]. This algorithm has shown an ac-
curate performance close to a Kalman-based algorithm [8],
while remaining computationally very efficient. The algo-
rithm updates the current orientation via integration of the
provided angular rate, and corrects the gyroscope drift with
accelerometer and magnetometer measurements. This cor-
rection is driven by a parameter, β, that represents the cor-
rection rate of the gyroscope drift (see [6] for more details).
The authors prove that, if the sampling rate is large enough,
the algorithm performs accurately just computing one gradi-
ent descent iteration per sample, which implies a very low
computational cost. The convergence of the algorithm can be
tuned by increasing the parameter β (see Section 3 for more
details).

The second term of equation (3), P
S q̂z, corresponds to the

orientation of the Sz axis w.r.t. the P z axis. Note that, if the
sensor is strongly attached to the body of the person, this ori-
entation should remain constant. Nevertheless, considering
that the sensor is fixed to the clothes (for instance bounded
by a belt at the waist), P

S q̂z may suffer from small variations.
Although knowing S

Eq̂ during the standing position would be
enough to find this orientation, with unlabelled data it is not
possible to determine a priori when the person is standing.
Nonetheless, walking sequences are easier to detect automati-
cally, and while walking, the person is in average also upright;
i.e., the P z axis is aligned to the Ez axis in average. For this
purpose, we have used a walking detection algorithm simi-
lar to that proposed in [4]. Therefore, S

P q̂z can be computed
by averaging S

Eq̂ during the walking period. Due to quater-
nion property 3., we obtain the second term of equation (3) as
P
S q̂z =S

P q̂∗z. Note that although there exist several ways to
average a quaternion [9], we use an unweighted mean of S

Eq̂
during the walking period since it provides good results while
being computationally efficient. In this way, P

S q̂z is updated
every time a walking period is detected.

Finally, we compute the first term of equation (2), P
Eq̂xy,

by estimating the direction of the velocity in Exy plane when
the person is walking. For that purpose, we integrate the
acceleration in the earth frame to get the velocity [10], we
remove the velocity drift [11], and we compute the angle γ
of the projection of the velocity vector onto the Exy plane
w.r.t. Ex. Let φ be the angle between Ex and the projection
of the vector P

Eq̂z ⊗ i onto the Exy plane. Then, defining
θ = γ − φ, and according to quaternion properties 3. and 4.,
P
Eq̂xy = cos(θ/2) + sen(θ/2)k.

Algorithm 1 summarises the process to compute P
Eq̂[n],

the orientation of the earth frame w.r.t. the person frame. The
calculation is performed for the N available samples of mag-
netic field, angular rate, and acceleration measurements ac-



quired by the MARG sensor. Note that β, the key parameter
of the sensor orientation algorithm [6] must be selected at the
beginning, and it plays a key role in the performance of the
classification algorithm, as it can be seen in Section 3.

Algorithm 1 Pseudocode of person orientation algorithm
Select β
for n = 1 : N do

Compute S
Eq̂[n] with the algorithm of [6] and β

Detect whether the person is walking
if walking then

Update P
S q̂z[n]

Update P
Eq̂xy[n]

else
P
S q̂z[n] =

P
S q̂z[n− 1]

P
Eq̂xy[n] = P

Eq̂xy[n− 1]
end if
P
Eq̂[n] =

P
E q̂xy[n]⊗S

E q̂[n]⊗P
S q̂z[n]

end for

3. EXPERIMENTS

3.1. Experimental Setting

The evaluation of the proposed method is performed us-
ing real data acquired by APDM OPAL miniature sensors
[12]. These sensors provide three-axis acceleration, three-
axis gyroscope, and three-axis magnetometer data. 18 data
sequences have been collected, each one from a different
person. A single sensor has been placed at the waist of each
subject, and they have been asked to perform some of activi-
ties in no particular order. These sequences are combinations
of five different activities: running, walking, standing, sitting,
and lying. This data acquisition procedure has provided us
with 6 hours and 21 minutes of real data samples acquired at
a sampling rate of 128 Hz.

In order to randomize the testing process, we have built 25
sets of sequences. For each set, we have randomly selected 12
sequences for training from the database, and the 6 ones left
have been used for testing. The 25 sets have been used to test
all feature extraction algorithms, in order to maintain the con-
sistency. The data have been processed both with the Acceler-
ation Quaternion method (AQ) presented in this paper (using
different values of β) and with the Acceleration Angular Rate
method (AAR) proposed in [4]. The AAR method makes use
of angular rate and acceleration signals, transforming them to
a virtual sensor orientation.

For sake of simplicity and a fair comparison in terms of
computational complexity, we have not made use of P

Eq̂xy in
equation (2). Thus, we have provided the classification algo-
rithm with the orientation of the P z w.r.t. the earth.2 We have

2We believe that most of the useful information residing in the orienta-
tion of the subject must rely on the inclination of its z-axis w.r.t. the earth.

visually checked that the processed acceleration and quater-
nion signals are consistent with the dynamics of the activities
performed.

3.2. Training description

Although the proposed feature extraction technique is not re-
stricted to any classification algorithm, in this paper, we eval-
uate its performance by applying it to an state-of-the-art hi-
erarchical dynamic model (HDM) based on hidden Markov
models (HMM). We train a different HMM for each activ-
ity independently using the Baum Welch algorithm, following
the scheme of [7].

Each HMM is modelled using five states per activity, i.e.,
having a global model with 25 identifiable states, and a Gaus-
sian Mixture Model (GMM) observation probability distribu-
tion with three components. We use the Forward-Backward
algorithm to obtain the Maximum a Posteriori estimate of the
test sequences.

3.3. Results

We compare the performance of the proposed AQ algorithm
(with three different values of β) with the AAR algorithm.
Table 1 shows the probability of error of both methods bro-
ken down by activity. The proposed AQ algorithm exhibits
a lower error rate for all tested β, largely outperforming the
AAR algorithm in some activities, and remaining very close
in the others. Note that decreasing from 0.16 to 0.11 in prob-
ability of error is a remarkable reduction, since the bottleneck
must presumably lie on the classification algorithm.

Activity AAR AQ AQ AQ
β = 1 β = 3 β = 5

Running 0.38 0.18 0.19 0.20
Walking 0.02 0.05 0.02 0.05
Standing 0.03 0.06 0.05 0.05
Sitting 0.15 0.12 0.06 0.07
Lying 0.21 0.23 0.23 0.23
Mean 0.16 0.13 0.11 0.12

Table 1. Probability of error comparison of the AAR method
and the proposed AQ mehod.

In Table 2, the feature extraction algorithms have also
been compared in terms of the F-measure [13]. For all differ-
ent values of β, the classification with the proposed algorithm
outperforms that obtained with the AAR method. Again, the
AQ method with β = 3 obtains the better results.

Finally, Figure 1 shows the F-measure range of accumu-
lating the 6 test sequences of the 25 different sets, i.e., 150
different test sequences in total. For each method, the hori-
zontal red line inside every box shows the median value, the

Nevertheless, further investigations will be performed.



Activity AAR AQ AQ AQ
β = 1 β = 3 β = 5

Running 0.75 0.88 0.87 0.86
Walking 0.92 0.95 0.95 0.94
Standing 0.98 0.96 0.97 0.97
Sitting 0.81 0.76 0.81 0.79
Lying 0.82 0.84 0.86 0.85
Mean 0.86 0.88 0.89 0.88

Table 2. F-measure of the AAR method and the proposed AQ
mehod.

upper and lower edges of the blue boxes are the 25th and 75th
percentiles respectively, and the vertical black dashed lines
extend to the extreme cases. It can be seen that most of the test
sequences for all three values of β fall around a F-measure of
0.9 whereas for the AAR method they are around 0.85. The
worst sequence with the proposed AQ method with β = 3
obtains a F-measure = 0.8 while the worst one with AAR re-
mains at 0.75.
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0.85

0.9

0.95

AQ                      AQ                     AQ                    AAR

β = 1                   β = 3                   β = 5                           

F
−

m
e
a
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Fig. 1. F-measure results for all test sequences using the AAR
method and the proposed AQ method.

4. DISCUSSION AND CONCLUSIONS

We have presented a novel feature extraction technique for
human activity recognition based on quaternion representa-
tion. The proposed algorithm computes the acceleration re-
ferred to the person frame, and the orientation of the person
frame with respect to the earth frame. Numerical results show
a substantial improvement in the results of the classification
algorithm when the feature extraction is performed with the
proposed method. The computational cost of the proposed
algorithm is linear with the length of the sequence and ex-
tremely low for each sample, requiring only few quaternion
multiplications and additions. Moreover, the simplicity of the
algorithm would also allow, with a slight adjustment, an on-
line estimation of the person orientation.
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Abstract—The mirror neuron system (MNS) in humans is 

thought to enable an individual’s understanding of the meaning 

of actions performed by others and the potential imitation and 

learning of those actions. In humans, electroencephalographic 

(EEG) changes in sensorimotor -band at central electrodes, 

which desynchronizes both during execution and observation of 

goal-directed actions (i.e.,  suppression), have been considered 

an analog to MNS function. However, methodological and 

developmental issues, as well as the nature of generalized  

suppression to imagined, observed, and performed actions, 

have yet to provide a mechanistic relationship between EEG -

rhythm and MNS function, and the extent to which EEG can be 

used to infer intent during MNS tasks remains unknown. In 

this study we present a novel methodology using active EEG 

and inertial sensors to record brain activity and behavioral 

actions from freely-behaving infants during exploration, 

imitation, attentive rest, pointing, reaching and grasping, and 

interaction with an actor. We used -band (1-4Hz) EEG as 

input to a dimensionality reduction algorithm (locality-

preserving Fisher's discriminant analysis, LFDA) followed by a 

neural classifier (Gaussian mixture models, GMMs) to decode 

the each MNS task performed by freely-behaving 6-24 month 

old infants during  interaction with an adult actor. Here, we 

present results from a 20-month male infant to illustrate our 

approach and show the feasibility of EEG-based classification 

of freely occurring MNS behaviors displayed by an infant. 

These results, which provide an alternative to the-rhythm 

theory of MNS function, indicate the informative nature of 

EEG in relation to intentionality (goal) for MNS tasks which 

may support action-understanding and thus bear implications 

for advancing the understanding of MNS function. 

I. INTRODUCTION 

The discovery of mirror neurons in area F5 of the 
macaque monkey brain by Rizzolatti and colleagues [1] is 
considered one of the most influential neuroscience 
discoveries by challenging the notion of segregate sensory 
and motor functions in the brain. This suggested that action 
observation and action performance, by sharing the same 
neural network substrates, enabled individuals to understand 
other's people actions and experiences.  In humans, the 
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hypothesized MNS system has been studied extensively 
using scalp EEG. These studies have used changes in 

sensorimotor -rhythms, also known as the -rhythm, to be a 
primary electrophysiological marker of MNS function in 
human infants and adults [2]. Unfortunately, several 
developmental (e.g., how these infants come to understand 
and acquire their first actions and the paucity of MNS data in 
infants) [3], [4] methodological [2], [5], and interpretive [6] 
issues need to be addressed to advance our understanding of 
human mirror neuron function. 

Moreover, while studies are necessarily targeted to 
address specific questions in highly controlled lab 
environments, it is increasingly recognized that the processes 
being measured clearly do not occur in isolation and that 
these environments do not represent the daily behaviors of 
these infants at home or at play. Virtually all experimental 
studies in humans involve multiple cognitive components. 
Movement, language and memory underlie much of our 
existence. Subjects performing an experimental task must 
understand the task instructions, store them in memory, and 
retrieve them at the appropriate times. These processes, in 
turn, require executive control. Finally, competing intentions 
must be prioritized, sequenced, and translated into motor 
output, whether in the form of speech or movements. Such 
actions are often benefitted from extended practice and are 
formed and refined during development. Indeed, 
developmental considerations often blur these components, 
and thus they add to the problem. Thus, it is unclear how the 
above processes are accomplished in the developing infant 
brain. To address some of these issues, we have developed a 
novel experimental methodology to test freely-behaving 
infants while acquiring accurate information about brain 
activity and movement thru non-invasive means. We then 
deploy advanced machine learning methods to infer 
behavioral state or intent via scalp EEG. 

The classification and prediction of movement intent 
using invasive ECoG and non-invasive EEG methods has 
long been studied, usually in research related to the fields of 
brain-computer interfaces and neuroprosthetics [7], [8]. 
However, such studies generally focus on the prediction of 
the kinematics of functional movements; the prediction of 
emotional, expressive, and contextual properties of 
movements has not been as well studied [8], even though 
such properties can affect the kinematics of a motion [9]. To 
the best of our knowledge, although the neural basis of the 
action-intention has been studied, especially during changes 

in rhythm [10], little is known of this basis in infants. This 
gap in our knowledge raises many questions that could be 
addressed in future studies, such as how kinematics and 
neural activity could be used to uncover the mechanisms 
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behind movement intention and motor planning as well as the 
complexity of the intention (e.g. emotion, purpose, etc.) of 
the developing brain of an infant [11]. Before answering 
these questions, however, we must first demonstrate the 
feasibility of using high-density scalp EEG to decode goal-
oriented movement intentions in freely-behaving infants. 

In this case study, we analyzed a 15-minute session of the 
interactions between the infant subject and the experimenter 
or actor. We then segmented the infant’s actions into 6 
classes: wakeful attentive rest, pointing, reach-to-grasp, 
reach-to-give, and manipulating an object to either explore its 
characteristics or to imitate an action performed by the 
experimenter. We first conducted an exploratory analysis of 
both neural and motion activity data to examine any evidence 
of motion artifacts. Classification of movements were further 
conducted using a two-step machine learning algorithm that 
reduces the dimensionality of our feature space of EEG data 
while preserving local features and then generating statistical 
models to fit and validate the success rate of classifying 
movement intentions of the infant. 

II. METHODS 

A. Experimental Design and Data Acquisition  

Seven healthy infants (four female, three male) were 
recruited and given informed consent by their parent(s) or 
guardian as subjects for this study. Each infant’s age ranged 
from 6 to 24 months. Here, we focus on the analysis of a 20-
month male infant. Multiple streams of data were acquired 
synchronously during the experiment. Neural activity was 
recorded using a 64-channel, active electrode EEG scalp cap 
sampled at 1000 Hz (BrainAmpDC with actiCAP, Brain 
Products, GmbH). The electrode sets were labeled according 
to the 10-20 international electrode montage system with FCz 
and AFz labeled as reference and ground, respectively. 
Motion was captured using four inertial measurement units 
(IMUs) sampled at 128 Hz (OPAL, APDM Inc., Portland, 
OR) attached to the head, trunk, and arms of the subject. 
Gravity-compensated (GC) triaxial acceleration data was 
estimated by applying a Kalman filter to predict IMU 
orientation within a global frame and removing the effects of 
acceleration due to gravity [12]. In order to conduct a visual 
inspection of the experiment and select behavioral actions of 
interest, we recorded the experiment with a video camera 
(SDR-H100, Panasonic Co.). 

The subject was seated in front of the experimenter/actor 
with a small table. Throughout the testing session, the 
experimenter gave to the subject a series of 14 toys and 
various objects to interact and play with at random sequence. 
The experimenter would also interact with the toys and show 
the subject how to play with some of the toys (e.g. winding 
up a wind-up toy). After testing, the video was visually 
inspected and the subject’s behavioral actions were divided 
into six classes (shown as task {number of trials, number of 
samples}) described below and depicted in Fig. 1:  

Attentive Rest {17 trials, 7595 samples}: A neutral state of 

wakeful attentive observation containing minimal to no movement. 

Point {10 trials, 922 samples}: The use of the index finger to 
avert the other person’s (in this case, the experimenter) gaze. 

Reach-Grasp {34 trials, 9077 samples}: Producing a reaching 
motion in order to grasp the object (toy). 

Reach-Offer {24 trials, 2740 samples}: Producing a reaching 
motion in order to offer back the object (toy) to the experimenter. 

Explore {31 trials, 16552 samples}: A brief interaction with 

the held object to examine its features and is usually performed 

instead of ‘Imitate’. 

Imitate {15 trials, 1966 samples}: The successful imitation of 
the experimenter’s maneuver of the object. 

B. Pre-processing of EEG 

EEG and GC-magnitude acceleration from the entire 
session were truncated using the start and end-session 
triggers synchronized to all data streams, including the video 
recording. Start and end time points were recorded for 
various trials of each task throughout the video and used to 
develop a target class time vector for classification analysis 
as illustrated in Fig. 2. The number of time samples for all 
classes constituted 42.25% of the total time of the truncated 
session. EEG electrodes, or channels, with high impedance 
(defined as the frequency-dependent opposition to alternating 
current flow at the scalp-electrode interface) values (AF7, Cz, 
C2, C3, C5, CP4, P2, P6, P8, PO3-4, PO7-8) [Z > 60 kΩ] and 
peripheral channels (FP1-2, AF7-8, F7-8, FT7-10, T7-8, TP7-
10, P7-8, PO7-8, O1-2, Oz, PO9-10) were rejected from the 
electrode set, leaving us with 32 channels to use for further 
analysis. Both EEG and acceleration were then resampled to 
100 Hz and compared by computing a spectrogram and short-
time coherence of selected channels of data to examine any 
effects of motion artifacts possibly affecting the EEG signal. 

Before decoding, EEG signals were then band-pass 
filtered within the delta frequency band (1 – 4 Hz) using a 
3rd order, zero-phase Butterworth filter. A lag-based feature 
matrix was then constructed by selecting an initial time point 
(t1) at 100 milliseconds leading the actual start time (t0 = t1 - 
100) of the signal and decremented every 10 milliseconds (t1, 
t1-90, t1-80, t1-70,…, t0) thus resulting in 10 lags per channel. 
All lags per channel were concatenated and standardized by 
feature to form our feature matrix for the classifier.  

C. Cross Validation 

 
Figure 1. Depiction of each task performed by the freely-behaving 

infant. Task-based classes shown are: a) Attentive Rest, b) Point, c) 

Reach-Grasp, d) Reach-Offer, e) Explore, and f) Imitate. 
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Figure 4. Training Set-Normalized Confusion 
Matrix. (Overall mean accuracy of 80.50 ± 
1.03%. Percentages reflect the ratio between 
the number of samples classified and the 
number of testing samples per class. 
Adjustable LFDA parameters were optimized 
to r {number of reduced dimensions} = 200 
and knn {number of k-nearest neighbors} = 11. 

To reduce bias and to minimize the potential effects of 
artifacts, time sample data of each class were selected 
separately at random for training and testing the classifier. 
Given the variation of samples size per class, the training set 
size was chosen to be a percentage of the smallest class 
sample size. 50% of this sample size was used for training 
and the remaining 50% for testing. All randomly selected 
samples were selected either for training or testing the 
classifier, hence no overlapped samples. 

D. Classification Algorithm 

The Local Fisher’s Discriminant Analysis-Gaussian 
Mixture Modeling (LFDA-GMM) algorithm has been 
employed in multiple studies [8], [13] and shown to be a 
robust and proficient tool for reducing the dimensionality of 
the lagged-based EEG feature space into a classifiable 
multimodal subspace in both offline and online analyses. It 
operates by first executing LFDA and computing a 
transformation matrix to limit the number of features to a 
reduced set of dimensions by minimizing the variance of 
samples within-class and maximizing the variance between 
classes while maintaining the each class sample’s locality. 
Mathematical derivations proving and testing this method are 
further explained in studies by Sugiyama [14]. 

Classification of each task was conducted by fitting a 
distribution of random training samples into a cumulative 
model of one or more Gaussian distributions, each with its 
own factoring weights (αk), covariance (Σk), and means (μk), 
as governed by the probability density function (pdf)            

 p(x) =  kKk k),  

 where the function k is defined as 

 k(x) = exp{-0.5(x-k)
T
 k


(x-k)}]/[(2)

d/2
|k|

1/2
] 

An estimation-maximization (EM) algorithm was then 
employed to converge upon the set for each of the three pdf 
(1), (2) parameters and Bayes Information Criterion (BIC) 
used to determine the optimal set of K Gaussian distributions 
for a particular class [13]. Posterior probabilities were 
calculated for each test sample based on the class-defined 

GMM such that any given sample could contain likelihood to 
fall within a particular class. The maximum posterior 
probability was chosen per test sample to discretize each 
class and compute classification accuracy rates. Additional 
information can be provided here [8].    

III. RESULTS 

A. Motion Artifact Analysis 

Due to the unconstrained nature of the infant’s actions, 
we analyzed and compared the frequency content of both 
EEG and acceleration data from the IMUs to observe any 
spectral relationships between EEG and acceleration. Since 
any movement-related artifacts would most likely originate 
from head movement, only acceleration information from the 
head sensor was acquired for further analysis in this paper. 

We computed the coherence, or relationship between two 
signals within the frequency domain, in a manner similar to 
the short-time Fourier transform in order to generate the 
coherence spectrogram plot displayed in Fig. 3. High 
coherence values indicate a strong relationship between the 
two analyzed signals, as is the case between the head 
acceleration and each corresponding EEG electrode within 
the 0.1 – 1 Hz range. Since this strong relationship may be a 
result of low frequency artifacts, only frequencies between 1 
– 4 Hz (higher in the delta frequency sub-band) were band-
pass filtered for further neural decoding analyses.  

B. Infant Task Classification 

Decoding resulted in an overall mean accuracy of 80.50 ± 

1.03%, which was well above the chance level of 16.67%. 

Ten iterations of the random sub-sampling cross validation 

procedure (Fig. 2) were performed to provide the mean 

classification 

accuracies. By 

observing the 

percentage of 

(mis) classified 

samples relative 

to each training 

set size per class, 

a training set-

normalized 

confusion matrix 

was generated as 

shown in Fig. 4 

where each block 

contains a 

percentage of 

training set 

samples either 

classified or 

misclassified to 

its respective 

class. We note high percentages along the diagonal of this 

matrix indicating a high degree of accurate classification for 

each class. Misclassification was more apparent for 

‘explore’ (0.8-21.1%), ‘reach-grasp’ (1.7-14.3%), and 

‘attentive rest’ (0-8.2%), unlike the low misclassifications of 

‘point’ (0%) and ‘imitate’ (0-0.1%) actions. 
 

Figure 2. Flowchart. (Neural decoding of behavioral intent from EEG.) 
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The most informative channels were revealed by applying 

a forward selection method [15] to each channel and were 

located primarily in motor and premotor areas, specifically 

channels FC6, FC3, C1, FC4, and F5. 

IV. DISCUSSION 

Our results demonstrate the feasibility of decoding goal-
oriented (intentional) behavioral actions from scalp EEG in 
freely behaving infants. These results show that scalp EEG 
contain valuable predictive information about the infant's 
intent. Though only a case study, our results already start to 
provide insights on how goal-oriented actions may be 
represented in brain activity as measured with scalp EEG. 
Further, goal-directed tasks such as point and imitate yielded 
higher classification accuracies than tasks without a clear end 
goal such as explore and rest. Thus, tasks such as imitate or 
point may have simply performed better because the infant 
presented a clear and direct objective/goal in his or her mind, 
whereas the confusion in classifying explore and attentive 
rest tasks may be indicative of the infant’s attempts to 
understand the environment or the intent of the experimenter. 
In summary, the proposed novel methodology provides a 
window to study the neural activity underlying mirror neuron 
system (goal-oriented) tasks in freely behaving infants. It also 

suggests an alternative to the -rhythm account of MNS 
function by providing a predictive, network-based account of 
intentionality in freely behaving infants based on scalp EEG. 
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Figure 3. Coherence Spectrogram. Coherence values indicate the relationship between EEG channels and head IMU acceleration. High coherence is 

noticeable within the 0.1 – 1 Hz range. Dotted white lines indicate the band-pass frequency cutoffs( 1 – 4 Hz) to avoid contamination of motion-related 

artifacts. The plot represents a subset of acquired data but all actions showed the same pattern of coherence. 
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INTRODUCTION 

Despite increased awareness about the detrimental effects of 

concussion, injury management is currently one of the most 

difficult and controversial issues in clinical sports medicine 

(1). As balance impairments following concussion have been 

widely documented (2), balance control testing has been 

identified as a crucial component to the overall clinical 

management plan (3).  However, many of the most sensitive 

measurements require expensive laboratory equipment, while 

many clinical assessments lack necessary objectivity and 

sensitivity for evaluating effects from a concussion (2).  

 

Previous research has indicated that concussion may induce 

dual-task gait balance control impairments for up to two 

months post-injury (4). However, such deficit detection was 

identified using a motion analysis system. Thus, the purpose 

of this study was to evaluate gait balance control under 

dual-task conditions following concussion using a single 

inertial measurement unit. 

 

METHODS 

Subjects who were diagnosed with a concussion were 

identified and reported to the laboratory within 72 hours of 

injury and returned one week, two weeks, one month, and two 

months post-injury. Control subjects were initially assessed 

and then tested according to the same timeline.  

 

Subjects walked over ground while simultaneously completing 

a cognitive task. Acceleration data from an IMU (Inertial 

Measurement Unit; APDM Inc. Opal, Portland, OR) were 

obtained at a sampling rate of 128 Hz while subjects 

completed the dual-task protocol. The IMU was placed at L5 

with an elastic belt (5) and peak accelerations in frontal (Fig. 

1A) and sagittal planes of motion were identified. 

 

Retro-reflective markers were also placed on bony landmarks 

and whole body movement was recorded using a ten camera 

motion analysis system (Motion Analysis Corp., Santa Rosa, 

CA) at a sampling rate of 60 Hz. Peak linear center-of-mass 

(COM) anterior and medial-lateral (Fig. 1B) velocities were 

identified during the gait cycle.  

 

 
Figure 1: Exemplary frontal plane movement during a gait cycle for 

(A) acceleration measured by the IMU and (B) velocity measured by 

the motion analysis system. 

The mean of 4 walking trials was computed for each 

dependent variable (frontal plane peak acceleration and 

velocity, sagittal plane peak acceleration and velocity) at each 

time point. Two-way mixed effects ANOVAs were used to 

determine the effects of group and time, and the interactions 

between independent variables.  

 

RESULTS AND DISCUSSION 

Ten subjects with concussion (mean age 19 ± 5 years) and 7 

healthy control subjects (mean age 20 ± 5 years) completed 

the study protocol. Concussion subjects demonstrated 

significantly less mean frontal plane peak acceleration than the 

control group across the two months of testing (main effect of 

group: p = .019; Fig. 2A). Concussion subjects also walked 

with significantly less mean sagittal plane peak acceleration 

than the control group at the 72 hour, one week, and one 

month time points (time*group interaction, p = .026; Fig 2B).  

 
Figure 2: Results (mean ± SE) for concussion and control groups for 

(A) frontal and (B) sagittal plane peak acceleration. 

 

The results suggest that peak frontal plane acceleration may be 

reduced following concussion, potentially leading to increased 

COM medial-lateral velocity, which has been previously 

documented to affect adolescents with concussion for a time 

period of up to two months post-injury (4,6). Decreased peak 

forward acceleration was detected up to one month post-injury 

and may represent an effort to reduce forward body 

momentum in order to accommodate divided attention (4). 

 

The study results indicate that a dual-task IMU assessment 

may be able to detect balance control difficulties following 

concussion. Further investigations are warranted as this tool 

may provide an additional way for health care professionals to 

objectively and sensitively track recovery from concussion.   
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Inertial Sensing-Based Pre-Impact Detection of Falls
Involving Near-Fall Scenarios

Jung Keun Lee, Member, IEEE, Stephen N. Robinovitch, and Edward J. Park, Senior Member, IEEE

Abstract—Although near-falls (or recoverable imbalances) are
common episodes for many older adults, they have received a
little attention and were not considered in the previous labora-
tory-based fall assessments. Hence, this paper addresses near-fall
scenarios in addition to the typical falls and activities of daily
living (ADLs). First, a novel vertical velocity-based pre-impact
fall detection method using a wearable inertial sensor is proposed.
Second, to investigate the effect of near-fall conditions on the
detection performance and feasibility of the vertical velocity
as a fall detection parameter, the detection performance of the
proposed method (Method 1) is evaluated by comparing it to that
of an acceleration-based method (Method 2) for the following two
different discrimination cases: falls versus ADLs (i.e., excluding
near-falls) and falls versus non-falls (i.e., including near-falls).
Our experiment results show that both methods produce sim-
ilar accuracies for the fall versus ADL detection case; however,
Method 1 exhibits a much higher accuracy than Method 2 for
the fall versus non-fall detection case. This result demonstrates
the superiority of the vertical velocity over the peak acceleration
as a fall detection parameter when the near-fall conditions are
included in the non-fall category, in addition to its capability of
detecting pre-impact falls.
Index Terms—Elderly, inertial sensor, near-falls, pre-impact fall

detection, vertical velocity.

I. INTRODUCTION

F ALLS are the leading cause of injury-related deaths and
hospitalization among older adults [1], [2]. Due to the high

impact of falls on health and healthcare costs, there has been an
increasing attention on automatic fall detection methods in the
past decade [3]–[6]. This rapid development has been facilitated
by the advent of wearable sensors, MEMS-based miniature in-
ertial sensors (e.g., accelerometers and gyroscopes) in partic-
ular. They are rapidly shrinking in size and weight to the extent
that they can be unobstrusively attached to the body [7]–[10]. In
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fact, automatic fall detection methods can be categorized into
the following two methods: 1) detection of a subject who has
already fallen (i.e., post-impact fall detection) and 2) detection
of a subject who is about to fall (i.e., pre-impact fall detection).
A primary goal of the post-impact fall detection method, where
the majority of existing algorithms belong to, is to minimize
the time between a fall and the arrival of medical attention and
prevent long lie times that are potentially fatal. However, this
method has the limitation that it cannot prevent injuries from the
impact. Thus, more recently, researchers have been working on
body protection mechanisms such as an inflatable airbag system
in order to avoid or reduce the fall-related injuries [11]–[14].
Note that an important prerequisite for the utilization of a wear-
able airbag system is the pre-impact fall detection to trigger the
airbag inflator. While the post-impact detection method makes
use of distinctive “impact” signals (e.g., peak accelerations [3],
[15]) and information after falls (e.g., lying posture [16] or al-
titude [6]), and can be post-processed to determine the fall, the
pre-impact detection should be performed in real time by re-
lying on only some characteristic information during the de-
scending phase of the fall as the impact and post-impact in-
formation are unavailable. This makes the latter method more
challenging than the former method. Hence, to date, only a few
studies have explicitly addressed the pre-impact fall detection
using wearable inertial sensors (e.g., [13], [17]–[20]).
Among the existing pre-impact fall detection methods, Nyan

et al. [19] used pretested reference templates for each type of fall
by comparing the angles and angular velocities of the thigh seg-
ment between falls and normal activities. These templates were
obtained from laboratory based falling experiments that try to
simulate and capture the angular characteristics and patterns of
the complex real-life falls. Shi et al. [13] and Shan and Yuan
[20] used the support vector machine (SVM) through feature
selection procedures among a number of raw signals from the
accelerometer and gyro. However, the most popular approach to
detect falls involves the threshold-based method due to its low
complexity and easy implementation. Our particular interest is
the works by Wu and Xue [17] and Bourke et al. [18] who
used the downward vertical velocity as a discrimination param-
eter for thresholding. The vertical velocity profile represents the
kinematic characteristic of falls during their descending phase.
Any faller naturally experiences a certain level of downward
vertical velocity that can be effectively used for the pre-impact
fall detection. Both algorithms in [17] and [18] require the calcu-
lation of vertical velocity based on an inertial sensor comprising
of a tri-axial accelerometer and a tri-axial gyroscope.
This work also adopts the vertical velocity profile used in [17]

and [18]. Although the effectiveness of the velocity profile for
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the pre-impact fall detection has been proposed earlier, the cal-
culation of the vertical velocity using the inertial sensor signals
is not trivial and requires the implementation of the following
two steps: i) calculation of the vertical acceleration and ii) cal-
culation of the vertical velocity via numerical integration of the
acceleration. To be practical, these two steps should be done in
real time.
First, step i) needs the orientation of the sensor in order to

compensate for the gravity component in the accelerometer
signal and then to calculate the vertical acceleration with
respect to the inertial reference frame. This implies that the
orientation accuracy has a direct effect on the vertical accel-
eration accuracy. In [17], the orientation was obtained by a
quaternion filter approach. However, the inertial sensor (with
the accelerometer and gyro) without a magnetometer cannot
correct the yaw (i.e., the heading direction) drift and the drifted
yaw component can be fused with the quaternion components,
affecting the tilt angle as well [21]. It should be noted that the
required orientation for step i) is not the 3-D orientation (i.e.,
roll, pitch, and yaw) but only the tilt orientation (i.e., roll and
pitch). In other words, only the tilt orientation is the necessary
and sufficient condition, not the full 3-D orientation. Second,
step ii) encounters the “boundless” drift error because the
measurement errors in the acceleration will be accumulated in
the estimated velocity through the integration. In order to deal
with the drift issue, Kangas et al. [22] performed the integration
only over a short period (i.e., from the beginning of the fall to
the impact); Bourke et al. [23] used a Butterworth bandpass
filter, in addition to the conditional integration (i.e., integrating
only during dynamic conditions and setting the velocity to
zero during static conditions); and Degen et al. [24] applied
a damping factor in the integration to bound the drift during
static conditions.
With regards to the experimental fall test protocols of the ex-

isting works, they have been focused on simulating falls and
normal activities of daily living (ADLs) in laboratory settings.
However, near-falls (or recoverable imbalances) are common
events for many older adults and are clinically relevant markers
of falls worthy of further study [25], [26]. For example, inves-
tigators have found that older adults who report multiple near
falls (such as missteps or stumbles) are more likely to go on
to fall [27]. One particular issue associated with the near-fall
cases comes from the fact that, although near-falls are not ac-
tual falls and thus should be categorized as non-falls, they have
a higher chance of causing false alarms in the detection system
(i.e., classifying near-falls as falls). This is mainly due to the fact
that near-falls may accompany abrupt movements that produce
sensor values that go over the preset fall thresholds. Therefore,
near-falls should be differentiated from falls and normal activ-
ities. In [17], three types of near-fall tests were included in the
non-fall data set without discriminating them from ADLs. In
[25], an automatic detection of near-falls compared to non-near-
falls was investigated using treadmill walking tests under var-
ious conditions. They achieved 85.71% sensitivity and 88.02%
specificity using the maximum peak-to-peak vertical accelera-
tion derivative parameter. However, to date, the effect of the
inclusion of near falls to a non-fall dataset on the fall detection
performance has not been investigated yet.

Fig. 1. Three categories of laboratory experiments (fall, near-fall, and ADL)
and two classification cases (fall versus non-fall and fall versus ADL) carried
out in this study.

Themain contribution of this paper is therefore twofold. First,
it introduces a novel vertical velocity-based pre-impact fall de-
tection algorithm structured with a Kalman filter using a wear-
able inertial sensor, which can work in real-time for practical
implementation. Second, this work investigates the effect of
near-fall scenarios on the detection performance and the feasi-
bility of the vertical velocity thresholding in comparison to the
peak acceleration thresholding.

II. MATERIALS AND METHODS

A. Subjects and Data Collection
Eleven healthy young male adults participated in this study:

mean age 27.6 (SD 4.3) years; height 176 (SD 8) cm; weight
71.3 (SD 9.7) kg. All participants were students at Simon Fraser
University, recruited through advertisements and flyers on uni-
versity notice boards.
We employed a wireless OPAL inertial sensor (APDM, Inc.,

USA) attached on the anterior side of the waist. The waist-at-
tached inertial sensor in this study as well as in [17] is located
near the body's center of gravity, providing reliable information
on subject body movements [28]. The OPAL sensor includes
a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial
magnetometer. However, the magnetometer signals were not
needed (thus not used) and only the signals from the accelerom-
eter and gyroscope recorded at 128 Hz were used for the anal-
ysis. The experiment protocol that we carried out was approved
by the Research Ethics Board at Simon Fraser University and
all participants provided informed written consent.

B. Experimental Protocol
There were three categories in the experimental protocol:

falls, near-falls, and ADLs (see Fig. 1). First, in the fall experi-
ments, participants fell onto a 30-cm thick gymnasiummattress,
onto which we laid a 1.3 cm top layer of high density ethylene
vinyl acetate foam. The composite structure was stiff enough to
allow for stable standing and walking, but soft enough to reduce
the forces during impact to a safe level. In order to ensure that
the falls we simulated were typical of those experienced by
older adults, we selected seven types of fall experiments based
on the findings in [29] conducted by our research team, which
identifies major causes and activities of falls by investigating
a library of video sequences of 227 real-life falls captured in
local long-term care facilities (LTC). The seven types of causes
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Fig. 2. Fall triggering procedures for (a) and (b) slip and (c)-(e) trip trials. (a) Translational carpet fastened to a linear motor; (b) snapshot of the sheet being
translated to cause a slip; (c) tether releasing device controlled by a switch; (d) snapshot of a tether becomes taut during the swing phase of walking; and (e) snapshot
of the tether being released by the device after the trip fall triggering.

we considered are: 1) slips; 2) trips, and the following five
other combinations of cause and activity: 3) loss of balance
after being hit/bump by another person (denoted as hit/bump);
4) loss of balance due to misstep or gait variability (denoted as
misstep); 5) incorrect weight transfer while rising from sitting
(denoted as sit-to-stand fall); 6) falls due to fainting (denoted
as faint); and 7) incorrect weight transfer while sitting down
on a chair (denoted as stand-to-sit fall). We conducted training
sessions with each participant, where video segments of the
real-life falls from our previous work [29] were used to train
young participants by asking them to mimic the falling behavior
of the LTC residents in the videos. In the slip fall trials, the
participants were instructed to walk up to a carpet placed over
the gym mattress, and they were made to slip backward by
having the carpet translate rapidly from underneath their feet
[see Fig. 2(a) and (b) and also Fig. 3(a)]. The trip fall trials
were simulated by having a tether attached to the participants'
right ankles become taut during the swing phase of walking,
initiating a forward fall. Once the trip falls were triggered, the
tether was quickly released so that the participants' falls were
not constrained by it [see Fig. 2(c)–(e) and also Fig. 3(b)].
In the hit/bump falls, a sudden sideways force was applied to
the participants' trunks using a soft boxing glove, initiating
loss of balance and the participants were instructed to act
out a sideways fall. In the misstep falls, the participants were
instructed to walk forward with high variability in their gaits
by taking a narrow step, cross-step or misstep that caused loss
of balance and fall. In the sit-to-stand falls, the participants
initially sat on a chair and were instructed to lose their balance
while attempting to stand up. In the faint trials, the participants
were instructed to act out a “collapse” or “legs giving away”
by falling down [see Fig. 3(c)]. For the hit/bump, misstep,

sit-to-stand, and faint falls, no specific instruction was given
about the direction of the fall. Lastly, in the stand-to-sit falls, we
instructed participants to begin in a standing position and then
lower the body in a controlled manner to simulate sitting down
on a fictitious chair and, at the expected contact position to the
chair, to lose their balance and fall backward [see Fig. 3(d)].
We acquired three trials for each fall type. Therefore, a total
of 231 trials were collected for the fall test category from 11
participants.
Second, in the near-fall experiments, we conducted the fol-

lowing five types of near-fall trials: slip, trip, hit/bump, mis-
step, and sit-to-stand. The experimental procedures are equal to
the fall experiments above but the participants were instructed
to recover balance instead of falling. Note that the faint and
stand-to-sit trials were omitted from the near-fall experiments as
participants cannot recover their balances in those trials. In total,
165 trials were analyzed for the near-fall test category by ac-
quiring three trials for each near-fall type, over 11 participants.
Third, all eleven subjects also performed three trials of the

following five types of ADLs: walking 5 m, descending from
standing to sitting on a chair, descending from standing to lying
on the ground, rising from sitting to standing, picking an object
from the ground. Again, 165 trials were obtained in total for the
ADL test category.

C. Method
1) Calculation of the Vertical Velocity: In order to obtain the

vertical velocity from the inertial sensor signals, first, we need
to calculate the vertical acceleration. The sensor signals from
the accelerometer and the gyroscope can be modeled
as and , respectively, where
is the gravitational acceleration; is the body acceleration of
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Fig. 3. Laboratory simulation of falls mimicking the falling behavior of older adults due to (a) slips, (b) trips, (c) faint, and (d) incorrect weight transfer while
sitting down on a chair.

the object/body that the accelerometer is attached to; is the
angular velocity; and 's are the measurement noises [30]. The
left superscript implies that the corresponding vectors are ex-
pressed with respect to the sensor reference frame , whereas
the left superscript denotes the inertial reference frame . Note
that the accelerometer signal includes not only the body accel-
eration that we are interested in but also the gravity component.
The gravity with respect to the inertial frame is a known
value (i.e., where m/s ). However, since
the accelerometer reading is inherently expressed with respect
to the sensor frame, , the gravity with respect to the sensor
frame changes according to the changes in the sensor ori-
entation. Thus, in order to extract the body acceleration from
the accelerometer signal by compensating for the gravity com-
ponent, one needs to calculate the sensor orientation.
The coordinate transformation of a 3 1 vector between

the sensor frame and the inertial frame is
where is the orientationmatrix of the frame with respect to
the frame . The orientation matrix contains the three unit
column vectors of the inertial coordinate system expressed in
the sensor coordinate system, i.e., where

, , and are the 3 1 unit vectors of X, Y, and Z axes of
the frame observed with respect to the frame . Note that
(the gravity vector with respect to the sensor frame) can be ex-
pressed in terms of the last row of the matrix (i.e., ) as

. Therefore, is sufficient information to com-
pensate for the gravity effect in the accelerometer signal (i.e.,
does not require the full 3-D orientation, ). In this study, the
vector is obtained by the Kalman filter proposed recently
by the authors [30], where the plus superscript denotes the a pos-
teriori estimate after the filter correction and the minus super-
script denotes the a priori estimate. The Kalman filter algorithm
is summarized in the Appendix. Once the vector is avail-
able, the body acceleration with respect to is

, and the vertical body acceleration with respect to the

inertial frame can be obtained as where
is used.

The vertical velocity is obtained through a numerical in-
tegration of the vertical acceleration. However, it is well known
that the numerical integration suffers from a boundless drift.
This is because the exact vertical acceleration is not available in
practice and, instead, an estimated acceleration is used for the
integration, i.e., , which contains the measurement errors.
In order to overcome this difficulty, the following conditional
damping-based integration technique was used in this study:

if

otherwise
(1)

where is a damping factor which slowly resets the integral
to zero, and and are the thresholds for the magni-
tudes of the body acceleration and its time derivative (i.e., jerk

), respectively. The jerk is obtained from a simple numerical
differentiation without noise filtering. This conditional equa-
tion is based on the assumption that a quasi-static motion (i.e.,
non-zero velocity with zero acceleration) is rare in human mo-
tions. Therefore, if the acceleration is near zero, the velocity be-
gins converging to zero as well by the damping factor. It should
be noted that, even during dynamic conditions, the norm of the
body acceleration can shortly lie within the range designated
as the static condition (i.e., ). An example of this
case would be when the accelerometer quickly alternates be-
tween acceleration and deceleration, resulting in passing
in and out of the range [30]. Accordingly, the condition related
to the jerk was added. Furthermore, the two conditions are as-
sured for a certain amount of time (i.e., ). In this study, the
following values were experimentally chosen by trial and error
and used for the data analysis: , m/s ,

m/s , and .
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TABLE I
SENSITIVITY AND SPECIFICITY OF FALL DETECTION ALGORITHMS

Fig. 4. Flowchart of the proposed pre-impact fall detection algorithm.

In this vertical velocity-based method (Method 1) that we are
proposing, the condition in which the vertical velocity (which
has a negative sign) exceeds a threshold was determined as a
fall. A flowchart of the proposed method is shown in Fig. 4.
2) Threshold-Based Fall Detections and Analysis: For com-

parison purposes, the acceleration magnitude-based method
(Method 2) was also used, in which the gravity-subtracted
magnitude of the accelerometer signal (i.e., ) was
used for the thresholding of the fall detection. The magnitude
of the accelerometer signal (i.e., ) is one of the most
commonly used fall detection parameters in low-complexity
accelerometer-based fall detection methods with no gyroscope
(e.g., employed by [3], [5], [8], and [15]). This parameter
is related to the peak acceleration experienced mostly at the
impact of the fall. Note that, while these previous works used

as the fall detection parameter, Method 2 in this study
uses to set the parameter to become zero at rest.
The classifying abilities of the two pre-impact fall detection

methods were investigated in terms of the sensitivity (or true
positive rate) and the specificity (or true negative rate). Also, the
investigation was performed with respect to the following two
classification categories: 1) “falls versus ADLs” where near-fall
data were not considered and 2) “falls versus non-falls” where
the near-fall data were included in the non-fall group in addition
to the ADL data.
The use of the negative downward vertical velocity as a fall

detection parameter in Method 1 (using both the accelerom-
eter and gyroscope signals) is associated with the descending

TABLE II
MEAN AND ONE STANDARD DEVIATION OF

LEAD TIMES (MSEC) FOR FALL TRIALS

phase of the fall before impact, while the use of the acceleration
magnitude in Method 2 (using only the accelerometer signal)
is related to the peak impact acceleration experienced mostly at
the impact of the fall. Accordingly, only for Method 1 which
has the capability of detecting falls before the impact, the lead
time was also obtained from the fall data. The lead time
was defined as where and

denote the time when the fall was detected and the time
of the impact when the maximum negative vertical velocity was
achieved, respectively [20]. The data analysis was performed
using C programming.

III. RESULTS
Table I shows the classifying abilities of the resulting four

cases (i.e., each of the two methods evaluated with respect to
the two classification categories) and the thresholds were deter-
mined so the summation of sensitivity and specificity has the
maximum value for each case. For the fall versus ADL detec-
tion, both methods produced similar accuracies but, for the fall
versus non-fall detection, Method 1 showed a much higher ac-
curacy than Method 2. This result was clearly supported by re-
ceiver operating characteristic (ROC) curves shown in Fig. 5.
The ROC curves depict the classifier sensitivity versus 1-speci-
ficity at different detection thresholds and thus one can find
a different sensitivity and specificity combination (e.g., speci-
ficity with 100% sensitivity).
Table II shows mean and one standard deviation of the lead

times for the fall trials. The average lead times were 231 and
184 ms for the thresholds 1.2 m/s (used in the fall versus ADL
classification) and 1.4 m/s (used in the fall versus non-fall
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Fig. 5. ROC curves from (a) proposed vertical velocity-based method and (b) acceleration-based method.

TABLE III
COMPARISON OF PRE-IMPACT FALL DETECTION METHODS

No information of the specificity in the reference. Three false detections during 13 hours test.

classification). For both threshold values, the stand-to-sit falls
had the shortest lead time. In fall injury prevention systems
using airbags, the required lead time should be longer than the
inflation time of airbag system which is about 100 ms (e.g., an
average of 120 ms in [14]). From the comparison of the results
between Fall versusADL and Fall versus Non-fall, it can be seen
that the inclusion of the near-fall cases in the data set affects the
detection accuracy (see Table I) and lead time (see Table II).
Table III summarizes the existing pre-impact fall detection

methods in the literature. All of the methods except [19] in
Table III achieved 100% sensitivity while our method obtained
97.4% sensitivity and 99.4% specificity for the Fall versus ADL
classification. Note that our fall test protocol included the in-
correct weight transfer while sitting down on a chair (denoted
as stand-to-sit fall) based on the findings in [29]. While all of
the false negatives in our results came from the stand-to-sit
falls, none of the references in Table III dealt with the stand-
to-sit falls. If this type of fall is excluded from our data set,
our fall versus ADL detection performance also improves to
100% sensitivity and 99.4% specificity with the same threshold
of 1.2 m/s.

IV. DISCUSSION

Many fall detection algorithms utilize the posture informa-
tion derived from the accelerometer signals as a determinant

parameter, based on the fact that the accelerometer can be
used as an inclinometer in static conditions (e.g., [5], [22],
and [31]). In the case of the post-impact fall detection, the
information may provide a reasonable indication whether the
subject wearing the accelerometer is in lying posture. This is
logical since the faller lying down after the fall would be in
nearly static conditions. However, in the case of the pre-impact
fall detection, we are interested in the falling phase before the
impact and the accelerometer is in dynamic condition. In other
words, the use of the accelerometer as an inclinometer is no
longer appropriate. The addition of a gyroscope provides a
solution to this problem. Even in this case, however, the use of
body posture represented by the sensor orientation still needs
to be paid careful attention during the interpretation of the
data. Because of the interposition of the soft tissue between
the target body segment and the segment-mounted sensor
and the misalignment of the sensor from its initial/calibrated
attachment location, there is a concern as to the extent of
the error in the “surface” measurements obtained by these
sensors. They may not accurately measure the underlying true
segmental movements and the degree of the error may vary
between subjects according to the mounting location (e.g.,
the waist in our case) and obesity (see, for example, [32]
for artifact effects of skin-mounted inertial sensors). Due to
this reason, we did not use the posture information as a fall



264 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 23, NO. 2, MARCH 2015

Fig. 6. Boxplots of the maximum values of (a) vertical velocity and (b) acceleration magnitude, for the discrimination of falls from ADLs. Horizontal dotted lines
indicate the thresholds used. In the plots, the FN and FP indicate the false negatives and false positives, respectively, and the numbers above or below the boxes
indicate the number of false detections of each trials.

Fig. 7. Boxplots of the maximum values of (a) vertical velocity and (b) acceleration magnitude, for the discrimination of falls from non-falls. Horizontal dotted
lines indicate the thresholds used. In the plots, the FN and FP indicate the false negatives and false positives, respectively, and the numbers above or below the
boxes indicate the number of false detections of each trials.

detection parameter for thresholding and the proposed method
is independent of this issue.
For the fall versus ADL detection (see Fig. 6), the proposed

method produced six false negatives out of the 231 fall trials
and one false positive out of the 165 ADL trials. Note that all
of the false negatives came from the stand-to-sit falls and the
only false positive came from the stand-to-lie ADLs. These re-
sults are as expected because, in the case of stand-to-sit falls,

the fall is initiated at relatively lower location and thus the time
duration from the fall initiation to the impact is short and the ver-
tical velocity may not reach to the threshold value. In contrast,
the stand-to-lie ADL may accompany fast downward velocity
depending on the subject. Since the false detections are concen-
trated on a few particular movements, the detection accuracy has
much room for further improvement if those particular cases are
resolved.
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For the fall versus non-fall detection (see Fig. 7), Method 1
maintained a high detection accuracy (i.e., 95% in both sen-
sitivity and specificity) but the detection accuracy of Method
2 was significantly reduced. Method 2 produced false nega-
tives across all types of falls and false positives in all types of
near-falls. During the near-fall trials, the falls were triggered ex-
perimentally or by self-generated perturbations and the partic-
ipants regained their postural stability from the imbalances by
quickly moving their center of mass. However, even the move-
ments involved in these recoverable imbalances can result in
a considerable increase in the peak acceleration levels, for ex-
ample, in the case of Method 2. In the case of Method 1, on the
other hand, since the velocity is obtained by integrating the ac-
celeration with respect to time, it is inherently less affected by
these short and abrupt movements.
We paid particular attention to the experimental protocol in

order to improve the reality of the falling tests. As previously
mentioned, our protocols were obtained from a detailed analysis
of the real-world fall videos. Furthermore, during the partici-
pants' trials, no instruction was given about the fall direction and
impact location, which can increase the complexity and vari-
ability of the falling kinematics. Nevertheless, the proposed al-
gorithm has been evaluated using the simulated falls which may
have differences with real falls as discussed in [33]. Bagala et al.
[34] shows that the performances of the existing fall detection
algorithms may be affected when real-world fall data are ap-
plied, and this may be true for our method as well. Therefore, as
discussed in [34], a large, shared real-world fall database could
provide an enhanced understanding of the fall process for eval-
uation of fall detection performance.
In conclusion, this paper proposed a novel vertical velocity-

based pre-impact fall detection method using a wearable inertial
sensor. The feasibility of the vertical velocity as a fall detec-
tion parameter and the detection performance of the proposed
method were evaluated by comparing it with the performance
of the acceleration-based method. Importantly, this paper dealt
with near-fall situations in addition to the falls and ADLs. The
experiments showed that both methods produced similar accu-
racies for the fall versus ADL detection, while Method 1 pro-
duced much higher accuracy than Method 2 for the fall versus
non-fall detection. The results show the advantage of the vertical
velocity over the peak acceleration in terms of the robustness
for the pre-impact fall detection against both the ADL near-fall
trials. The consideration of near-fall conditions for the perfor-
mance evaluation of the pre-impact fall detection method may
provide insight into the future development of a real-world pre-
impact fall detection system.

APPENDIX

In the fall detection algorithm, a linear Kalman filter is used
to estimate the unit vector , in the course of calculation of
the vertical acceleration. The Kalman filter can be defined by
the following process and measurement models:

(A1)

where is designated as the state vector; is the measurement
vector that is defined as (i.e., the accelerometer signal

minus the a priori estimate of the body acceleration); is the
state transition matrix; is the observation matrix; and and
are the white Gaussian process and measurement noises, re-

spectively. Once the process and measurement models are set,
the procedure of the Kalman filter is as follows.
• Step 1: Compute the a priori state estimate,

where and is the
time sampling rate. The vector cross product operator

is defined as if .

• Step 2: Compute the a priori error covariance ma-
trix, where is
the process noise covariance matrix and is defined as

where is the expectation
operator.

• Step 3: Compute the Kalman gain,
where is the measurement

noise covariance matrix and is defined as .
• Step 4: Compute the a posteriori state estimate,

.
• Step 5: Compute the a posteriori error covariance matrix,

.
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Abstract

Background

Increased physical activity has become a principal personal health goal worldwide because sufficient
physical activity can reduce the risk of many adverse conditions. Motivating individuals to increase their
levels of physical activity can increase life expectancy and contribute to a healthy life. Sharing and
comparison of physical activity information by using the Internet, with fewer privacy concerns, might also
help encourage people to promote and maintain sufficient physical activity. To promote and manage
physical activity, an accumulated activity effective index (AAEI) is proposed in this paper.

Objective

The purpose of the AAEI design is to maintain and promote physical activity. The public can easily accept
a clear indicator that reveals the current status of physical activity. The AAEI is not only an assessment
and tracking tool for personal physical activity, but is also useful for goal setting and for sharing content
with the Internet community.

Methods

The AAEI is derived from input in the form of accumulated physical activity, and evaluates the status of
physical activities and days spent exercising. The term AAEI(t ,t ) is an index of the accumulated physical
activity in the time interval (t1,t2), where the base unit of time is the day. The AAEI is determined
according to accumulated physical activity and is adjusted using the previous status of physical activity.
The previous status of physical activity is estimated according to the number of days spent exercising and
the accumulated physical activity that has been performed. An analysis of the AAEI performance was
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conducted using a simulation model and a real-world trial with 2 participants.

Results

The AAEI increased as the physical activity and days spent exercising accumulated. Conversely, the AAEI
decreased with lack of physical activity and increased resting days. In simulation, the shape of the AAEI
line indicated different types of exercise. The moving average AAEI represented long-term exercise. In the
real-world trial, the AAEI confirmed that the simulation results were comparable to actual conditions.

Conclusions

The AAEI proposed in this paper is a method that can be used to evaluate the status of a person’s physical
activity. The AAEI is a simple numeric indication that is estimated by analyzing accumulated physical
activity and the average number of days spent exercising. The AAEI is suitable for tracking personal
physical activity, reminding the user of achievement goals, and allows data sharing by using the Internet.
The results have demonstrated that the AAEI is a useful tool for physical activity management.

Keywords: accumulated activity effective index (AAEI), physical activity, activity level

Introduction

Sufficient physical activity has substantial benefits for a healthy life. Regular and moderate intensity of
physical activity, such as fast walking, running, and cycling, can reduce the risk of coronary heart disease,
type 2 diabetes mellitus, and depression, as well as facilitate weight control [1-3]. Moreover, physical
activity increases bodily health and improves cognitive functioning. It increases resistance to
neurodegenerative diseases, dementia, and related cognitive impairments [4]. Unfortunately, 31.1% of
adults worldwide are physically inactive. Physical inactivity increases with age and is more prevalent in
high-income countries [1]. According to previous studies, physical inactivity is the fourth leading risk
factor for mortality and noncommunicable diseases, and caused 5.3 million deaths worldwide in 2008 [5].
Physical inactivity increases the risk of many adverse health conditions and threatens global health. The
elimination of physical inactivity can increase life expectancy and contribute to a healthy life.

Pervasive computing technologies are well suited for health care applications and have the potential to
promote a healthy lifestyle. Several well-known studies have been proposed using pervasive computing
technologies to assist individuals in achieving sufficient physical activity [3,6-9]. For example, the
pedometer can become a human activity sensor used to monitor physical activity and promote health
because walking is a health-boosting activity and a pedometer can help motivate and track progress.
Although the accuracy of pedometers can be unreliable, they have been shown to motivate individuals
toward a more active lifestyle [8-10]. The progress of measuring instruments has allowed multiple sensing
modules to be built which can provide information such as blood pressure and heart rate. This information
is critical in health care applications; however, the professional terms and complicated interface can
confuse the public and can be a barrier to the popularization model for usage of such instruments; for the
public, a simple indicator is easier to accept.

Motivating individuals to increase their levels of physical activity is a critical issue in health promotion.
Numerous studies have focused on the social aspects revealing that the sharing and comparison of
information regarding physical activity within the community can increase interest in, and enjoyment of,
exercise and can motivate people to be more active [7,9,11]. The high penetration of Internet and
community websites can enhance communication in groups and can be used as a medium to motivate
physical activity. However, personal context information such as time, location, and heart rate when
shared using the Internet can suffer personal privacy problems. Other studies suggest that goal setting can
increase self-regulatory behaviors and improve physical activity [12]. An accumulated activity effective



index (AAEI) is proposed in this paper for evaluating the status of physical activity and sharing related
information with communities on the Internet. The AAEI is designed to provide a simple numeric
indication of accumulated physical activity and days spent exercising, with fewer privacy concerns than
personal context information. The AAEI is designed to increase awareness of physical activity by tracking
physical activity, reminding the user of achievement goals, and sharing this information with the Internet
community. The AAEI is also suited for self-awareness in maintaining physical activity. The performance
of the AAEI was illustrated using a simulation model and a short-term real-world trial using pervasive
computing tools.

Methods

Accumulated Activity Effective Index

The AAEI was designed as a simple numeral indicator that directly reveals the physical activity status of
the user by estimating both accumulated physical activity and days spent exercising. The design principles
of the AAEI were (1) AAEI is a simple value to reveal physical activity; (2) AAEI corresponds to physical
activity; (3) AAEI increases with more physical activity, is steady in fixed physical activity, and decreases
with less physical activity; (4) AAEI corresponds to days spent exercising; (5) AAEI decreases with
resting days; (6) AAEI decreases more with continued resting; (7) AAEI decreases less at rest if user has
exercised before; and (8) AAEI is at or near zero if the user does not exercise in 7 days. The AAEI
parameters and evaluating process (Equation 1) are described in Figure 1.

The term AAEI(t ,t ) is an index of the accumulated physical activity in the time interval (t ,t ), where the
base unit of time is the day. The AAEI is greater than or equal to zero. The AAEI(t ,t ) is calculated by
tracking the sum of AAEI(t ,t –1) and the amount of physical activity in t . The variable MT(t )
represents the amount of physical activity in t , which is equal to the activity level multiplied by the
exercise duration. The variable E(t ) is defined as the exercise expectation of physical activity in t , which
depends on the previous interval (t ,t –1) status of physical activity include accumulated physical activity
and days spent exercise. Parameter k is a constant value and is greater than zero to scale the AAEI. The
design of k in a different constant or a variable can be a condition depending on AAEI(t ,t –1), MT(t ), or
others. For example, k can increase with activity level, in which case participants exercise harder and can
get a higher AAEI because AAEI increases more during vigorous activity. In another example, if k rises
when [MT(t )–E(t )]<0, the user needs to sustain physical activity to maintain AAEI.

The previous status of physical activity was defined as exercise expectance, which is greater than or equal
to zero and was formulated using Equations 2 and 3 in Figure 1. The notion of exercise expectation, E(t ),
was that if a participant had a high AAEI, a participant was expected to require more physical activity to
increase the AAEI. Otherwise, AAEI would be stable or decrease. Another design objective for exercise
expectation was to reveal days spent exercising. The more days a participant rested, the more the AAEI
index decreased. The variable A(t ,t –1) is the basic value defined as AAEI(t ,t –1)/7. The variable C is a
constant greater than zero, which adjusts the decreasing percentage of resting. In the design principle, no
decreasing is defined when there is no resting. In other words, if a participant exercises every day, the
AAEI does not decrease. Increasing constant C decreases the average AAEI, but does not increase the
AAEI at the same amount of accumulated physical activity. Parameter α is a coefficient determined by
previous accumulated physical activity. The variable W is a constant of attenuation that decreases the
influence of previous physical activity. Thus, the greater the value of W, the more the previous
accumulated physical activity and days spent exercising affect the exercise expectance. To achieve
convergence, the absolute value of W should be less than 1 in Equation 3 in Figure 1. To receive the
positive AAEI, the multiplication of k and C to the power of the summation of W to the power of (i-1),
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where i goes from 1 to (t -t ) should be less or equal to 7. In this study, for example, we set W at 0.5
causing the influence of previous accumulated physical activity to decrease 50% after 1 day. The variable t
indicates the day—zero for today, 1 for yesterday, and so forth. According to the aforementioned
conditions, the range of α is between –2 and infinity, and the range of E(t ) is between A(t ,t –1)×C  and
zero. The initial condition of the AAEI evaluation process to be set was AAEI(t ,t )=0, E(t )=0, and α was
null because there was no physical activity recorded before. The AAEI is useful for evaluation purposes
from the first time a person performs physical activity. Because A(t ,t –i) is null the first time to estimate
AAEI, parameter α is calculated the first time after physical activity is recorded. In our prototype
experiment, the defined parameters k=1, W=0.5, and C=2 are used to examine the performance of the
AAEI.

Simulation Model

A simulation model was used to test the long-term performance of the AAEI. Based on the assumption
adopted in previous analyses of human dynamics, human behavior comprises temporal statics, which are
uniform and stationary. In other words, most human activities can be described using a Poisson process
[13-14]. Based on these characteristics, the simulation model simulated participants partaking in exercise
of various exercise durations, and the average activity level for each exercise had a Poisson distribution.
The distribution of days of the week on which participants exercised was random. Different types of
exercise habits were included to simulate the performance of the AAEI.

Real-World Trial

Two participants were recruited to test the AAEI performance in a real-world application. Before the
AAEI evaluation, participants estimated their activity levels and exercise duration as inputs of physical
activity evaluation process, as shown in Figure 2. Several methodologies were developed to estimate
physical activity, such as calorimetry, double-labeled water, questionnaires, and wearable sensors. This
study used a triaxial accelerometer (Opal, APDM Inc, Portland, OR, USA) to estimate activity levels
because it is inexpensive, accurate, small, objective, sensitive, and suitable for the storing of personal
records. Several studies have estimated activity levels by using accelerometers [15-17]. The activity level
estimation methodology employed in this study was designed based on that of Liu et al [15]; the
experimental results of this study showed high accuracy levels of approximately 80%. The sampling rate
of the triaxial accelerometer was 40 Hz. The sensor was worn on the right side of the front of the waist. To
reduce any deviation in the estimation of activity level, the exercise tasks were limited to walking, fast
walking, and running, and were all performed using a running machine at various velocities. All
participants were allowed to perform the tasks within their discretion during the 1-month trial period. The
AAEI was estimated once per day.

Results

General Results

The ideal amount and period of physical activity was used as input to illustrate the general performance of
the AAEI. A total of 100 metabolic equivalent of task (MET)-minutes were evenly distributed over 1, 3, 5,
and 7 day(s) in a week (Table 1) over a period of 4 weeks as shown in Figure 3. The AAEI increased when
physical activity increased, did not increase when physical activity was stable, decreased when physical
activity decreased, and decreased further if continuous resting occurred. The weekly average of the AAEI
over the 4 weeks is shown in Figure 3. The AAEI continued to increase in the first week, but became
stable after the second week. The i-day (where i=1, 3, 5, 7) averages of the stable AAEI changed because
of various resting days. The average percentage of the AAEI on different days of physical activity under
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stable conditions is presented in Figure 4.

Simulation Results

Three simulation results are presented to show the long-term performance of the AAEI. Each simulation
result included different types of physical activity input to present different exercise conditions. Figure 5
shows the exercise protocol proposed by the World Health Organization (WHO), which recommends
exercising 5 days per week, each exercise having a 30-minute duration and 5 MET on average. These
recommendations were used as parameters and entered into the simulation model. The simulation model
generated an average of 718 MET-minutes per week and 4.8 days spent exercising per week over a year.
The average AAEI was 663 for 1 year. The ideal ratio of AAEI to physical activity (ideal AAEI/PA), as
shown in Figure 4, was 0.97. The ratio of AAEI to physical activity (AAEI/PA) in the simulation was 0.92.
The day line of the AAEI went up and down based on the average AAEI value. The longer-term moving
averages showed smoother line changes than the average AAEI value.

Some people perform vigorous physical activity, but only for a short time interval. To simulate this
condition, the simulation model set 2 days of exercise per week, each with an average duration of 20
minutes, and an average activity level of 10 MET. The simulation model generated 313 MET-minutes per
week and 1.6 days spent exercising per week, on average, over a year. The average AAEI was 254. The
ideal AAEI/PA was 0.80 and the AAEI/PA was 0.81. Figure 6 shows the results of the simulation and the
AAEI estimate. The day line of the AAEI formed a peak when physical activity was performed and formed
a valley when there was a lack of physical activity.

To simulate physical inactivity, the simulation model was set at 2 days spent exercising per week, each
with an average duration of 15 minutes and an average of 5 MET as parameters. The simulation model
generated an average of 127 MET-minutes per week and 1.5 days spent exercising per week over a year.
The average AAEI was 100. The ideal AAEI/PA was 0.78 and the AAEI/PA was 0.79. Figure 7 shows the
simulated results; the day line of the AAEI formed a steep shape when continuous resting occurred and the
AAEI line was often low and near the zero line.

Real-World Trial Results

A total of 2 participants were recruited to take part in the real-world trial test. The participants’
characteristics are listed in Table 2. The recorded physical activity was measured according to observation
and activity diaries. Estimated values were measured according to an accelerometer. Table 3 lists the
recorded and estimated total physical activity.

The average physical activity and days spent exercising shown in Figure 8 were 275 MET-minutes per
week and 1.2 days per week, respectively. The average AAEI was 180, the ideal AAEI/PA ratio was 0.74,
and the AAEI/PA was 0.65.

The average physical activity and days spent exercising shown in Figure 9 were 241 MET-minutes per
week and 1.6 days per week, respectively. The average AAEI was 174, the ideal AAEI/PA ratio was 0.80,
and the AAEI/PA was 0.72.

Discussion

General Performance

The AAEI was determined using the accumulated physical activity and exercise expectance. In our study,
the AAEI increased when physical activity increased, did not increase when physical activity was stable,
decreased when physical activity decreased, and decreased further if continuous resting occurred. The first
week of ideal and periodic inputs increased because the AAEI accumulated from the first 7 days. After the
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first week, the AAEI stabilized because of stationary input. Although the amount of physical activity in a
week was the same, the AAEI altered on different days spent exercising. The more days participants
exercised, the higher the AAEI was. The AAEI was directly proportional to the amount of physical activity
accumulated in 7 days. The AAEI was primarily determined using the accumulated amount of physical
activity and associated with the number of days spent exercising. The value of the AAEI was decided by
accumulated physical activity more than days spent exercising. Exercise expectance, estimated using the
previous physical activity status, accumulated physical activity, and number of days spent exercising,
would revise the AAEI. Thus, the index usually decreased further when AAEI was high. We encouraged
participants whose physical activity was low to be more active, and challenged those who performed large
amounts of physical activity. A higher AAEI typically indicated more physical activity and days spent
exercising; therefore, the decrease in percentage was more reasonable than fixed reducing. The constant C
is used to revise the magnification of exercise expectance. A higher C value decreased the AAEI further in
response to physical inactivity, but increased the AAEI little in higher physical activity situations. The
setting value of the constant C can influence the average AAEI in general. Parameter k was defined as a
fixed number in this study and, therefore, the AAEI directly revealed the status of physical activity. The
parameter k was set to 1 because it can directly reveal the accumulated amount of physical activity.
However, the setting value of k can differ depending on the status of physical activity in the Web-based
application because of encouragement or challenge. The variable W is a constant of attenuation. We set W
at 0.5 in this experiment causing the effect of the previous status to attenuate by 50% after each day.

Establishing a Simulation

The moving average AAEI across a range of durations revealed the varying physical activity statuses of
the participants across different points in time. The long-term moving average AAEI varied slightly
compared with the short-term moving average AAEI. When the short-term moving average AAEI line
crossed the long-term line, it indicated that the physical activity of a participant was either higher or lower
than before. We observed the index to ascertain whether the physical activity of the participant was
increasing or decreasing. The simulation results reveal the phenomenon, but exhibited deviations in the
amount by which physical activity decreased. Because the distribution of physical activity was not uniform
in the simulation, the AAEI deviated from the estimate. The deviation of the AAEI was within 5% of the
ideal situation. In the simulation model, in which the physical activity was the same as that recommended
by the WHO, the achievement goal was an AAEI value of 600. If the participant reached the assigned
index, he or she was likely to consider that sufficient physical activity had been performed. The other 2
simulation results exhibited insufficient physical activity in various exercise habits. The shape of the AAEI
line demonstrates the different habits of the participants. A high and sharp peak of the AAEI line on the
graph reveals that the participant partook in vigorous physical activity, but only over a short period. A flat
and low shape of the AAEI line indicates the participant was physically inactive. The AAEI value in these
2 cases did not exceed 600; therefore, their physical activity was insufficient. An arc-shaped AAEI line
with low, oscillating amplitude located at a high index (greater than 600) indicates that the participant
partook in sufficient and regular physical activity. The AAEI can be used as an analysis tool for improving
physical activity.

Real-World Trial

The recorded physical activity was measured through observation as well as through analysis of activity
diaries, and it generally agreed with the estimated value. Although the level of accuracy of the estimated
value seems considerably high, the deviation was slightly compensated by overestimating and
underestimating, but it still made it possible to evaluate the AAEI in a real-world application. Both
participants were physically inactive in 1 month. Generally, the results of the AAEI demonstrated the



physical activity status. The AAEI increased with increased physical activity and decreased with decreased
physical activity. The AAEI decreased gradually, rather than suddenly. However, the deviation of decrease
was much higher than in the simulation results, possibly because of nonuniform distribution in the short-
term experiment. The AAEI did not immediately provide feedback to the participants and only showed the
feasibility of real-world implementation of the AAEI. Based on previous studies [7,9,11], sharing and
comparison can motivate people to be more active by increasing their interest in and enjoyment of physical
activity. Goal-setting theory is based on the concept that people occasionally require a clearly defined goal
to motivate them to achieve. The AAEI is not only an assessment and tracking tool for personal physical
activity, but also a goal-setting and achievement-sharing tool in social contexts.

Implementation of the Accumulated Activity Effective Index

Measurement of the level of activity and the energy cost was a fundamental task before the AAEI
estimates were made. Therefore, the characteristics of the measurement of activity levels were crucial to
the AAEI estimates because measurement of activity level can directly reveal participants’ physical
activity. If the level of activity can be measured accurately, it can be useful in calculating the AAEI. One
can apply preferred activity-monitoring devices and the proposed AAEI to measure physical activity for
individual well-being management. Furthermore, the proposed AAEI is also useful for goal setting and for
sharing content with the Internet community under the same criterion.

Conclusions

The AAEI is proposed in this paper as a means of evaluating the status of physical activity. It can track
personal physical activity, remind the user of his or her achievement goals, and share this information by
using the Internet. The AAEI is a simple numeric indication that is estimated by accounting for
accumulated physical activity and the average number of days spent exercising. The AAEI records the
accumulated physical activity that has been performed in a week and reveals any differences in exercise
habits. The moving average presents a long-term value that can be used for assessment purposes. The
AAEI fulfills the requirement of prompting physical activity. Based on social aspect theory, the AAEI is a
useful tool that can be employed to promote physical activity.
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Figures and Tables

Figure 1

The accumulated activity effective index (AAEI) parameters and equations for the evaluating process (equation 1) and
exercise expectance (equations 2 and 3).

Figure 2

The process in a real-world trial. The first stage was activity level estimation. The second stage was AAEI estimation. The
sensor data translated to activity level in first stage and then converted to AAEI in second stage.

Table 1
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Input distribution of ideal and periodic physical activity in a week.

Exercise days per week Input (MET-minutes)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 0 0 0 0 0 0 100

3 0 33.3 0 33.3 0 0 33.3

5 0 20 20 0 20 20 20

7 14.3 14.3 14.3 14.3 14.3 14.3 14.3

Figure 3

(a) AAEI of ideal and periodic physical activity input and (b) week average of AAEI.

Figure 4

Average percentage of AAEI for different exercise days per week in an ideal situation.

Figure 5



AAEI/PA simulation results with input of 5 days per week, duration of 30 minutes, and 5 MET.

Figure 6

AAEI/PA simulation results with input of 2 days per week, duration of 20 minutes, and 10 MET.

Figure 7



AAEI/PA simulation results with input of 2 days per week, duration of 15 minutes, and 5 MET.

Table 2

Participant characteristics (N=2).

Variables Participant 1 Participant 2

Gender Male Male

Age (years) 24 23

Body mass index 21.4 22.3

Medical status Healthy Healthy

Table 3

Result of total recorded physical activity and total estimated physical activity.

Participant Total recorded value (MET-minutes) Total estimated value (MET-minutes) Ratio

Participant 1 1211 1178 0.973

Participant 2 945 1031 1.057

Figure 8



AAEI with physical activity (PA) of participant 1.

Figure 9

AAEI with physical activity (PA) of participant 2.

Articles from JMIR Research Protocols are provided here courtesy of JMIR Publications Inc.
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�
Abstract- The analysis of the joint kinematics during swimming plays a fundamental role both for 
sports conditioning and in clinical contexts. A protocol originally designed to perform the 3D kinematic 
analysis of the upper limbs during simple motor tasks was modified to be used in a sports setting. The 
performance of the modified protocol was evaluated in laboratory during simulated swimming trials 
performed by nine swimmers. A stereophotogrammetric system was used as gold standard. 
Considering both front crawl and breaststroke swimming styles and all joint degrees of freedom 
modeled (shoulder, elbow and wrist), the protocol implemented showed an accuracy adequate for the 
purposes of the research (median values of RMSE, CMC and R were 7°, 0.95 and 0.95, respectively). 

�
Keywords-swimming; inertial and magnetic sensors;upper limb;3D joint kinematics 

1. INTRODUCTION 

The analysis of 3D joint kinematics during swimming plays a major role for both the sports conditioning and 
clinical contexts. In the first case, the identification of key biomechanical factors that lead to the best propulsive 
efficiency is the basis for performance enhancement as well as to get valuable information for didactical 
purposes. In the second case, a kinematic assessment of the swimming technique would be an important tool to 
detect altered movement patterns that can lead to an injury or that are related to previous injuries. 
To acquire swimming kinematics of the upper limbs, underwater cameras are typically used. Traditionally, 
markers are drawn on the skin of the swimmer and tracked [1,2]. Alternatively, a markerless approach was 
recently exploited [3]. However in both cases, only the 3D position of the anatomical landmarks and 2D angles 
were analyzed. To the knowledge of the present authors, only one study using video analysis focused on 3D 
joint kinematics of the shoulder and elbow during front-crawl swimming [4]. Nevertheless, all studies based on 
video analysis have a number of drawbacks, including the analysis being limited to underwater phases and to a 
single stroke due to the limited field of view (strictly associated with the number of cameras). In addition, long 
installation and calibration procedures, and long elaboration time are required even when an automatic tracking 
procedure is used [5]. Finally, quantitative video analysis can only be performed off-line, and thus it cannot be 
used by coaches during training sessions to make direct feedbacks about the swimming technique. 
To overcome the limits of video analysis, in the last ten years, wearable inertial-magnetic measurements units 
(IMMUs) were exploited for the kinematic analysis of swimming. These devices, being directly fixed on the 
swimmer, allow a continuous data acquisition during the whole swim. Furthermore, they require a simple 
measurement set-up and have the potentiality to provide coaches with online performance parameters during 
training sessions. In literature, swimming phases, stroke frequency, time parameters, velocity profile were 
measured using IMMUs and validated against appropriate measurement systems [6]. More recently, sets of 
sensors were applied to the swimmer, on wrists, lower back, arms or legs, in order to better estimate kinematic 
variables referred to various body segments [7-9]. However, to the knowledge of the present authors, none of 
the previous studies investigated the 3D kinematics of upper limbs joints during swimming, and there are no 
protocols specifically designed for this kind of sports setting. 
The protocols previously proposed for upper limb kinematics using inertial sensors were validated in 
ambulatory settings, for simple and slow movements [10-12], and thus must be extended to the sports context 
in order to be used for kinematic analysis of swimming. Among the different solutions available, the protocol 
proposed by Cutti et al. [11] was chosen for the main following reasons: (1) It was specifically designed for 
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being implemented with IMMUs; (2) It is suitable and accurate as a stereophotogrammetric system for the 
estimation of the 3D joint angles kinematics of the upper limb (shoulder, scapula, elbow) in a clinical context; 
(3) It can be adapted to use different IMMU systems capable to compute the orientation of the IMMUs with 
respect to a fixed, global system of reference; (4) It can be adapted for the use in sports contexts; (5) It has a 
simple and quick set-up in the acquisition phase as it requires only three calibration trials. 
Therefore, the aim of the present study was to adapt the protocol proposed by Cutti et al. [11] to the swimming 
context, extending the kinematics analysis also to the wrist joint, and to validate the protocol in dry-land 
conditions using the stereo-photogrammetry as gold standard. 

2. MATERIAL AND METHODS 

Protocol 
From a biomechanical point of view, each side was modeled as an open kinematic chain constituted by thorax, 
upper-arm, forearm and hand with 7 degrees of freedom. Similarly to the representation described by Cutti et 
al. [11], the shoulder was considered as the ball-and-socket joint between thorax and arm, while the elbow was 
considered as the double-hinge joint (with non-intersecting axes) between arm and forearm. The newly 
introduced wrist joint was modeled as the double-hinge joint formed by forearm and hand. 
For each segment that formed 2 joints, both a proximal and a distal embedded anatomical reference systems 
(ARSs) were defined. ARSs definitions introduced by Cutti et al. [11] was adopted apart from the facts that: (1) 
the static calibration acquired for the definition of the thorax ARS was performed with the subject lying still, 
because the orientation estimation of the IMMUs was demonstrated to be more accurate in such a position; (2) 
the proximal forearm ARS was rotated of -90°along the Y-axis because the elbow joint during swimming is 
almost completely pronated in many phases of a stroke; (3) the ARS of the hand was assumed to be aligned 
with the distal forearm ARS during the static calibration trial. The positioning of IMMUs on body segments is 
shown in fig. 1 (left). The sensor on the thorax was fixed by aligning the X-axis to the longitudinal axis of the 
flat portion of the sternum, since the orientation of the X-axis of the IMMU is directly used for the computation 
of the thorax ASOR. The sensor on the humerus was fixed laterally, in order both to allow the swimmer a 
natural swim style, and to maximally reduce the soft tissue artifacts, thus over the central third of the humerus, 
slightly posterior to it [11]. The sensor on the forearm was fixed over the distal flat surface of radius and ulna, 
with the IMMU Z-axis pointing away from the wrist. The sensor on the hand was fixed over its dorsum, with 
the IMMU Z-axis pointing away from the hand. 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1. Left: inertial and IMMUs positioning on body segments detailing the anatomical system of reference 
axes. Right: lateral and anterior views during front crawl simulation. 

�
The protocol required three types of calibration tasks. A static trial in which the subject lied on a table keeping 
his arms alongside the body, and at the same time holding the dorsum of the hands aligned to the upper side of 
the forearms. The second and third calibration tasks were dynamic trials in which the subject was standing, and 
had to perform: (1) a flexion-extension of the elbow, from about 10° to 130° of flexion, keeping a constant 
pronation-supination (2) a full-range pronation-supination of the elbow, keeping a constant flexion-extension. 
In both the cases, the number of arm-stroke cycles to collect for each task was conventionally set equal to 5, 3 
tasks should have been acquired, and very fast or very slow movement were not advisable. 
All the axes of rotation of the elbow were modeled as mean helical axes, and computed using the algorithm 
defined by Woltring et al. [13]. At the end of this process, each ARS is known with respect to the 
corresponding IMMU technical system of reference, and can be computed frame by frame for each dynamic 
task. The joint angles were processed then by decomposing the relative orientation of adjacent segments. The 
shoulder flexion-extension, intra-extra rotation and abduction-adduction were calculated using the XY’Z’’ 

181



�
�ǆƚĞŶĚĞĚ��ďƐƚƌĂĐƚƐ�� Kϭϰ� ϯ�Ͳ�,D�

�

Euler sequence; the elbow flexion-extension and pronation-supination were calculated using the XZ’Y’’ Euler 
sequence; the wrists flexion-extension and ulnar-radial deviation were calculated using the XY’Z’’ Euler 
sequence. The Euler sequence used for the shoulders was different from the one proposed by Cutti et al. [11]. 
The XY’Z’’ sequence was chosen because it better represents the kinematics of the shoulder when it performs 
wide movements, and when these movements are not performed mainly around just one axis of rotation (i.e. 
pure flexion-extension), as usually happens in a clinical context. The carrying angle of the elbow (rotation 
around Z’ axis) and the hypothetic internal-external rotation angle of the wrist (rotation around Y’ axis) were 
not considered, according to the joint model adopted. 

Test Validation 
This test aimed to evaluate the 3D joint kinematic analysis of the upper limbs during swimming simulations 
using an IMMU system (Opal, APDM, Portland, Oregon, USA, 7 nodes, 128Hz). To this aim, a 
stereophotogrammetric system (SMART-DX 7000, BTS Bioengineering, Italy, 7 cameras, 250Hz) was used as 
the gold standard system. In order to be able to compare kinematic data estimated from both the IMMU and the 
stereophotogrammetric system, seven clusters were built and firmly fixed onto the swimmer’s body. Each 
cluster was made of a rigid light-weighted wooden plate (width 8cm x length 15cm x depth 1cm) containing 
one IMMU and four retro-reflective passive markers (10 mm diameters) 

Nine male swimmers (Age: 27.1±0.6 years; Height 180.4±5.2 cm; Weight 76.4±6.2 Kg; Training 10.7±3.6 
years) agreed to participate and freely signed the informed consent. The inclusion criteria were the following: 
(1) a swimming experience at least in regional competitions; (2) no recent musculoskeletal injuries; and (3) no 
pain feel before or during the tests. Regarding the swimming style, 56% of the participants were specialized in 
the front crawl, 33% in the breaststroke and 11% in the butterfly. Concerning the swimming level, 78% of the 
participants were either current or former professionals, while 22% were amateurs. The swimmers were asked 
to swim in the same way they would have done in a swimming pool (fig.1 Right). For each trial, 10 arm-strokes 
cycles were requested but the participants could stop the test if they felt pain or tiredness. The main number of 
arm-strokes cycles was 7, so about 40 complete arm-strokes cycles were available for each swim style (front 
crawl and breast stroke) and for each athlete. 

Data Analysis 
For the computation of the orientation of each unit with respect to the global system of reference and thus of 
the ARSs, three Kalman-based algorithms were examined: (1) one from the Motion Studio software provided 
by the APDM (KBE), (2) one presented by Madgwick et al. [14] with a value of gain fixed (KMA) in all the 
trials, and (3) one presented by Madgwick et al. [14] with different values of gain (KMB) optimized for three 
different examined trials: calibration, front crawl and breaststroke. Descriptive statistics was used to summarize 
the characteristics of the participants. The performance of the IMMU and the SPS during simulated swimming 
in laboratory were compared for each joint and degree of freedom by means of root mean square error (RMSE), 
Pearson product-moment correlation coefficient (R), coefficient of multiple correlation (CMC) [15]. The 
analyses were performed using the R statistical software (version 3.0.1). 

3. RESULTS 

For the front crawl, the CMC was 0.94 (0.07) for KMA, 0.96 (0.06) for KMB and 0.87 (0.43) for KBE; for the 
breaststroke, the CMC was 0.98 (0.04), 0.98 (0.06) and 0.93 (0.25) for KMA, KMB and KBE, respectively. In 
both front crawl and breaststroke, as expected, the KMB showed slightly higher CMC values than the KMA, 
and definitely higher CMC values than the KBE. Therefore, the KMB optimized algorithm was used. Overall, 
there were no significant differences between the left and right sides in both front crawl and breaststroke for 
both the examined indices. 
Analyzing the front crawl, the results showed: 1) the median value of RMSE was equal to 7.42 degrees, 
ranging from 3.25 degrees for the wrist ulnar-radial deviation to 14.65 degrees for the elbow flexion-extension; 
2) the median value of CMC was equal to 0.95, ranging from 0.88 for the wrist ulnar-radial deviation to 0.99 
for the shoulder flexion-extension, and for the internal and external rotation; 3) the median value of R was 
equal to 0.95, ranging from 0.90 for the wrist ulnar-radial deviation to 0.99 for the shoulder flexion-extension. 
Concerning the breaststroke style, the following results were found: 1) the median value of RMSE was equal to 
5.39 degrees, ranging from 3.41 degrees for the shoulder internal-external rotation to 8.55 degrees for the 
elbow flexion-extension; 2) the median value of CMC was equal to 0.99, ranging from 0.92 for the wrist ulnar- 
radial deviation to 0.99 for the shoulder flexion-extension, for the abduction-adduction, for the internal and 
external rotation, and for the elbow flexion-extension; 3) the median value of R was equal to 0.99, ranging 
from 0.94 for the wrist ulnar-radial deviation to 1.00 for the shoulder flexion-extension and for the abduction- 
adduction. An example of the shoulder joint angles are shown in fig.2. 
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Figure 2. Shouder joint angles estimated using IMMUs (black line) and stereophotogrammetric system (green 

line) for front crawl (top) and breaststroke (bottom). 
�

4. DISCUSSION 

In laboratory, simulated swimming trials were carried out in dry-land conditions, recorded by an inertial and 
magnetic measurement units system and simultaneously by a stereophotogrammetric system. The use of 
simulated arm-strokes in laboratory was chosen because: (1) it allows a better control of all procedures, (2) the 
gold standard is more accurate than conventional underwater video-camera systems, and (3) the complete 
swimming stroke cycle can be recorded, including the aerial or recovery phase. An effective movement of the 
trunk and upper limbs during the aerial phase is essential to place correctly the hand to use it as a rudder during 
the propulsive phases. Considering both the front crawl and breaststroke swimming styles and all the joint 
degrees of freedom modeled, the comparison between the gold standard and the inertial sensor system showed 
median values of RMSE (about 7°), low enough for the purposes of research, high median values of CMC 
(0.95), and high median values of R (0.95). Thus, the protocol implemented correctly estimated the 3D 
orientation of the shoulder, elbow and wrist joints during swimming with accuracy adequate for the purposes. 
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Abstract

Background: Previous research has shown that visuospatial processing requiring working memory is particularly important
for balance control during standing and stepping, and that limited spatial encoding contributes to increased interference in
postural control dual tasks. However, visuospatial involvement during locomotion has not been directly determined. This
study examined the effects of a visuospatial cognitive task versus a nonspatial cognitive task on gait speed, smoothness and
variability in older people, while controlling for task difficulty.

Methods: Thirty-six people aged $75 years performed three walking trials along a 20 m walkway under the following
conditions: (i) an easy nonspatial task; (ii) a difficult nonspatial task; (iii) an easy visuospatial task; and (iv) a difficult
visuospatial task. Gait parameters were computed from a tri-axial accelerometer attached to the sacrum. The cognitive task
response times and percentage of correct answers during walking and seated trials were also computed.

Results: No significant differences in either cognitive task type error rates or response times were evident in the seated
conditions, indicating equivalent task difficulty. In the walking trials, participants responded faster to the visuospatial tasks
than the nonspatial tasks but at the cost of making significantly more cognitive task errors. Participants also walked slower,
took shorter steps, had greater step time variability and less smooth pelvis accelerations when concurrently performing the
visuospatial tasks compared with the nonspatial tasks and when performing the difficult compared with the easy cognitive
tasks.

Conclusions: Compared with nonspatial cognitive tasks, visuospatial cognitive tasks led to a slower, more variable and less
smooth gait pattern. These findings suggest that visuospatial processing might share common networks with locomotor
control, further supporting the hypothesis that gait changes during dual task paradigms are not simply due to limited
attentional resources but to competition for common networks for spatial information encoding.
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Introduction

Dual task studies requiring individuals to simultaneously

perform cognitive and balance tasks have shown that performance

in either or both tasks is compromised [1,2], and that this

interference is more marked in those with reduced sensorimotor

and/or cognitive functioning due to age and disease [1,2]. These

findings suggest that balance control requires higher-level cogni-

tive functioning to selectively process information (attention) and

actively maintain and manipulate it (working memory) [3].

Two models have been proposed to explain the interference

between balance and secondary cognitive tasks [1]: the general

capacity sharing/limited attentional resources model; and the

more specific bottleneck model whereby both the primary balance

task and the secondary cognitive task concurrently require similar

networks. Concurrent motor timing tasks provide an example of

bottleneck processing; e.g. performance of an eye blink classical

conditioning task is disrupted by concurrent finger tapping,

another task requiring cerebellar processing, but not by a

recognition task [4]. Some previous studies have contrasted the

effects of visuospatial (VS) and nonspatial (NS) cognitive tasks on

balance as a means of determining which of the two models is

more apt in this context. Secondary VS cognitive tasks have been

shown to reduce balance control during standing and stepping

more than NS cognitive tasks in several [4–12], but not all [13]

previous studies. Potential factors that might have contributed to

these conflicting findings include the set order of administration of

the cognitive tasks [8,9], unequal secondary task difficulty

[7,9,10,13] and the inconsistent requirement of articulatory

responses across trials [8,9] (a motor task that can detrimentally

affect postural control) [14].

There is also some evidence that impaired VS processing is

associated with gait instability and falls. Increased dual task cost of

walking while completing a VS decision reaction time task was

more strongly associated with recurrent falls than a simple

reaction-time task to an auditory stimulus in 377 older people
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[15]. In another large sample of healthy older adults, poor

performance in a VS pen and paper test was significantly and

independently associated with increased double-support phase

variability during gait [16], as well as with increased risk of

multiple falls [17]. In Parkinson’s disease patients with mild

cognitive impairment, impaired VS processing has been shown to

be significantly associated with gait instability [18]. VS processing

impairments have also been associated with stepping arhythmicity

and asymmetry in people with Parkinson’s disease [19], and in

contrast to tests of executive functioning, differentiate between

freezers and non-freezers [19]. However, only one of the above

studies has directly contrasted the effects of VS versus NS

secondary tasks on gait parameters [10], and it is possible the

differential effects reported may not be attributable to differences

in the task type, as the difficulty of the secondary tasks were not

examined or controlled for.

The aim of the present study was to compare the effects of VS

and NS cognitive tasks on temporo-spatial gait parameters,

smoothness and variability in older people while controlling for

task difficulty. We hypothesized that if the control of walking is

dependent upon VS working memory processing, walking while

performing a cognitive task that requires VS processing, will

disrupt one or both tasks (i.e. the bottleneck model) more so than a

NS arithmetic task. While both VS and NS tasks call upon a

central executive, we used the VS star-movement task [11] to

involve the VS sketch pad of working memory (VS task) and a

series of single digit additions and subtractions to place demands

on the phonological store of working memory (NS task).

Determining any differential effects of VS and NS dual tasks

may provide insight into cognitive processing pathways utilized in

the control of locomotion. Further, given that falls in older people

frequently occur while walking [20], understanding the relative

importance of secondary cognitive task types in influencing

locomotor control has implications for fall risk assessments.

Methods

Ethics Statement
The study was conducted in accordance with the Declaration of

Helsinki and was approved by the Human Research Ethics

Committee at the University of New South Wales. Written

informed consent was obtained from all participants prior to

commencing the study.

Participants
Thirty-six older people (18 males; mean (SD) age: 81.4 (3.5)

years) volunteered to participate in this study. All lived indepen-

dently in the community and were part of a larger prospective

study of falls, for which they were recruited via random selection

from the electoral roll (Sydney Memory & Ageing Study) [21].

Participants had a mean Mini-Mental State Examination (MMSE)

[22] score of 28.9 (SD = 1.4), were independent in activities of

daily living and were able to walk 400 m without assistance. The

participants had on average 14.0 (3.6) years of education. Four

participants had fallen two times or more in the 12 months

preceding the assessment. The exclusion criteria were medical or

psychological conditions that may have prevented participants

from completing assessments, i.e. a previous diagnosis of dementia

or developmental disability, psychotic symptoms, Parkinson’s

disease, multiple sclerosis, motor neuron disease and central

nervous system inflammation.

Experimental set-up
Participants completed a series of three walking trials at self-

selected speed along a 20-m long walkway under four conditions

presented in a block-randomised order: 1) with an easy arithmetic

task (NS-easy); 2) with a difficult arithmetic task (NS-diff); 3) with

an easy VS task (VS-easy); and 4) with a difficult VS task (VS-diff).

Participants also performed three walking trials with no cognitive

task for reference purposes. The cognitive task instructions were

delivered through headphones; the instruction durations were as

follows: NS-easy 4.7 s, NS-diff 6.3 s, VS-easy 7.4 s, VS-diff 8.5 s.

These differences are largely due to a longer (non-informative)

lead in time in the VS tasks (i-e: ‘‘the star starts in box …’’), which

took 2.8 s, and no lead in time ahead of the first piece of

information in the NS tasks, that being the first number of the sum

(i-e: ‘‘three plus four plus one’’). Instructions were given

continuously throughout the walking trial; that is, a new

instruction was delivered within a second of the participant

answering the previous question. This procedure was identical for

all dual task trials and ensured that regardless of their walking

speed, participants were cognitively engaged throughout the trial.

Participants were instructed to ‘‘keep walking normally’’ and to

‘‘give the answers as quickly as possible’’. Participants also

completed three seated 30 s trials for each cognitive task condition

that were randomly presented amongst the blocks of walking trials.

Cognitive tasks conditions
Visuospatial tasks. The VS star movement task has been

previously described [11]. In brief, the VS-easy task involved

participants envisaging three boxes side by side labelled A, B and

C. Participants were shown the empty boxes on a visual display

during the explanation of the protocol and were asked to visualise

a star located in one of the boxes making three movements. They

were then allowed sufficient practice with and then without the

visual display until they demonstrated that they understood the test

requirements and scored three consecutive correct responses. Pre-

recorded instructions delivered the random starting position and

the direction of the three movements, i.e. left or right. In the VS-

diff task, participants were asked to visualise the star moving

among four boxes arranged in a square. The pre-recorded

instructions delivered the random starting position and four

movements of the star, which comprised up, down, left, right and

diagonal moves. As with the VS-easy task, participants practiced

the task initially with and then without a visual aid.

Nonspatial tasks. The NS-easy task required participants to

sum three single digit numerals. The NS-diff task involved a

calculation of four single digit numerals comprising both additions

and substractions (but with a running total that was always .0).

Particants practiced both easy and difficult NS tasks before

commencing the data collection trials.

As the main purpose of our study was to compare the effects of

different types of secondary cognitive tasks (VS versus NS) on gait

parameters, the secondary tasks selected required equivalent

verbal responses of mostly one syllable (eg: ‘‘nine’’, ‘‘ten’’, ‘‘a’’,

‘‘b’’, etc). Thus any confounding effect of speech on gait would be

consistent across all dual task conditions.

Data collection
Pelvis accelerations were recorded by one tri-axial accelerom-

eter (Opal, APDM Inc, Portland, OR, USA; sampling frequency

128 Hz) attached at the level of the sacrum as previously described

[23]. Acceleration data collection and processing were performed

in custom-written software (MATLAB R2011, Mathworks, Natick,

MA, USA).

Visuospatial Tasks Affect Locomotion More than Non-Spatial Tasks

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109802



Data analysis
Gait parameters. The accelerometer data were analysed for

the middle 15 m of the 20 m walkway (i.e. constant walking

velocity). Heel strike was identified from the characteristic peak

anterior acceleration, as reported previously [24] and used to

calculate step times between successive heel-strikes and step time

variability.

The following variables were computed:

1) Gait speed (m.s21), step length (cm) and cadence (steps.s21).

2) Step time variability (coefficient of variation of step time =

(standard deviation of mean step time/mean step time) 6100;

%).

3) Vertical, anterior-posterior (AP) and medio-lateral (ML) pelvis

harmonic ratios [23]. Harmonics were extracted from the

pelvis acceleration data through finite Fourier series. Har-

monic ratios were calculated by dividing the sum of the

amplitudes of the first ten even harmonics by the sum of the

amplitudes of the first ten odd harmonics over one stride for

each plane, AP, ML and vertical. Harmonic ratios provide a

measure of walking stability or smoothness, as they are based

on the assumption that upper body oscillations are repetitive

during normal walking [25]; higher harmonic ratios indicate

increased stability.

Cognitive task performance. Task difficulty was assumed

to be reflected in task performance measures, i.e. the time taken to

respond and the accuracy of responses to the cognitive tasks. Thus,

response times and percentage of correct answers were computed

for each condition in the seated and walking trials. Response times

were defined as the time between the delivery of the last piece of

pertinent information and the verbal response.

Statistical analysis
All statistical analyses were performed using IBM SPSS (Version

21 for Windows, SPSS Science, Chicago, USA) and all

significance levels were set at p,.05. Moderately right skewed

variables (AP and ML harmonic ratios of pelvis accelerations) were

log transformed and slightly right skewed variables (response times)

were square-root transformed to permit parametric analyses [26].

A three-way repeated measures analysis of variance (ANOVA)

with ambulation (seated, walking), task type (VS, NS) and task

difficulty (easy, difficult) as within-subject factors was initially

performed on cognitive task response times and revealed a

significant (three-way) ambulation by task type by task difficulty

interaction (see results). Subsequently two-way repeated measures

ANOVAs with task type (VS, NS) and task difficulty (easy, difficult)

as within-subject factors were performed on the response times for

seated and walking trials separately. Two-way repeated measures

ANOVAs with task type (VS, NS) and task difficulty (easy, difficult)

as within-subject factors were also performed on the gait

parameters. Planned contrasts were performed where main effects

or interactions were identified. Due to its markedly non-normal

distribution, Friedman tests (and post-hoc Wilcoxon tests) were

used to compare percentage of correct answers for the cognitive

tasks between the four cognitive conditions for the walking and

seated trials. Wilcoxon tests were also performed to compare

percentage of correct answers between seated and walking trials

for each task condition. Finally, Pearson’s correlations were

conducted to assess the relationship between gait speed and gait

variability and harmonic ratios within the four dual task

conditions.

Results

Cognitive task performance
Cognitive task performance during the seated and walking trials

are presented in Table 1. While seated, the percentage of correct

answers differed between conditions (x2 = 22.53, df = 3, p,.001)

with participants providing significantly more correct answers in

the easy compared with the difficult tasks (VS: Z = 22.876,

p = .004; NS: Z = 22.937, p = .003); but no difference in the VS-

easy and NS-easy tasks (Z = 21.023, p = .306) or the VS-diff and

NS-diff tasks (Z = 20.835, p = .404). While walking, the percent-

age correct answers differed across conditions (x2 = 13.775, df = 3,

p = .003) with more correct answers provided in the NS tasks

compared with the VS tasks (easy: Z = 22.002, p = .045; difficult:

Z = 22.535, p = .011) but no difficulty level effects (p..05). Errors

made in walking and seated trials were similar (p..05), except for

the VS easy condition, where more errors were made while

walking (Z = 22.756, p = .006).

The three-way repeated measures ANOVA revealed a signif-

icant ambulation by task type by difficulty (three-way) interaction

effect (F1, 29 = 7.073, p = .013) on cognitive task response time.

Subsequently, two-way repeated measures ANOVAs were con-

ducted to examine task type and difficulty effects for the seated and

walking trials separately. For the seated trials, there was a

significant task type by difficulty interaction effect (F1, 31 = 15.24,

p,.001) on response time resulting from a greater differential

effect of increased difficulty for the NS compared with the VS

cognitive tasks. There was no main effect of task type

(F1,31 = 0.486, p = .491) and a significant main effect of difficulty

(F1,31 = 97.727, p,.001) indicating slower response times in the

difficult versus easy cognitive tasks.

For the walking trials, there was no significant task type by

difficulty interaction effect (F1, 32 = 0.947, p = .338) on response

time, but significant main effects for both task type (F1, 32 = 16.30,

p,.001) and difficulty (F1, 31 = 33.09, p,.001). This indicated that

while walking, participants had slower response times in the NS

compared with VS cognitive tasks and in the difficult compared

with the easy cognitive tasks. Finally, response times between

the seated and walking conditions did not differ significantly

(F1, 29 = 1.408, p = .245).

Dual task type effects: gait speed, step length and
cadence

Two-way repeated measures ANOVAs showed no significant

task type by difficulty interaction effects for gait speed and step

length, but significant main effects for both task type and difficulty.

This indicates participants walked slower and took shorter steps

when concurrently performing the VS tasks compared with the NS

tasks and when performing difficult cognitive tasks compared with

easy cognitive tasks (Table 2). There was a significant task type by

difficulty interaction effect on cadence (F1,35 = 5.132, p = .030),

that resulted from a reduced cadence in the VS-diff task compared

with both the NS-diff (t = 20.053, p = .003) and the VS-easy tasks

(t = 20.051, p,.001).

Dual task type effects: variability and smoothness
Two-way repeated measures ANOVAs showed no significant

task type by difficulty interaction effects for step time variability

and AP and ML harmonic ratios, but significant main effects for

both task type and difficulty. This indicates participants had more

variable gait and less smooth pelvis accelerations in the VS versus

the NS cognitive tasks and the difficult versus easy cognitive tasks

(Table 2). There was a significant task type by difficulty interaction

effect on the V harmonic ratio (F1,34 = 7.599, p = .009), that
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resulted from less smooth pelvis accelerations in the VS-diff

condition compared with both the NS-diff (t = 20.204, p,.001)

and VS-easy (t = 20.189, p,.001) conditions.

Associations among the gait parameters
Pearson’s correlations revealed that gait speed was associated

with step time variability (r = 20.541 to 20.665, p#.001) and

harmonic ratios of pelvis accelerations (V: r = 0.438 to 0.687, p#

.008; AP: r = 0.506 to 0.590, p#.002; ML: r = 0.445 to 0.670, p#

.007) in all four dual task conditions.

Discussion

In this study we compared the effects of VS and NS cognitive

tasks on locomotor control in older people while controlling for

task difficulty. The findings build on previous work on balance

control during standing and stepping [4–6,8,9,11] by showing that

VS cognitive tasks interfere with locomotor control to a greater

extent than NS tasks. This differential effect was manifest in

spatiotemporal parameters (reduced velocity cadence, stride

length) as well as variability and smoothness measures (increased

step time variability and reduced harmonic ratios).

No significant differences in either cognitive task type error rates

or response times were evident in the seated conditions, suggesting

equivalent task difficulty. In the walking trials, participants

responded faster to the VS tasks than the NS tasks but at the

cost of making significantly more cognitive task errors, i.e. they

traded accuracy for speed. Thus, without specific instruction

regarding which task to prioritize, healthy older people showed

greater impairments in both gait and cognitive processing when

performing a VS task while walking. These findings therefore

support the bottleneck model of dual task interference, in that they

suggest that cognitive resources required for locomotor control

likely share similar pathways (i.e. the VS sketchpad of working

memory [27]) to those required for performing VS tasks.

Previous studies have reported complementary findings, in that

they have shown VS deficits identified in neuropsychological test

batteries are associated with gait instability [16,18], freezing of gait

[19] and increased risk of multiple falls in healthy populations

[16,17] and people with Parkinson’s disease [18,19]. They also

extend knowledge that the information updating and monitoring

process of executive function (working memory) is associated with

gait stability (stride time variability) [28] in healthy older people,

by specifying that the VS aspect of working memory is particularly

relevant for locomotor control.

In each condition, slower gait speed was significantly correlated

with detrimental changes in stability, consistent with a mechanical

explanation that step time variability and pelvis harmonic ratios

are optimised at usual speed [29]. Slower gait speed when

concurrently performing the VS cognitive task could be considered

a compensatory mechanism to maintain balance, as it would

increase available time to respond to hazards not seen while

attention is divided, but at the apparent cost of gait smoothness.

Alternatively, it could be that the maintenance of optimal speed to

minimize gait variability and maximise gait smoothness requires

increased levels of attention for older people. As reduced walking

speed, increased step timing variability [30,31] and reduced pelvis

harmonic ratios [23] during unobstructed gait are associated with

an increased fall risk in older people, a gait assessment with a

concomitant VS spatial task might be a useful test to include as

part of a fall risk assessment.

The finding that cadence was significantly reduced in the

difficult VS tasks compared with the difficult NS task is of interest

given that cadence is thought to be controlled at the sub-cortical

level by central pattern generators [32]. As cadence would not be

expected to be affected by an increased attentional load, our

findings may reflect a cortical-driven adaptation to improve

walking stability or reduce speed to a further extent than that

achieved by a reduction in step length.

There is neuroimaging evidence supporting the VS sketchpad

working memory model [27] demonstrating that verbal and VS

working memory are represented in the human brain by different

domain-specific networks [33]. In addition, brain imaging studies

that have examined neural correlates of either gait or spatial

attention/working memory tasks in young people, point to

commonalities in activated cerebral structures [34–38]. Brain

areas activated during spatial attention and working memory tasks

include the supplementary motor area, the premotor cortex, the

cerebellum vermis and the precuneus [34,36]. Other brain

imaging studies [35,38] have identified activation in these same

structures (supplementary motor area, the premotor cortex, the

cerebellum vermis) during gait, while conducting motor imagery of

walking tasks during functional magnetic resonance imaging has

identified activation of the precuneus amongst other structures

[37].

It has also been documented that the hippocampus and

entohirnal cortex are key cortical regions that sub-serve spatial

Table 1. Descriptive data for the four cognitive tasks (nonspatial (NS) easy, NS difficult, visuospatial (VS) easy and VS difficult) in
the seated and walking conditions for the 36 participants.

Parameter NS cognitive task VS cognitive task

Easy Difficult Easy Difficult

Seated trials

Number of instructions per 30 s 3.6 (0.5) 2.5 (0.5) 2.9 (0.4) 2.4 (0.6)

Percentage of correct answers 91 (89–100) 83 (67–100) 89 (86–100) 78 (67–89)

Response time (s) 4.08 (0.82) 5.89 (1.44) 4.66 (1.21) 5.21 (1.14)

Walking trials

Number of instructions per trial 2.4 (0.2) 1.8 (0.1) 2.3 (0.0) 2.0 (0.0)

Percentage of correct answers 100 (83–100) 86 (75–100) 86 (67–100) 67 (50–83)

Response time (s) 4.97 (1.29) 5.93 (0.90) 4.52 (0.91) 5.56 (1.98)

Data are presented as mean (SD), except the percentage of correct answers are presented as median (interquartile range) due to non-normal distributions.
doi:10.1371/journal.pone.0109802.t001
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memory and are necessary for the sequential ordering of

movement [39,40], as would be required to ensure a stable gait

pattern. Atrophy in these regions is characteristic of mild cognitive

impairment and Alzheimer’s Disease [41], in which patients also

show early impairment in VS skills and unstable gait patterns [42].

Thus, it is possible that our VS dual task walking paradigm might

have exceeded the processing capacity of the hippocampal and

entohirnal regions, leading to the deteriorations in both gait and

cognitive task performance.

Previous dual task balance studies [43–45] have found older

adults tend to prioritize the motor tasks (i.e. postural control, and

balance recovery on a moving platform) and perform significantly

worse in cognitive tasks in dual task conditions. However, our

study appears to show the opposite prioritization pattern, in that a

greater dual task cost was evident for gait-performance, while

cognitive task performance during the walking trials generally did

not differ from the seated trials (one exception being the

percentage of correct answers in VS-easy). This apparent

difference in prioritization may be explained by the nature of

the tasks; walking at self-selected speed along a flat corridor, free of

obstacles is likely to be perceived as less threatening than

maintaining balance on a moving platform.

This study has certain limitations. It is acknowledged that the

VS instructions were longer that the NS instructions and that

arithmetic tasks could involve some level of VS processing or share

some common cortical networks [46]. Strictly, NS tasks such as

forward digit span or verbal fluency might have been preferable

with respect to not containing VS elements. However we wished to

avoid the potential cross-talk between a motor rhythmic task (gait)

and a verbal rhythmic task, which has been shown to lead to better

performance in one or both tasks [47]. Secondly, it should be

noted that we did not analyse the encoding periods (participants

listening to the instructions) separately from the information

maintenance periods and the retrieval period during which the

participants responded [8,9]. Retrieval is assumed to be more

attentionally demanding than encoding [8,9]. The participants

generated more responses in the NS-easy conditions and therefore

more retrieval periods could have potentially impaired walking

stability. However, this was not the case as participants walked

faster with a smoother and less variable gait pattern in the NS

compared with the VS dual task conditions. Finally, data are

presented for walking-only trials for reference purposes, and it is

acknowledged that comparisons with the dual task conditions are

limited by not controlling for articulatory responses.

Conclusion

This study showed that while controlling for secondary task

difficulty, VS cognitive tasks led to slower, more variable and less

smooth gait patterns, compared with NS cognitive tasks. These

findings support the bottleneck theory of dual task interference

rather than the limited attentional resources model as they suggest

that the VS processing component of working memory is involved

in gait control. In the future, the use of functional neuroimaging

techniques allowing recording of cortical activity during gait might

provide further insight into the cognitive processes relating to

walking stability. At present, the clinical implications of this

research are that tasks requiring VS attention during locomotion

might present an additional challenge to walking stability,

particularly in older people. This finding may be pertinent to

persons at increased risk of falls, such as those with sensorimotor

deficits and/or neuropsychological impairments.
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a  b  s  t  r  a  c  t

This  work  proposes  the  use  of  miniature  wireless  inertial  sensors  as  an  objective  tool  for  the  diagnosis  of
ADHD.  The  sensors,  consisting  of both  accelerometers  and  gyroscopes  to measure  linear  and  rotational
movement,  respectively,  are used  to  characterize  the  motion  of subjects  in  the setting  of  a  psychiatric
consultancy.  A support  vector  machine  is  used  to classify  a group  of  subjects  as  either  ADHD  or  non-
eywords:
bjective diagnosis

nertial  sensors
ttention deficit/hyperactivity disorder
achine learning

ADHD  and  a classification  accuracy  of  greater  than  95%  has  been  achieved.  Separate  analyses  of  the
motion  data recorded  during  various  activities  throughout  the visit  to  the psychiatric  consultancy  show
that  motion  recorded  during  a continuous  performance  test  (a forced  concentration  task)  provides  a
better  classification  performance  than  that  recorded  during  “free  time”.

©  2014  IPEM.  Published  by Elsevier  Ltd.  All  rights  reserved.

lassification

. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the
ost common childhood psychiatric disorders and represents a sig-

ificant public health problem. Several works [1–5] have illustrated
 significant increase in the rates of ADHD during recent decades.
hirty years ago, reported prevalence of ADHD among schoolchil-
ren lay between 1% and 3%, whilst recent estimates range between

 and 10%. Rising trends do not inevitably imply changes in the
revalence of ADHD among youth [5]. These trends in ADHD diag-
osis could be due to greater healthcare-seeking behaviours among

amilies with children suffering from ADHD or to higher appre-
iation of this psychiatric disorder among healthcare providers,
arents, and school staff [5]. However, other authors have pointed
ut that the criteria and rating scales used to diagnose ADHD are, by
heir nature, subjective and have suggested that difficulties in mak-
ng an objective diagnosis of the disorder may  have contributed to
he secular increase in the prevalence of ADHD [6].

According to the Diagnostic and Statistical Manual of Mental
Please cite this article in press as: O’Mahony N, et al. Object
http://dx.doi.org/10.1016/j.medengphy.2014.02.023

isorders (DSM IV TR) [7], ADHD is characterized by persistent
nattention and/or hyperactivity-impulsivity on a more frequent
r severe scale than that expected at a particular level of
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B. Florentino-Liano), jjcarballo@fjd.es (J.J. Carballo), eb2452@columbia.edu
E. Baca-García), antonio@tsc.uc3m.es (A.A. Rodríguez).

ttp://dx.doi.org/10.1016/j.medengphy.2014.02.023
350-4533/© 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
development, and adversely affecting at least two  areas of life (e.g.
at home and at school) in terms of social, academic or occupational
functioning. At present, ADHD is a clinical diagnosis. The Ameri-
can Academy of Child and Adolescent Psychiatry recommend the
use of clinical interviews with parent(s) and patient and reports of
functioning in school or day care, along with assessment for comor-
bid psychiatric disorders and review of medical, social and family
history of the patient, in the assessment of a child for ADHD [8].
There is no mandatory requirement for psychological or neuropsy-
chological tests [8], despite their usefulness in some cases [9]. New
techniques, such as neuroimaging, are becoming a helpful research
instrument in the study of ADHD but are not considered useful for
the diagnosis [10].

Given  that the symptoms of ADHD are non-specific and, usu-
ally, are present in some situations but not in others, difficulties in
conducting a differential diagnosis exists [11]. In this sense, rely-
ing only on DSM IV criteria during the diagnostic process continues
to be a subject of heated debate [12]. Not surprisingly, attempting
to develop new instruments for an objective diagnosis of ADHD
has become a popular research topic, in both the clinical [6,13,14]
and biomedical engineering fields [15–17]. Some of the objective
tools which have been investigated in the literature to date include
continuous performance tests (CPTs) [14,18] and electroencephalo-
gram (EEG) [15]. EEG and CPT testing can be costly to administer,
ive diagnosis of ADHD using IMUs. Med  Eng Phys (2014),

requiring expensive equipment and specialized personnel, espe-
cially in the case of EEG.

It  has previously been shown that an increased activity level
is characteristic of ADHD subjects, in comparison with their

dx.doi.org/10.1016/j.medengphy.2014.02.023
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on-ADHD peers [19,20] and, in recent years, sensor technology
as evolved to the point where miniature wireless inertial sensors,
s small as a wristwatch, can record data for long time periods (up to
4 h). This development has paved the way for the long-term obser-
ation of subjects, in order to characterize their habitual behaviour.
ecently, these advances have begun to be exploited in the litera-
ure, with a number of investigations into the use of accelerometry
s an objective tool for diagnosing ADHD [17,21]. In this work, the
easurement of the levels and patterns of movement in children,
ith and without an ADHD diagnosis, is taken one step further:

nstead of accelerometry, alone, inertial measurement units (IMUs),
omprised of both accelerometers and gyroscopes, are used to ana-
yze and characterize the subjects’ motion. The results achieved,
n fact, suggest that the inclusion of gyroscope measurements (of
ngular motion) provides a better discriminative ability between
DHD and non-ADHD subjects than the use of accelerometer mea-
urements (of linear motion) alone.

This proof-of-concept study observes subjects for a duration
f approximately 1 h, while they visit a psychiatric consultancy.
he subjects are observed both with and without their par-
nts and the psychiatrist, as well as during a CPT task, which
equires concentration. Thus, a variety of different situations are
bserved, representing some of the variety in daily activities, such
s school and home. The goal of the study is to determine if
nertial measurements, recorded in the setting of the psychiatric
onsultancy, have the predictive capability to distinguish between
DHD and non-ADHD cases. To this end, machine learning tools are
mployed and it is shown that good predictive capability is, indeed,
ttained.

. Background

.1. State-of-the-art ADHD diagnosis

The state-of-the-art diagnostic instruments described below
ere employed in this study to provide the basis for comparison of

he proposed method to current best-practice methods.

.1.1. ADHD Rating Scale-IV: Home Version (ADHD RS-IV) [22]
The  ADHD RS-IV consists of eighteen items that assess DSM-IV

riteria for inattention and hyperactivity. Good validity, test-retest
eliability and internal consistency have been demonstrated for the
ating scale [23].

.1.2.  Test of variables of attention (T.O.V.A.®) [18]
The T.O.V.A.® is a CPT, consisting of a 21.6 min  long test, during

hich subjects have to respond quickly to targets whilst withhold-
ng response to non-targets. It should be noted that the T.O.V.A.
s not intended as a stand-alone factor for diagnosis. Indeed, the
ccuracy of the T.O.V.A.® alone is not sufficient for reliably dis-
inguishing between ADHD and non-ADHD subjects, with the
.O.V.A.®. Clinical Manual reporting sensitivity and specificity of
4% and 89%, respectively, using a discriminant analysis method.
ndependent studies have shown similar or worse results, e.g. [24].
his performance is not, however, specific to the T.O.V.A.® and other
vailable CPTs have a similar performance [6,25].

.1.3. Clinical diagnosis by psychiatrist
Clinical evaluation of ADHD and other psychiatric disorders

ncluded reviewing the clinical interview and all available data, fol-
owing the recommendations of the AACAP, as detailed in Section

 [8].
Please cite this article in press as: O’Mahony N, et al. Object
http://dx.doi.org/10.1016/j.medengphy.2014.02.023

In order to estimate the predictive sensitivity and specificity of
ny test for ADHD, the outcomes have to be compared with the out-
omes of the same patients using alternative tests. Given the lack
f a non-subjective and universally agreed-upon “Gold standard”
 PRESS
g & Physics xxx (2014) xxx–xxx

test,  it is often unclear what is considered as the ground truth for a
correct ADHD diagnosis. In this work, a combination of the ADHD
RS-IV rating and the clinical diagnosis serves as the ground truth
diagnosis for the study, such that only those patients with a pos-
itive ADHD diagnosis in the ADHD RS-IV scale and for whom this
positive diagnosis was confirmed according to the psychiatrist’s
evaluation are considered as ADHD subjects, whilst those with a
negative diagnosis in the ADHD RS-IV scale, confirmed by a nega-
tive clinical diagnosis are considered as controls. Any subject with
contradictory diagnoses was  eliminated from the study. Further-
more, patients who  are undergoing treatment for their ADHD (i.e.
pharmaceutical treatment) were not considered, as the level of
effectiveness of their medication can vary and this could result in
a falsely heterogeneous ADHD group.

2.2. Inertial measurements and activity

Recent advances in sensor technology have lead to the
widespread availability of affordable, miniature inertial sensors
which can be comfortably worn by a human subject, going about
normal daily activities. Currently available miniature inertial sen-
sors typically consist of tri-axial accelerometers and tri-axial
gyroscopes to measure the total inertial force and angular veloc-
ity, respectively, on mutually perpendicular axes (x, y and z). The
total inertial force provides a representation of the subject’s pose
(inclination angle) and linear motion. The angular velocity provides
a measure of the rotational characteristic of the subject’s motion.
As such, these sensors allow both a quantitative and qualitative
characterization of the subject’s motion, measuring both the level
or intensity of movement and the nature (rotational, linear). This
characterization of motion is exploited in this work to identify dif-
ferences in movement-related behaviour between subjects who
suffer from ADHD and those who do not.

For more details regarding the tri-axial accelerometers and tri-
axial gyroscopes used in this work, the reader is referred to the
APDM Opal sensor product information contained in [26]. These
sensor modules save data directly to an on-board memory for post-
processing.

2.3. Machine learning

2.3.1.  Classification
In  this work, the determination of the predictive capability of

inertial measurements in ADHD diagnosis, is based on machine
learning methods, specifically, classification methods. Many clas-
sification algorithms exist in the literature; the one used in this
work is the support vector machine (SVM), a state-of-the-art
learning machine, used in a wide variety of applications. For the
sake of brevity, the theory of operation of the SVM will not be
described here – instead the reader is referred to [27] for details.
In this work, the SVM is simply used as a tool to evaluate the
classification performance of features calculated from the inertial
measurements.

2.3.2. Feature selection
Feature  selection methods are used to reduce dimensional-

ity of data for various reasons: to reduce computational load, to
improve the generalization ability of the classifier and to improve
ive diagnosis of ADHD using IMUs. Med  Eng Phys (2014),

the interpretability of the results. A good review of feature selection
techniques can be found in [28]. In this work, a suboptimal forward
selection method is employed as a tool to identify those features
which have the best predictive capability.

dx.doi.org/10.1016/j.medengphy.2014.02.023
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Table 1
Number of features per category.

Category Features

High resolution histograms [21] 35
Correlation between sensors/sensor types 8
Basic statistics: (e.g. mean, std. dev., skewness, kurtosis) 52
Frequency domain: (e.g. low/high frequency power ratio.) 8
Nonlinear features: [17] (e.g. central tendency measure) 4
Structural features: [15] (e.g. positive/negative area, slope,

peak-peak  value)
20

Motion features: [20] (e.g. number of movements per
second)

6

Total  per context 133

accuracy (percentage of correctly classified subjects), specificity
(percentage of correctly classified non-ADHD subjects) and sen-
sitivity (percentage of correctly classified ADHD subjects).

Table 2
Classification performance for linear SVM with k parameters.

Context k Accuracy Sensitivity Specificity

WP 5 83.72 73.68 91.67
WS 14 85.37 89.47 81.81
ARTICLEJBE-2440; No. of Pages 5
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. Methods

.1. Subjects

Forty-three children, aged 6–11 years, who were referred to the
hild and Adolescent Psychiatry Unit of the Department of Psy-
hiatry at Fundación Jiménez Díaz Hospital (Madrid, Spain), were
ncluded in this study. The experimental group consisted of chil-
ren diagnosed with ADHD (N = 24, 55.8%), and the control group
onsisted of children not diagnosed with ADHD (N = 19, 44.2%).
ll subjects in the experimental group, but none in the control
roup, met  DSM-IV criteria for ADHD. In the experimental group,
5.8% met  criteria for the ADHD combined subtype, 41.7% for
he predominantly inattentive subtype, and 12.5% for the hyper-
ctive/impulsive subtype. In the experimental group 70.8% were
ale, whilst 47.4% were male in the control group. Mean age in the

ontrol group was 9.05 (±1.39), whereas mean age in the experi-
ental group was 8.54 (±1.38) (t-test: df = 41, p = 0.24).

.2.  Ethics procedures

Parents  and children were given a detailed description of the
roject and each subject’s parent(s) or guardian(s) were required
o give signed informed consent. Subjects provided assent. The con-
ent and assent forms and the study protocol were reviewed and
pproved by the Institutional Review Board of Fundación Jiménez
íaz Hospital.

.3.  Monitoring procedure

The forty-three subjects were all evaluated in the same fashion.
wo IMUs were used to record movement data for each subject -
ne attached to a belt worn at the waist and the other fixed by a
elcro strap to the ankle of the “dominant” leg (the subject was
sked to kick a football to identify the dominant leg). The IMU  at
he waist measures movement of the whole body, whilst the IMU  at
he foot captures local movements such as tapping the foot or other
ehaviour which may  be associated with excess energy. Each sub-

ect wore both IMUs during the entire duration of their visit to the
sychiatric consultancy (approximately 1 h). A trained employee
the “supervisor”) accompanied each subject throughout the entire
isit, labelling on a time-synchronized computer platform the “con-
ext” in which the data were collected, where the context refers to
he “where, what and with whom” of the subject’s environment.
he subjects spent time in each of the following contexts:
WP Waiting room; with parents.
WS  Waiting room; with supervisor only.
CD Consultant’s room; with psychiatrist.
CP  Consultant’s room; with psychiatrist and parents.
TT Taking the TOVA test; with supervisor only.

In both the waiting room and the consultant’s room, the subjects
ere requested to sit in a revolving chair. While taking the TOVA

est, the subjects were seated in a non-rotating chair in a room
ontaining only a desk with the computer for administering the
.O.V.A. and nothing on the walls, to eliminate distractions.

A  minimum duration of 2 min  in each context was  selected as
alid, for the purpose of data analysis, to reduce the effects of inter-
uptions and disruptions and to allow a fair measurement of the
ubjects’ behaviour in each context.

.4. Feature calculation and selection
Please cite this article in press as: O’Mahony N, et al. Object
http://dx.doi.org/10.1016/j.medengphy.2014.02.023

In order to represent the recorded data in a concise form,
eatures were calculated from the observed accelerometer and
yroscope signals. In order to exploit the most representative fea-
ure set possible, characterizing all aspects of the observed signals,
T.O.V.A. score, age, gender 3
Total per subject 668

features were calculated per sensor type (i.e. for gyroscope and
for accelerometer), for each sensor location (waist and foot) and
during each context. Features were calculated based on the mod-
ulus of the tri-axial accelerometer and gyroscope vectors, as well
as on differential data (e.g. the difference between the modulus of
the acceleration vector for consecutive samples). Additionally, age,
gender and the achieved T.O.V.A. score were treated as additional
features for each subject. The entire list of features is not included,
for the sake of brevity, but the main categories, with some examples
and the number of features in each category, are listed in Table 1.

A forward selection method was employed to select the subset
of up to a maximum of 15 features which achieved the best classifi-
cation accuracy for each context. For each context, the subset which
achieved the maximum performance with the minimum number
of features was  selected as the final feature subset for that context.
Leave-one-out validation was employed in the training and test
phases of classification, due to the small number of observations
available. The same forward selection procedure was also repeated,
considering the set of all features calculated throughout the entire
duration of the experiment (i.e. 668 features per subject).

4.  Results

Two  different SVMs were used to classify the subjects - one
with a linear kernel and the other with a Gaussian kernel. However,
despite an improved classification accuracy being achieved by the
Gaussian kernel SVM, results for the linear SVM only are reported
in this section, because, due to the small number of samples avail-
able in the dataset, the Gaussian SVM may  be prone to overfitting
the training data and giving an unrealistically elevated estimate of
the classification performance.

Table  2 shows the classification performance achieved for the
set of k features which resulted in the highest classification accu-
racy in the forward selection procedure. Results are shown for each
context of the trial individually and for the entire duration of the
trial (“ALL”). The following performance measures are reported:
ive diagnosis of ADHD using IMUs. Med  Eng Phys (2014),

CD 7 83.72 73.68 91.67
CP 5 81.40 57.89 100
TT 6 93.02 89.47 95.83
ALL 10 95.12 94.44 95.65

dx.doi.org/10.1016/j.medengphy.2014.02.023
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The performance of the SVM is seen to be good, in terms of accu-
acy, sensitivity and specificity, across all of the individual contexts
nd, particularly, during the T.O.V.A. test. The results across the
ntire duration (ALL) show that an increased classification perfor-
ance can be achieved by the joint consideration of the subject’s

ehaviour in multiple contexts.
For the sake of brevity, the entire list of features selected by the

lgorithm for each of the contexts listed in Table 2 is not included
ere. In summary:

Approximately  one-third of the features chosen by the feature
selection  procedure are gyroscope-based and the remainder are
predominantly  accelerometer-based (in certain contexts, gender,
age  and T.O.V.A. score have also been chosen).
More  than half of the selected features in all contexts came from
the  sensor at the child’s waist.
Of  the ten features chosen by the forward selection procedure
across  the entire test duration, six of those came from the T.O.V.A.
test  context.
More than half of the features chosen in every context were “high
resolution  histogram” (HRH) elements.
The  other categories of features which were selected most fre-
quently  were basic statistics, frequency domain characteristics
and  measures of correlation between sensors.

.  Discussion

The results, in Section 4, suggest that inertial sensors provide a
romising tool for the objective diagnosis of ADHD. In the previ-
us literature, the focus has been on acceleration measurements.
nterestingly, an analysis of the features selected for each context
uggests that the features calculated based on gyroscope measure-
ents have a good predictive capability for discrimination between
DHD and non-ADHD subjects and should be considered along with
ccelerometer-based features. More than half of the selected fea-
ures in all contexts came from the sensor at the child’s waist,
uggesting that “global” motion of the body is a better indicator
f hyperactivity than “local” motions, such as tapping the foot, or
imilar habits.

Interestingly, of the ten features chosen by the forward selec-
ion procedure across the entire test duration, six of those came
rom the T.O.V.A. test context. Thus, it appears that the move-

ent of a child in restrictive situations, such as carrying out a
pecifically defined task that requires concentration (the T.O.V.A.),
rovides better discriminative ability than the child’s behaviour in
free time”. Furthermore, it should be noted that the sensitivity and
pecificity of the reported method outperform the same metrics for
he T.O.V.A. alone, which were 84% and 89%, respectively, as cited
n Section 2.1.2.

The  final observation, regarding the chosen features at the out-
ut of the forward selection, pertains to the categories to which
hosen features belong. More than half of the features chosen in
very context were “high resolution histogram” (HRH) elements.
his does not come as a surprise, since a recent review of the
tate-of-the-art in extraction of features from accelerometers for
he ADHD problem [17] showed that HRH features provide the
est classification performance among all of the reviewed cate-
ories. However, it should be noted here that other categories of
eatures have also been chosen in all contexts, most notable among
Please cite this article in press as: O’Mahony N, et al. Object
http://dx.doi.org/10.1016/j.medengphy.2014.02.023

hem, basic statistics, frequency domain characteristics and meas-
res of correlation between sensors. Thus, it can be seen that using

 wide range of feature types provides improved performance over
ethods which rely on one single category of features.

[
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6. Conclusions and future work

This work serves as a proof-of-concept for the use of accelerome-
ters and gyroscopes in the diagnosis of ADHD in children between
6 and 11 years of age. Results have shown that classifiers based on
a small number of features (5–10) can discriminate between ADHD
subjects and control subjects with high sensitivity and specificity
levels. Clearly, a more extensive follow-up study is required, with
a larger number of patients, to more robustly identify the optimal
set of features and the diagnostic accuracy of the system. To this
end, construction of a large database has already been begun by
the authors.

Furthermore, investigation into the ongoing monitoring of
patients with an existing ADHD diagnosis, based on the inertial
sensors and classification techniques described in this work, is also
underway. The aim of that study is to use objective measures to
provide feedback on the progress of the patient, their response to
treatment and other indications.
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Abstract: Recent advances in wearable sensor technologies for motion capture have
produced devices, mainly based on magneto and inertial measurement units (M-IMU),
that are now suitable for out-of-the-lab use with children. In fact, the reduced size,
weight and the wireless connectivity meet the requirement of minimum obtrusivity and
give scientists the possibility to analyze children’s motion in daily life contexts. Typical
use of magneto and inertial measurement units (M-IMU) motion capture systems is
based on attaching a sensing unit to each body segment of interest. The correct use of
this setup requires a specific calibration methodology that allows mapping measurements
from the sensors’ frames of reference into useful kinematic information in the human
limbs’ frames of reference. The present work addresses this specific issue, presenting a
calibration protocol to capture the kinematics of the upper limbs and thorax in typically
developing (TD) children. The proposed method allows the construction, on each body
segment, of a meaningful system of coordinates that are representative of real physiological
motions and that are referred to as functional frames (FFs). We will also present a novel
cost function for the Levenberg–Marquardt algorithm, to retrieve the rotation matrices
between each sensor frame (SF) and the corresponding FF. Reported results on a group of
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40 children suggest that the method is repeatable and reliable, opening the way to the
extensive use of this technology for out-of-the-lab motion capture in children.

Keywords: magneto and inertial measurement unit; anatomical coordinate system;
functional frame definition; calibration protocol; children motion capturing

1. Introduction

The possibility of capturing and quantitatively measuring children’s motion repertoire in a daily life
scenario is of great interest for a number of reasons. Clinical evaluation tools to measuring motor
skills in children are, to date, able to offer qualitative, rather than quantitative, evaluation (i.e., studies
using standardized measures have difficulties in providing fine-grained details on children movement
properties). Examples of widely used test to measure motor skills in children are the Gross Motor
Function Measure, the Movement ABC or the 10 Meter Walk Test [1–3]). Therefore, the lack of reliable,
objective measurements foster interest in the development of tools to accurately capture information
about children’s motion skills in real-life environments. For instance, it would be of key importance
in the rehabilitation of children with a chronic health condition, such as cerebral palsy, to guide and
evaluate interventions, to monitor progress and also to provide families with objective feedback [4].
Besides, quantitative motion evaluation can support standard clinical rating scales, providing clinicians
with enriched information on patients’ health [5].

Furthermore, research studies on the role of motor and communicative gesture (e.g., gestures)
have highlighted the importance of assessing the motor characteristics of children’s behavior [6,7].
Furthermore, in children with autistic spectrum disorder (ASD) or “at high-risk” for ASD, appropriate
motion evaluation tools may be of relevance for early diagnosis and intervention [8–10].

A considerable number of systems for human motion capturing is commercially available at present.
Though the technologies and the approaches are many, exhibiting different performance characteristics
and operating on entirely different physical principles, no ‘silver bullet’ currently exists [11]. Among the
plethora of choices, wearable technologies have the potential to meet the requirements for this specific
application, as reported in [12,13]. Wearable motion tracking systems are based on M-IMUs, which
identify a class of devices comprising tri-axial accelerometers, gyroscopes and magnetometers. Besides
the information provided by the single sensor (i.e., acceleration, angular velocity and magnetic flux
density), M-IMUs can provide and maintain an accurate 3D-orientation estimate thanks to sensor fusion
algorithms (for a comprehensive review on this topic, see [14]).

In order to obtain a precise tracking of the kinematics of human joints, the fulfillment of a calibration
protocol is strictly required. The aim of our research was to define such a calibration procedure to
capture the kinematics of upper limbs and thorax in children. Our method permits the construction of
meaningful functional frames (FFs), in the sense of being representative of real physiological motions,
on each body segment and allow for estimating of the rotation matrices between each sensor frame
(SF) and the corresponding FF. A typical calibration protocol is composed of the following steps: (1)
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a series of fixed reference postures and/or functional movements that the subject under experimentation
is asked to perform; (2) the definition of both an FF on each body segment of interest and a mapping
between each axis of the FF and each reference posture/functional movement; and (3) the computation
of the transformation matrix between each FF and its corresponding SF. Despite existing literature
proposing procedures for the kinematic tracking of both upper and lower limbs [15–19], no study to
date has provided a calibration protocol specifically designed to be used with children. In fact, existing
procedures do not take into consideration the constraints related to an use of M-IMU technology with
children, e.g., the fact that particular care in the choice of movements to perform is required. Therefore
an ad-hoc design is required. Based on the outcomes from a previous study [20], we have built a
calibration protocol, which defines an ameliorated set of reference postures/functional movements, a
new way to estimate reference axes from sensor data, and introduces a novel methodology to compute
the transformation matrix. The experimental procedure has been tested in typical development (TD)
children, and it has been administered by non-technicians in daily life scenarios (e.g., at school or at
home), as it does not need any special expertise.

This paper is organized as follows: Section 2 provides an introduction of the motion tracking
system architecture, including the hardware and software components that have been employed, and
offers a detailed description of the proposed calibration protocol alongside data analysis methodology;
Section 3 reports the results of the experimental session; Section 4 discusses the results and presents
some conclusions.

2. Materials and Methods

2.1. System Architecture

As hardware, the experimental setup is comprised of a set of 5 wireless sensing units (SUs) chosen
among the number of commercially available systems. In particular, we chose to use Opal by APDM Inc.
(Portland, OR, USA), because their smaller dimension and lower weight (22 g) makes them particularly
suitable for the target application. Each SU contains an M-IMU, a micro-SD for robust data logging
and a radio transceiver. The orientation information is computed via the manufacturer’s Kalman filter,
in the form of a quaternion (qG

SF ) relating the orientation of a global, Earth-based frame (G) to the SF.
An access point is provided to gather synchronized sensor data and to make them available to a PC
in real time.

As software, we developed a C++ GUI application for agile system managing and data collection,
using the Qtcross-platform framework. Each M-IMU sensor can be tagged within the software
application with the name of the human joint to which it is attached in order to store this information in
the data logs. A complete scheme of the experimental setup is shown in Figure 1.

2.2. Calibration Protocol

This section describes the calibration protocol for the kinematic tracking of thorax and upper limb
motion in children. However, before providing details and in order to clarify what will follow, we shall
provide an overview of the entire procedure.
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Figure 1. Experimental setup: the 5 sensing units (SUs) are attached to the body at
predefined spots and data are collected and visualized via the developed software interface.

The proposed methodology was tested on a group of 40 primary school children (the average age
is 6.9 ± 0.65 years old; the minimum is 6.0 and the maximum is 8.0; and the group is composed of
22 females and 18 males). Informed consent was obtained from all the children’ parents, as required
by the Institutional Review Board at the National Research Council (CNR). An experimentation session
took place in the school, thus capturing motion in an environment familiar to the children.

Before starting the experimentation session, being aware of the accelerometer and magnetometer
calibration issues reported in [21], the calibration status of each sensor was assessed following the
procedure described in [22]. Then, each sensor was fixed to the corresponding body segment of interest
using Velcro straps. During the procedure, the mapping sensor-body segment was recorded in the data
logs through the developed software interface.

As a preliminary step, the calibration protocol requires 5 SUs to be attached to the following body
spots: central on the thorax, latero-distally on the right and left upper arm and near the wrist on the
right and left forearm, as shown in Figure 2. Furthermore, each body spot is assigned an arbitrarily fixed
FF, which is descriptive of the kinematic of the body spot itself, e.g., the axes of the FF on the upper
arm will be related to the degree of freedom of the shoulder joint. Finally, each SU is associated with a
corresponding FF. Then, the actual calibration procedure articulates in a series of 4 successive steps:

• step 1: the participant, while wearing the SUs, completes a predefined list of movements and
adopts a set of stances, separately comprising the thorax, the upper limbs or the forearms. Each
movement in the list is associated with an axis of the involved FFs on the body.
• step 2: the information is collected from the SUs and pre-processed (i.e., normalization) in order

to extract the direction of the gravity vector and of the angular velocity vector, respectively, during
the stationary postures and movements.
• step 3: an estimate of each axis of the FFs, relative to the corresponding SF, is obtained from the

pre-processed data, applying singular value decomposition (SVD). Moreover, associated with the
estimates is a measure of the reliability of the computed axis.
• step 4: given the set of FF axes and their estimates in the SFs, a regression algorithm, namely

Levenberg–Marquardt (LM), is applied to compute the transformation between each pair of
systems of coordinates. Furthermore, the reliability indices computed at step 3 are used to properly
condition the regression algorithm.
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The final aim of the calibration procedure is then to define the transformation between each SF and the
corresponding, arbitrarily fixed FF, i.e., the rotation matrix, RFF

SF . Eventually, its estimation allows for
the transition from the orientation information of the SUs to the kinematic description of the upper body.

Figure 2. The figure on the left reports the position of the SUs on the body
segments (1, thorax; 2, right upper arm; 3, left upper arm; 4, right forearm; 5, left forearm).
On the right, a possible assignment of the functional frame (FF) on the body is reported.
Note that each movement in the calibration protocol list is matched to an axis in the FFs
(refer to Section 2.2.1. for the meaning of the acronyms). SF, sensor frame.

2.2.1. Calibration Movements

The first part of the calibration itself consists of a set of stationary postures and mono-axial, functional
movements that the participant has to perform. This approach relies on the two procedures that are
commonly referred to in the literature as the “reference” and “functional” method, respectively [19].
The aim of this first step of the protocol is to allow for the identification of, at least, a pair of non-aligned
axes on each FF of the body segments of interest. These axes are representative of certain directions of
interest on the body, i.e., the transverse axis of a body segment, or of physiological motion, i.e., the axis
of rotation of the shoulder joint during flexion-extension of the upper arm. For the kinematic tracking of
the thorax and upper limbs in children, we propose the following calibration movement:

• Thorax

TS: The gravity vector measured in supine position with arms alongside the body and palms
facing down (5 s)

TR: Rotation of the thorax on the transverse plane while holding a bar (3–4 reps.), the movement
is shown in Figure 3

TFE: Flexion-extension from standing position with legs opened at shoulder-width (3–4 reps.)
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• Upper arm

US: The gravity vector measured in supine position with arms alongside the body and palms
facing down ((5 s)

AA: Ab- and ad-duction from standing position with legs opened at shoulder-width (3–4 reps.);
see Figure 3

FE: Flexion-extension from standing position with legs opened at shoulder-width (3–4 reps.)
FEB: Flexion-extension while holding a bar with hands at shoulder breadth with an adducted

thumb grasp, as shown in Figure 3 (3–4 reps.)

• Forearm

FS: The gravity vector measured in supine position with arms alongside the body and palms
facing down (5 s)

PS: Pronation and supination movement with arms fully extended and hands closed (3–4 reps.)
see Figure 3

FFEB: Flexion-extension while holding a bar with hands at shoulder breadth and with upper arms
close to the body (3–4 reps.)

Figure 3. A subset of the calibration movements to be performed in the protocol. Clockwise
from the top left we have: TR associated with the x-axis of FFThorax; FEB of the upper arm
associated with the z-axis of FFUpperarm; AA of the upper arms associated with the y-axis
of FFUpperarm; PS of the forearms associated with the x-axis of FFForearm.

All calibration movements were proposed to children as a short gym exercise. An adult played the
role of coach, and children were asked to observe one movement sequence before proceeding to execute
the movement together with the coach. The reported list of movements and stationary postures identifies
a set of no less than 3 non-aligned axes for each body segment FF. The above list describes a single trial
of the calibration protocol, and the complete version will be composed of a set of 3 trials.
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2.2.2. Data Collection

Aiming at identifying meaningful axes for each body segment, we are interested in collecting two
kinds of information during the protocol trials, i.e., accelerometer readings for the posture part and
gyroscope readings for the dynamic part. In fact, accelerometers record the direction of the gravity
vector while the subject is lying in supine position with palms facing down. The gyroscopes, instead,
capture the angular velocity vector during movements, which allows one to identify the direction of the
axis of rotation itself. Each single measurement from accelerometers or gyroscopes is a vector of data
in R3 made of the three axis sensor readings. At this stage, all collected data are normalized, i.e., each
measurement is transformed into a unit norm vector.

2.2.3. Reference Axis Identification

We then proceeded to build the following measurements matrices, ASF = [aSF
1 , aSF

2 , ..., aSF
N ]T ∈

RN×3 and ΩSF = [ωSF
1 ,ωSF

2 , ...,ωSF
N ]T ∈ RN×3, made of the N normalized readings from

the accelerometers and the gyroscope, respectively. After that, we applied singular value
decomposition (SVD):

ASF = U Σ(σi) VT

ΩSF = U Σ(σi) VT
i = 1, 2, 3

U ∈ RN×N , Σ ∈ RN×3 , V ∈ R3×3

(1)

where U and V are the orthogonal matrices coming out from the decomposition and containing an
orthogonal basis for RN and R3 spaces, respectively. Σ is a diagonal matrix with the singular values
on the main diagonal (σi). Based on the hypothesis of a stationary posture during the static part and a
uni-axial movement during the dynamic part of the calibration protocol, the desired axis of reference
will correspond to the right singular vector associated with the highest singular value (σ1 > σ2 > σ3),
i.e., the first column of V.

This result can be explained by adding the following considerations. First, in the ideal case of
flawless, mono-axial movement, the angular velocity vectors will lay on a line in 3D Euclidean space,
i.e., they are contained in a subspace of dimension 1. Secondly, during the static part of the protocol,
the projections of the gravity vectors on each axis of the SF are assumed to be constant. Again, this
implies the accelerometers’ readings to be confined in a subspace of dimension 1, specifically on a
point. Therefore, both ASF and ΩSF are expected to be rank 1 matrices. In practice, given the objective
inability for a human being to perform a perfect mono-axial joint rotation, physiological movements
while lying supine (e.g., movements due to breathing) and the sensor noise, ASF and ΩSF , will be
full-rank. Therefore, what can be achieved with SVD is a robust discrimination between the useful
information and disturbances, to identify the underlying 1-rank submatrix and its basis, i.e., the axis
of rotation.

In addition, we used singular values to define an index of the reliability of the computed axis, given
by the following expression:

ρ =
σ1∑3
i=1 σi

, [
1

3
≤ ρ ≤ 1] (2)
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which is a dimensionless quantity representing the ratio of the largest singular value (σ1) and the sum
of all the diagonal entries of the Σ matrix. This index provides an indication about the quality of the
collected dataset, in terms of how data distributes along directions orthogonal to the computed axis of
reference. In the ideal case, ρ should be the unity. In the practical one, the higher the value of ρ, the
better will be the dataset collected.

By applying this procedure to all the datasets captured during steps 1 and 2, the outcome will be a set
of pairs composed of axis estimates and the corresponding reliability index (~vSF , ρ), for any movement
in the calibration list. Further, for each FF defined on the body segments of interest, a set of at least two
non-aligned axis estimates is available.

2.2.4. Transformation Matrix Computation

With the purpose of identifying the 3D rotation matrix (RFF
SF ) relating each SF to its corresponding

FF, the axes estimates together with their reliability indices are used in the Levenberg–Marquardt (LM)
algorithm. In the following, without loss of generality, we describe the method for the case of the
thorax segment (RFF

SF Thorax
), where exactly 3 axis estimates are available from the protocol and will

provide a means to generalize the method to the other body segments. As a first step, we construct the
following vectors:

~vFF
ref =

~xFF

~yFF

~zFF


9×1

, ~vSF
est =

~xSF

~ySF

~zSF


9×1

(3)

where ~vFF
ref is the set of canonical versors for the FF, i.e., ~xFF = [1 0 0]T ,

~yFF = [0 1 0]T , ~zFF = [0 0 1]T , and ~vSF
est contains their corresponding estimates expressed in the

SF. As shown in Figure 2, each versor in FF is ideally associated with a functional axis, e.g., ~yFF

represents the thorax flexion-extension movement. The vectors ~vFF
ref and ~vSF

est are related by the matrix:

Q =

R̂FF
SF Thorax

R̂FF
SF Thorax

R̂FF
SF Thorax

 ∈ R9×9 (4)

which is a block diagonal matrix having the rotation matrix estimate repeated on the main diagonal.
In the ideal case, when the estimates in ~vSF

est are orthogonal and right-handed and Q contains the true
RFF

SF , then the equality ~vFF
ref = Q ~vSF

est is verified. In the real case, the versors composing SF~vest will
most likely be not aligned, rather than orthogonal. Thus, we can define the following error function:

ε = (~vref −Q(R̂) ~vest) (5)

where the symbol, ε, is the vector of residuals. In order to properly condition the LM algorithm, we used
the following cost function:

C(R̂) = εT W ε (6)
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where we introduced a matrix, W, of weights built up from the reliability indices, associated with the
SF~vest elements, and defined as:

W =

ρxI3×3

ρyI3×3

ρzI3×3

 (7)

If no weights are used, i.e., W = I, the rotation matrix computed with the LM algorithm will be
optimal in the sense of the least squares, i.e., minimizing the sum of squared residuals coming from
Equation (5). The advantage of introducing a matrix, W, of weights, lies in the possibility to guide the
optimization process in order to achieve a better fitting along the directions associated with the most
reliable axes. Besides, the non-linear regression formulation will generate a rotation estimate expressed
in the form of a unit norm quaternion, i.e., q̂FF

SF Thorax
= [w x y z]T . In order to convert the current

estimate back to a rotation matrix, we used the following conversion expression:

R(q) =

w2 + x2 − y2 − z2 2xy − 2zw 2xz + 2yw

2xy + 2zw w2 + y2 − x2 − z2 2yz − 2xw

2xz − 2yw 2yz + 2xw w2 + z2 − x2 − y2

 (8)

which avoids singularity issues when computing the Jacobian of the cost function. The complete
formulation of the LM regression algorithm is given by:

q̂∗
k+1 = q̂k −∆k

q̂k+1 =
∥∥q̂∗

k+1

∥∥ (9)

where q̂∗
k+1 is computed from the previous quaternion (q̂k) estimate and has to be normalized to enforce

the unit-norm condition, which guarantees the estimate to be a rotation in the special orthogonal group,
SO(3). The variable, ∆k, represents the regression step at the k -iteration, and it is defined as:

∆k = (JT W J + λ diag(JT W J))−1 JT W ε

J = ∂ε/∂q

(10)

where J is the Jacobian of the error function and λ is a damping parameter, which modulates the
algorithm’s behavior. Note that the LM is formulated using the more efficient expression by Marquardt
for the Fisher matrix (F = JT W J + λ diag(JT W J)), which reduces the convergence time of the
algorithm. We also selected, as a convergence criterion, the percentage variation of the cost function to
be under a certain threshold (ε): ∣∣∣∣∣C(R̂)k −C(R̂)k+1

C(R̂)k

∣∣∣∣∣ < ε (11)

Beyond the case of the thorax, the method can be scaled according to the number of vector estimates
available, with the constraint of a minimum of 2 estimates in order to unambiguously identify a rotation
matrix. In the general case of a number, N, of estimates, the presented matrices and vectors will have
the dimension:

FF~vref ∈ R3N×1 , SF~vest ∈ R3N×1 , Q ∈ R3N×3N , W ∈ R3N×3N (12)
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Finally, further details on the LM algorithm and its implementations can be found in [23].

3. Results

Experimental data were collected on the group of 40 children with the methodology described above.
The recorded calibration movements were processed in order to extract reference axes together with their
reliability measure (ρ) of the estimate. We report in Table 1 the values of our reliability index, where the
reliability parameter is expressed as the mean and standard deviation on the whole group.

Table 1. The table reports the values for the reliability index, ρ, which is a dimensionless
number in the range, [1

3
, 1], relative to each calibration movement. The value is expressed

as a mean (±1 SD) computed on our group of 40 children.

The set of axes estimates and ρ values are eventually passed as input to the LM algorithm, where
they are included in the matrix of weights, defined in Equation (7). As a pre-condition to the regression,
we considered the initial estimate to be the identity rotation, i.e., q̂0 = [1, 0, 0, 0], and we assigned
λ = 0.001, which is a typical assumption for this parameter (refer to Appendix A6 in [23]). Moreover,
we set the convergence criterion threshold to ε = 10−4. Given those initialization values, the number
of iterations the algorithm undergoes in the average case before attaining convergence is the following,
again expressed as the mean and standard deviation:

• Thorax FF: 6.34 ± 0.561 iterations
• Upper arm FF (left and right): 8.36 ± 0.767 iterations
• Forearm FF (left and right): 7.30 ± 0.863 iterations

As an example of the converging behavior of the LM algorithm, we reported the case of the thorax FF
rotation matrix in Figure 4. Besides, in this particular case, we stressed that the algorithm performance
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gives random initialization values as input, and we still observed the attainment of convergence after a
moderate number of iterations (12 in the example).

Figure 4. The figure reports the typical converging behavior of the Levenberg–Marquardt
(LM) algorithm. On the left, the trend of the RFF

SF matrix estimate relative to the FFThorax is
shown, respectively expressed in the form of a unit-norm quaternion (top) and as Euler roll,
pitch and yaw angles (bottom). On the right, the plots represents the error vector (top) and
the cost function (bottom), respectively defined in Equations (5) and (6).
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With the purpose of gaining further insight into the behavior of our regression algorithm, we focused
on the error function, particularly on the vector of residuals, ε. As formalized in Equation (5), this vector
is made of the Euclidean differences between each FF canonical axis (i.e., the versors x̂ , ŷ and ẑ) and
its corresponding estimate, both expressed in the FF system of coordinates. The aim of the regression
algorithm would be that of mitigating these differences, by making matched pairs of vectors (~vref , ~vest)
pointing to approximately the same directions in R3 space, i.e., as close as possible, in accordance
with the mathematical constraints associated with the rotation matrix, R̂FF

SF (e.g., the orthogonality
of the column vectors). In our weighted formulation of the LM algorithm, some pairs of vectors are
expected to get closer than others, depending on the value of their reliability index. In addition, the pairs
that get closer are also the ones that mostly affect the computation of the transformation matrix R̂FF

SF .
In order to visualize this effect, we made a comparison of the values of these differences at the first step,
when R̂FF

SF = I3×3, and at the convergence of the regression algorithm, R̂FF
SF = argmin

R
(C(R)). As a

distance metric, we considered:

d(~vref , ~vest) = acos(~vT
ref~vest) (13)

which is the angle between each pair of vectors. The analysis was extended to the whole set of 40
children, and we reported the results, expressed as the mean and standard deviation, for each movement,
in Figure 5.
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Figure 5. Comparison of the differences between pairs (~vref , ~vest) of axes estimates and
their FF matches, computed at the beginning and at the end of the LM regression (refer to
Section 2.2.1. for the meaning of the acronyms). As a distance metric, we considered the
angle between each pair of vectors, computed as the arccosine of their dot product.

Figure 6. An example of kinematic reconstruction of the right arm during the
flexion-extension (FE) movement and the supported forearm flexion-extension (FFEB) with

the proposed calibration procedure.
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4. Discussion and Conclusions

This paper describes a novel calibration protocol for the kinematic tracking of the thorax and upper
limbs with M-IMU wearable sensors, designed to be used with children. This method allows a user
to define functional coordinate systems (FF) that are fixed on the body segments and to estimate the



Sensors 2014, 14 1069

relation between an M-IMU sensor’s frame and its corresponding body segment’s FF. The proposed
calibration procedure itself is made of a list of movements and a methodology to elaborate sensor data,
in order to compute a rotation matrix relating each SF to the corresponding, arbitrarily-defined FF (i.e.,
RFF

SF ). Selected movements have the two-fold purpose of identifying a sufficient number of non-aligned
axes on each defined FF, at least two, and conforming to the constraints of being easy to perform and
short in duration, in order to avoid the fatigue of the children and to reduce the overall duration of
experimental sessions.

In fact, as highlighted in our previous study [20] and as we also observed during the experimentation,
some movements are easier to perform for children (6–7 yo) than others: as an example, the thorax lateral
flexion, used in similar calibration protocols with adults [18], resulted in an improper choice for children.
Furthermore, given the difficulty to maintain children’s attention for a long time compared to adults, we
tried to optimize the calibration protocol in order to limit the duration while maintaining a substantial
number of functional axis estimates, as suggested in [15]. In addition, the protocol is presented as a
game of imitation: an adult plays the role of the coach, and the subject is asked to mirror his movements.
This experimental methodology is specific for usage with children, as it brings the two-fold benefit of:
(i) making it easier for children to understand how the movements should be performed; and (ii)
having an adult checking the correctness of the movement. No difficulties were encountered in the
experimentation with the proposed list, and in all but the thorax case, a redundant number of functional
axes were identified, referring to the minimum of a pair of non-aligned axes that is necessary in order
to estimate a rotation matrix. Moreover, our novel data analysis approach eliminates the typical need
of a segmentation process, which usually involves a rest period between any two phases of a rotation
movement, e.g., to differentiate the flexion from the extension phase, as reported in [15,16,18]. Thus,
with our methodology, the duration of this part of the protocol is further reduced (i.e., lasting 15 min).

In view of the necessity that may arise of pruning the list of movements to the minimum of two axes
per FF, we introduced the reliability index, ρ, which is defined in Equation (2), and we used it to qualify
the estimated axes, as reported in Table 1. The index of reliability is computed from measurement
matrices containing repetitions (from nine to 12) of the same functional movement/reference posture
and, thus, gives an indication of the precision of the child’s performance. In the ideal case of a noiseless
sensing unit, the maximum value of the index (i.e., one) is obtained when exactly the same axis of rotation
is involved in each repetition of the movement. Instead, the minimum value of the index (i.e., 1/3) is
mathematically obtained in the limit case when each repetition of the movement belongs to a different
axis of rotation and those axes are orthogonal, e.g., that would be the case in which a subject is asked
to perform a flexion-extension of the upper arm three times and he instead performs a flexion-extension
first, then an ab- and ad-duction and, finally, a pronosupination. Further, high precision in the execution
of a movement translates into the high repeatability of the estimated reference axis.

The proposed list of movements deliberately included the same physiological movement (i.e., flexion
and extension) executed with or without the support of a rigid bar. The reason for that is the possibility
to evaluate if, as expected from intuition, the introduction of an external support to further facilitate
children’s coordination improves the reliability of some movements. From the reported table, the
reliability index indicates that the supported movement is better than the other. In addition, we carried out
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statistical analysis using a paired t-test on the normally distributed reliability datasets, and we obtained
a significant difference (p < 0.05) both for the forearm FFs and for the upper arm FFs.

In Figure 5, we proposed a visualization of the residual distance between vector pairs (~vref , ~vest), as
defined in Equation (13), at the beginning and at the end of the LM regression and for each movement
in the calibration protocol. We observed a general trend of the pairs of axes estimates and corresponding
FF reference axes, to reduce their angular distance at the end of the regression. If more than one estimate
for the same FF axis is available, the regression algorithm will favor the one with the higher reliability
value. For instance, this is true for the case of the supine posture (ρ = 0.98 and ρ = 0.99) versus
the abduction and adduction movement (ρ = 0.58 and ρ = 0.59) of the upper arms on the t-axis
estimation of the associated FF. The thorax was the body segment with the overall highest reliability
and with the lowest residual distance between the pairs (~vref , ~vest) in the rotation matrix estimation,
respectively, 5.39◦, 2.56◦ and 2.86◦ for the x, y and z component. This is due to a proper choice
of the calibration movements for the thorax, with reference to both the repeatability and the fact
that the set of axes estimated during each movement/reference pose is close to an orthogonal frame.
Moreover, this result is in accordance with what was discussed in [18], where the functional frame
built on the thorax is even proven to be the most compatible with the anatomical frame defined by the
ISBrecommendations [24]. The pronosupination of the forearm is the most reliable movement for the
functional part of this specific FF, and its associated axis is the most repeatable, in agreement with similar
studies in the literature [18,20].

Furthermore, the residual angular distance for the pairs (~vref , ~vest) amounts to 4.68◦ for the left and
4.72◦ for the right forearm.

The standard way to estimate the rotation matrix, RFF
SF , in the literature [15,16,18,24] is that of

using a single pair of non-aligned axis estimates to get an orthonormal frame via successive vector
products. This method is referred to in the literature as the TRIAD (Tri-axial Attitude Determination)
algorithm and was originally proposed as a solution to Wahba’s problem [25]. Our approach to RFF

SF

estimation overcomes the known limitations of the TRIAD algorithm, in the sense that it is capable of
accommodating more than two axis estimates, is not sensible to the order at which the axis estimates are
considered and, more importantly, can exploit all the available information (i.e., both the axis direction
and its repeatability measure).

Finally, as an outcome to the method we reported in Figure 6, we present an example of the kinematic
reconstruction for the right upper limb. Though evidence exists of a substantial reduction in kinematic
cross-talking for single joint movements with the proposed calibration methodology, we believe that
future research endeavors should focus on the comparison with data collected using optical motion
capture systems, which are considered as the gold standard.
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Background: Several methods are proposed in the literature for the quantification of gait variability/
stability from trunk accelerations. Since outputs can be influenced by implementation differences,
reliability assessment and standardization of implementation parameters are still an issue. The aim of
this study is to assess the minimum number of required strides and the within-session reliability of 11
variability/stability measures.
Method: Ten healthy participants walked in a straight line at self-selected speed wearing two
synchronized tri-axial Inertial Measurement Units. Five variability measures were calculated based on
stride times namely Standard deviation, Coefficient of variation, Inconsistency of variance, Nonstationary
index and Poincaré plot. Six stability measures were calculated based on trunk accelerations namely
Maximum Floquet multipliers, Short term/long term Lyapunov exponents, Recurrence quantification
analysis, Multiscale entropy, Harmonic ratio and Index of harmonicity. The required minimum number of
strides and the within-session reliability for each measure were obtained based on the interquartile
range/mean ratio. Measures were classified in five categories (namely excellent, good, average, poor, and
very poor) based on their reliability.
Results: The number of strides required to obtain a reliable measure was generally larger than those
conventionally used. Variability measures showed average to poor reliability, while stability measures
ranged from excellent to very poor reliability.
Conclusion: Recurrence quantification analysis and multiscale entropy of trunk accelerations showed
excellent reliability and a reasonable number of required strides. Based on these results, these measures
should be taken into consideration in the assessment of fall risk.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ageing and pathology can worsen gait performance at multiple
levels and in selective ways [1], and quantitative assessment of gait
pattern has been proven to be useful in the early identification and
prediction of pathology or cognitive decline [2–4]. In particular,
trunk acceleration-based measures of gait variability and stability
are proposed in the literature aiming at quantifying subject specific
gait characteristics such as gait impairment, degree of neuro-motor
control and balance disorders, in pathologic and healthy subjects,
and are often related to fall at risk [5–9]. However, no standard
implementation procedure for these measures is defined, poten-
tially explaining the incoherent conclusions [10], as implementa-
tion differences can affect outputs. Thus, a standardization of the

implementation parameters is necessary to perform a consistent
evaluation. Moreover, these measures must reproduce the same
results in the same experimental conditions.

Many strides can be required to obtain reliable measures, but
treadmill walking differs significantly from over-ground walking
[11]; hence, long walking trials have to be analyzed. The use of
Inertial Measurement Units (IMU) allows to obtain both stride
time variability and stability measures from trunk acceleration
signals during long over-ground outdoor walking trials.

In order to further define implementation features for future
effective exploitation of measures in research or clinical practice,
an assessment of the repeatability of variability/stability measures
is hence needed, together with an assessment of the number of
necessary strides. The aim of the present study was to assess the
minimum number of required strides and the within-session
reliability of 11 temporal variability/stability measures proposed
in the literature and applied to stride time and trunk accelerations
during over-ground walking.
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2. Methods

Ten healthy participants [2873 years, 174711 cm, 67713 kg]
walked in a straight line at self-selected natural speed on a 250 m
long dead-end road (about 180 strides), wearing two synchronized
tri-axial IMU (Opal, APDM, USA) located on the trunk (at the level
of the fifth lumbar vertebra) and on the right shank. Sample size
was chosen in agreement with previous literature [12]. Range of
accelerometers was 76 G and sampling rate 128 Hz. Right heel
strike instants were obtained from the angular velocity measured
by the sensor on the shank with a wavelet-based method [13]. Gait
initiation and termination phases were excluded. The average
walking speed was 1.4370.15 m/s.

Since our aim was the characterization of variability/stability
measures from a strictly methodological point of view, adequately
segmented data coming from the same experimental trial (long
overground walk) were analyzed. This approach was adopted in
order to maintain the experimental conditions unvaried, being
thus able to ascribe every variation found in the results to the
intrinsic variability of each measure only rather than to actual
differences in gait patterns depending on specific trial analyzed.

The following variability measures were applied to stride time:

i. Standard deviation (SD) [14];
ii. Coefficient of variation (CV) [14];
iii. Inconsistency of variance (IV) [15];
iv. Nonstationary index (NI) [15];
v. Poincaré plots (PSD1/PSD2) [16].

SD represents the standard deviation of stride time. CV is the
variability of stride time normalized to the mean stride time
value (CV¼100� SD/mean) [14]. IV and NI quantify the tem-
poral “structure” of the time series (independent of the overall
variance); each time series was first normalized with respect to
its mean and SD and then divided into blocks of five strides
each. In each segment, the local average and the local SD were
computed. NI is then defined as the SD of the local averages,
while IV is defined as the SD of the local SDs [15]. Stride time
data plots between successive gait cycles, known as Poincare ́
plots, show variability of stride time data. Statistically, the plots
display the correlation between consecutive stride times data in
a graphical manner. PSD1 and PSD2 represent, respectively,
width and length of the long and short axis describing the
elliptical nature of the plots, and hence the short-term and long-
term variability of stride time [16].

The following stability measures were calculated on trunk
accelerations in vertical (V), medio-lateral (ML) and anterior–
posterior (AP) directions:

vi. Maximum Floquet multipliers (maxFM) [5,10];
vii. Short term/long term Lyapunov exponents (sLE/lLE) [5];
viii. Recurrence quantification analysis (RQA) [17];
ix. Multiscale entropy (MSE) [18];
x. Harmonic ratio (HR) [6];
xi. Index of harmonicity (IH) [19].

maxFM quantify orbital stability of a periodic or pseudo-
periodic dynamic system, that is the tendency of the system state
to return to the periodic limit cycle orbit after small perturbations
[5,10]. On the other hand, sLE and lLE quantify local dynamic
stability of a system and are used for systems that do not
necessarily exhibit a discernable periodic structure [5]. RQA
provides a characterization of a variety of features of a given time
series, including a quantification of deterministic structure and
non-stationarity [17], based on the construction of recurrence
plots [20]. All of these measures imply the reconstruction of the
state space of the system; in this study, four different state spaces
were constructed: one 3-dimensional state space composed by

acceleration signals in the V, ML and AP direction and three (one
per direction) 5-dimensional state spaces composed by delay-
embedding of each acceleration component (delay¼10 samples).
Such parameters were chosen based on previous literature, stating
that an embedding dimension of 5 and a 10 samples delay are
appropriate for gait data [21–23], and on a false nearest neighbors
analysis performed on our data.

Several measures were extracted from RQA, namely recurrence
rate (rr), determinism (det), averaged diagonal line length (avg),
maximum diagonal line length (max) and divergence (diverg). In the
calculation of RQA measures, a radius of 40% was chosen to make
sure that recurrence rate (rr) responded smoothly and was not too
high, and that determinism (det) did not saturate at the floor of 0 or
the ceiling of 100, as approaching these limits would tend to
suppress variance in the measure [20]. Time series derived from
complex systems, like biological systems, are likely to present
structures on multiple spatio-temporal scales; MSE has been intro-
duced to quantify the complexity or irregularity of a time series [18].
MSE has been obtained calculating sample entropy (consecutive data
points m¼2, distance r¼0.2 [24]) on six consecutively more coarse-
grained (scale factor τ¼1, …, 6) time series. HR quantify the
smoothness of acceleration patterns of the trunk based on ampli-
tudes in the frequency spectra. It provides information on how
smoothly subjects control their trunk during walking and it is
directly related to whole body balance and coordination [6,25].
In this study, HR was not calculated stride by stride, but decomposing
the whole signal into its harmonics [7]. Similarly to HR, IH assesses
the contribution of the oscillating components to the observed
coordination patterns by means of spectral analysis [19], quantifying
the contribution of the stride frequency to the signal power relative
to higher harmonics.

For the quantification of the minimum number of strides,
measures were calculated on windows of decreasing length (from
150 to 10 strides, 1 stride resolution). Interquartile range and
median value of measures were calculated for all the windows.
Percent interquartile range/median ratio (imr) was then calculated,
starting from the 150 strides window (which gave the lowest
ratio) and proceeding backwards.

Adding an increasing number of strides to the calculation
would cause the measure to reach a steady outcome, which
represents a compromise between reliability of the measure and
experimental limitations. Percent imr is then an indication of the
variations of the measures around the median value. A low imr
indicates small variations of the measure around its median value
with the increase of the number of strides; this means that the
measure reached a steady value, and it is not likely to change with
the inclusion of further strides. On the contrary, a high imr
indicates that the measure undergoes significant variation with
the increase of the number of strides, and hence is still not fully
reliable.

Thresholds for the imr were fixed at 10%, 20%, 30%, 40% and
50%. The required number of strides was defined as the smallest
one at which the ratio remained below the lowest possible
threshold. The minimum number of strides was calculated per
index and per subject at first, and then the largest number of
strides over subjects was selected for each index.

The assessment of within-session reliability was performed
calculating variability/stability measures on a window sliding
along the trial with 1 stride steps. The sliding window size was
set to 85 strides, since most measures (51 out of 57) required less
than 85 strides. lLE (tot, V, ML, AP) and RQA V (max, diverg) did
not satisfy this criterion. Interquartile range and median values of
the measures over the windows, together with the percent imr for
each measure, were calculated. Measures were grouped in five
reliability categories, ranging from very poor (imr440%) to
excellent (imro10%), based on the maximum inter-subject imr.
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Interquartile range/median ratio was chosen as a reliability mea-
sure since large magnitude variations around the median value
(particularly among windows sharing a lot of data) can be
potentially disruptive, and are to be considered as a sign of low
repeatability and high intrinsic variability of the measure.

In addition, intra-class correlation (ICC 2,1) was calculated
between two 85 strides non-overlapping windows extracted for
each subject from the same walking trial (SPSS Statistics 20.0, IBM,
Armonk, NY, USA).

3. Results

Measures reached steady values for different numbers of
strides, depending on the threshold. For MSE V (τ¼1, …, 4) and
RQA (AP rr, det, avg, ML rr and V rr, det, avg), 10 strides were
sufficient to reach a 10% threshold. MSE (AP, ML, V τ¼5,6), RQA
(ML det, avg) and sLE V reached a 20% threshold within 10 strides.
Other measures showed lower stride number requirement with
the increasing of the threshold. lLE required a high number of
strides (4110) even for the 50% threshold. RQA (V max, diverg)
never reached steady values in the analyzed range (Table 1).

MSE and RQA (rr, det, avg) showed excellent reliability. HR and
sLE demonstrated average to good reliability, with the exception of
sLE (tot) that performed poorly. Temporal variability measures (SD,
CV, IV, NI and PSD) showed from poor to good reliability. IH
showed poor reliability, particularly in AP and V directions. lLE,
maxFM and RQA (max, diverg) showed very poor reliability.
Reliability results are shown in Table 2. The median values of
inter-subjects medians and inter-quartiles for variability/stability
measures, together with maximum imr values, are also shown.
These values are meant as reference for the analyzed measures in
healthy subjects.

ICC results showed overall coherence with imr values, high-
lighting similar correlation patterns, with the main exception of IH
(AP, V) results (Table 3).

4. Discussion

While variability measures aim at quantifying the degree of
variability in the stride time, stability measures directly quantify
stability (maxFM, sLE, lLE) or stability-related properties of gait
time-series, such as recurrence (RQA), complexity at different
scales (MSE), smoothness (HR) or harmonicity (IH). Since no
standard implementation procedure is defined for these measures,
the aim of this study was to investigate the required minimum
number of strides and the within-session reliability of a number of
gait variability/stability measures.

Prior research explored similar questions [26,27], but based
solely on treadmill walking. Other studies recently focused on the
assessment of reliability of gait stability and variability measures
[28,29], confirming that the reliability of variability parameters
improves with the increase in the number of analyzed cycles.

Since data extracted from the same overground long walk were
analyzed, experimental conditions were guaranteed to be the
same allowing to ascribe the differences found in the results to
intrinsic features of the measures only, rather than to actual
differences in the gait pattern adopted by the participants.

In general, measures showed comparable performances
between the reliability indication and the threshold reached for
a corresponding number of strides (85). MSE (ML τ¼1, 5 and V
τ¼1, …, 4) and RQA (AP rr, det, avg, ML rr and V rr, det, avg)
reached a steady value for a 10% threshold within 10 strides. MSE
and RQA (rr, det, avg) also showed excellent reliability. sLE (ML, V)

showed that the 10% threshold could be reached for 85 strides, but
inter-subject imr was slightly higher (0.20 and 0.28 respectively);
this is likely due to the influence of the inherent variability of
the trial.

SD and CV showed average reliability and quite a high number
of strides (125 and 127, respectively) to undergo the 10% threshold.
This confirms findings from other studies stating that a few
number of strides may not be sufficient to obtain reliable mea-
sures for both young subjects and old adults [30,31].

A large number of required strides was found for lLE and RQA
(V max, diverg). lLE measure required at least 110 strides to reach

Table 1
Number of required strides for each measure at each threshold.

Variability/stability measures Thresholds

10% 20% 30% 40% 50%

SD 125 59 20 15 10
CV 127 59 49 15 10
NI 143 97 89 78 70
IV 143 91 44 35 29
PSD1 127 52 16 15 10
PSD2 120 106 74 25 19
MSE AP τ¼1 19 10 10 10 10
MSE AP τ¼2 19 10 10 10 10
MSE AP τ¼3 18 10 10 10 10
MSE AP τ¼4 15 10 10 10 10
MSE AP τ¼5 35 10 10 10 10
MSE AP τ¼6 17 10 10 10 10
MSE ML τ¼1 10 10 10 10 10
MSE ML τ¼2 30 10 10 10 10
MSE ML τ¼3 63 10 10 10 10
MSE ML τ¼4 31 10 10 10 10
MSE ML τ¼5 10 10 10 10 10
MSE ML τ¼6 32 10 10 10 10
MSE V τ¼1 10 10 10 10 10
MSE V τ¼2 10 10 10 10 10
MSE V τ¼3 10 10 10 10 10
MSE V τ¼4 10 10 10 10 10
MSE V τ¼5 12 10 10 10 10
MSE V τ¼6 15 10 10 10 10
RQA AP (rr) 10 10 10 10 10
RQA AP (det) 10 10 10 10 10
RQA AP (avg) 10 10 10 10 10
RQA AP (max) 121 75 74 37 36
RQA AP (diverg) 107 95 74 74 74
RQA ML (rr) 10 10 10 10 10
RQA ML (det) 78 10 10 10 10
RQA ML (avg) 55 10 10 10 10
RQA ML (max) 136 129 73 29 29
RQA ML (diverg) 136 135 79 29 29
RQA V (rr) 10 10 10 10 10
RQA V (det) 10 10 10 10 10
RQA V (avg) 10 10 10 10 10
RQA V (max) 150 150 150 150 150
RQA V (diverg) 150 150 150 150 150
HR AP 141 26 15 10 10
HR ML 137 30 10 10 10
HR V 66 29 10 10 10
IH AP 143 141 137 75 10
IH ML 145 141 49 10 10
IH V 140 127 120 18 11
maxFM tot 137 135 23 10 10
maxFM AP 138 137 132 10 10
maxFM ML 137 131 14 10 10
maxFM V 137 51 20 10 10
sLE tot 105 70 10 10 10
sLE AP 90 17 10 10 10
sLE ML 72 10 10 10 10
sLE V 63 10 10 10 10
lLE tot 139 132 130 128 124
lLE AP 141 135 132 131 129
lLE ML 146 125 119 114 110
lLE V 138 123 121 116 113
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the 50% threshold, while RQA (V max, diverg) never reached
steady values in the analyzed range. IH, maxFM, sLE and RQA
(max, diverg) showed poor or very poor reliability.

ICC results showed overall coherence with imr values. The main
exception is represented by IH (AP, V). ICC of IH (AP, V) highlighted
high correlation between the two analyzed windows, whereas the
analysis of imr showed very poor correlation. This could be partially

explained by the very small values reached by IH in AP and
V directions (0.022–0.04), which could make imr calculation more
prone to small instrumentation or numerical errors. ICC of RQA (max,
diverg) was not as good as other RQA measures (rr, det, avg), but
resulted slightly larger than what was obtained with imr observation.
Coherently with the imr observation, ICC for some measures (maxFM,
sLE tot, NI, lLE AP, ML) was very small or not significant.

Table 2
Reliability grouping of variability and stability measures. Measures have been grouped based on the maximum inter-subject imr. Reliabilities have been labeled as very poor
(imr440%), poor (imr¼30–40%), average (imr¼20–30%), good (imr¼10–20%), excellent (imro10%). As an indication of reference values for the measures, median values of
inter-subjects' medians and interquartiles for variability/stability measures are also shown. Units of measurement legend: MSE – unitless, RQA (rr, det) – % of points on the
recurrence plot, RQA (avg, max, diverg) – number of points on the recurrence plot, HR – unitless, IH – unitless, sLE – 1/stride, lLE – 1/stride, maxFM – unitless, SD – seconds,
CV – unitless, NI – unitless, IV – unitless, and PSD1/PSD2 – seconds.

Variability/stability measures Maximum inter-subject imr (%) Median inter-subject value of the medians Median inter-subject interquartile value

Excellent MSE AP τ¼1 7 0.38 0.01
MSE AP τ¼2 7 0.56 0.02
MSE AP τ¼3 6 0.65 0.02
MSE AP τ¼4 7 0.76 0.02
MSE AP τ¼5 8 0.81 0.02
MSE AP τ¼6 7 0.85 0.02
MSE ML τ¼1 8 0.59 0.01
MSE ML τ¼2 8 0.86 0.02
MSE ML τ¼3 7 1.09 0.03
MSE ML τ¼4 6 1.31 0.03
MSE ML τ¼5 6 1.46 0.04
MSE ML τ¼6 6 1.55 0.04
MSE V τ¼1 5 0.46 0.01
MSE V τ¼2 5 0.63 0.02
MSE V τ¼3 7 0.74 0.02
MSE V τ¼4 9 0.84 0.03
MSE V τ¼5 7 0.92 0.03
MSE V τ¼6 9 1.00 0.03
RQA AP (rr) 7 15.65 0.06
RQA AP (det) 5 69.3 1.1
RQA AP (avg) 7 8.94 0.12
RQA ML (rr) 3 8.50 0.12
RQA ML (det) 9 49.7 0.8
RQA ML (avg) 7 6.67 0.12
RQA V (rr) 6 13.76 0.22
RQA V (det) 3 81.9 0.5
RQA V (avg) 8 13.58 0.28

Good HR AP 15 3.70 0.14
HR ML 13 2.21 0.11
HR V 16 4.68 0.24
PSD1 14 0.021 0.001

Average sLE AP 26 0.67 0.14
sLE ML 20 0.81 0.14
sLE V 28 0.89 0.19
SD 23 0.02 0.002
CV 23 1.94 0.14

Poor IH ML 37 0.15 0.02
PSD2 34 0.021 0.002
sLE tot 39 0.44 0.10
NI 30 0.52 0.10
IV 37 0.32 0.06

Very poor maxFM tot 57 0.36 0.09
maxFM AP 45 0.43 0.08
maxFM ML 44 0.39 0.06
maxFM V 44 0.48 0.08
IH AP 50 0.04 0.01
IH V 55 0.022 0.003
RQA AP (max) 66 399 51
RQA AP (diverg) 164 0.0025 0.0003
RQA ML (max) 88 281 39
RQA ML (diverg) 69 0.0036 0.0004
RQA V (max) 96 1986 481
RQA V (diverg) 176 0.0005 0.0002
lLE tot 89 0.035 0.007
lLE AP 112 0.035 0.008
lLE ML 52 0.014 0.004
lLE V 57 0.041 0.007
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In conclusion, only MSE and RQA (rr, det, avg) showed excellent
reliability. In a previous work [7] it was found that MSE and RQA
calculated during treadmill walking correlated with fall history;
these findings suggest a possible future clinical application in the
definition of a more valid and robust fall risk index. Further research
on the relationship of such measures with overground gait stability
in old adults and pathologic subjects is highly encouraged.

In general, the number of strides necessary to obtain a reliable
measure was larger than those conventionally used in the analysis
of over-ground walking. Our results suggest carefulness when
drawing conclusions about gait variability and stability obtained
from short walking trials. A number of strides coherent with the
indications illustrated in Table 1 should always be considered.
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Table 3
Intra-class correlation (ICC) of variability/stability measures calculated between
two non-overlapping windows of 85 strides extrapolated from each experimental
trial.

Measure ICC p-Value Measure ICC p-Value

maxFM tot �0.57 0.94 MSE V τ¼1 0.85 o0.05
maxFM AP �0.23 0.74 MSE V τ¼2 0.87 o0.05
maxFM ML �0.44 0.88 MSE V τ¼3 0.84 o0.05
maxFM V �0.47 0.89 MSE V τ¼4 0.85 o0.05
HR AP 0.76 o0.05 MSE V τ¼5 0.86 o0.05
HR ML 0.90 o0.05 MSE V τ¼6 0.81 o0.05
HR V 0.95 o0.05 RQA AP (rr) 0.91 o0.05
IH AP 0.96 o0.05 RQA AP (det) 0.93 o0.05
IH ML 0.98 o0.05 RQA AP (avg) 0.94 o0.05
IH V 0.93 o0.05 RQA AP (max) 0.79 o0.05
PSD1 0.96 o0.05 RQA AP (diverg) 0.73 o0.05
PSD2 0.55 o0.05 RQA ML (rr) 0.99 o0.05
sLE tot 0.12 0.37 RQA ML (det) 0.98 o0.05
sLE AP 0.69 o0.05 RQA ML (avg) 0.93 o0.05
sLE ML 0.04 0.45 RQA ML (max) 0.68 o0.05
sLE V 0.68 o0.05 RQA ML (diverg) 0.79 o0.05
MSE AP τ¼1 0.96 o0.05 RQA V (rr) 0.96 o0.05
MSE AP τ¼2 0.97 o0.05 RQA V (det) 0.99 o0.05
MSE AP τ¼3 0.97 o0.05 RQA V (avg) 0.97 o0.05
MSE AP τ¼4 0.94 o0.05 RQA V (max) 0.68 o0.05
MSE AP τ¼5 0.94 o0.05 RQA V (diverg) 0.51 o0.05
MSE AP τ¼6 0.89 o0.05 NI 0.35 0.15
MSE ML τ¼1 0.92 o0.05 IV 0.49 o0.05
MSE ML τ¼2 0.89 o0.05 SD 0.85 o0.05
MSE ML τ¼3 0.91 o0.05 CV 0.82 o0.05
MSE ML τ¼4 0.90 o0.05 lLE tot 0.48 o0.05
MSE ML τ¼5 0.89 o0.05 lLE AP 0.42 0.08
MSE ML τ¼6 0.82 o0.05 lLE ML 0.41 0.08

lLE V 0.53 o0.05
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The role of quantitative assessment in setting-up a gait rehabilitation tool: an experience with 
the Regent suit. 
 
D. Trojaniello (1), A.Cereatti (1),G. D’Addio (2),M. Cesarelli (3), B. Lanzillo (2), U. Della Croce (1) 
(1) Information Engineering Unit, POLCOMING Department, University of Sassari, Sassari, Italy 
(2) S. Maugeri Foundation IRCCS, TeleseTerme, Italy 
(3) Dept. of Electrical Engineering and Information Technology ,University of Naples “Federico II”, Naples, Italy 
 
INTRODUCTION 

Gait rehabilitation tools are gaining access to the clinical practice. Their routine use 
requires a setup operated by the operators customized on the patient needs and 
characteristics. Often, operators can only set the quantitative parameters required by the 
rehabilitation tool using qualitative methods based on experience and personal sensory 
inputs. The aim of the study was to evaluate the potential role of a quantitative 
assessment in setting up the Regent suit (Fig. 1). The Regent suit includes a number of 
elastic bands generating force fields influencing both upper and lower body movement, 
whose goal is to stabilize and make more symmetric the user’s gait. It has been used as 
a gait rehabilitation tool showing positive results [1]. However, no quantitative 
information is available to the operators in setting up the suit. Gait asymmetry can be 
qualitatively evaluated by looking at the step duration and length differences between 
left and right, while it is often quantified by measuring asymmetries in stance and 
swing phase durations [2]. In this work we estimated the gait temporal parameters of 
six hemiparetic subjects walking with and without the suit using inertial technology 
with the aim of quantifying asymmetry changes introduced by the use of the suit and 
evaluating if the criteria used to set up the suit reflected in an actual reduction of gait 
asymmetry. 

 
METHODS 

Two physical therapists operating in the clinic hosting the study 
were asked to setup the Regent suit on six hemiparetic subjects as they 
would routinely. They selected the number of elastic bands and their 
tension level on both affected (aff) and non affected (n-aff) side based 
on their experience (Table 1). Inertial measurements were obtained 
from units (Opal, APDM) attached to the subject’s ankles during 
walking at self selected speed (13-meter walkway with and without the 
suit). To get acquainted to the use of the suit, subjects walked for five minutes before data acquisition. Three 
trials were acquired for both conditions. A total of about 25 full gait cycles per condition were acquired for each 
subject. Data were processed using an algorithm previously validated on pathologic populations [3]. Step 
duration (stp), stance (st) and swing (sw) mean durations were determined for both sides. The asymmetry index 
(AI) was calculated as AI=(paff ‒ pn-aff)/0.5·(paff + pn-aff)*100 where p is an above-mentioned parameter. In 
hemiparetic subjects, a positive AI should be expected for stp and sw. 

 
RESULTS 

In table 2 the AI (%) of stp, st and sw are reported for each subject 
and for the two walking conditions (no suit = NS, suit = S).  
 
DISCUSSION 

The qualitative evaluation of stp asymmetry reflected in the 
corresponding quantitative estimate, except for subject 6 for whom the 
stp AI slightly increased, probably due at the increased tension of both front and back elastic bands. However, st 
and sw AI showed that the use of the suit increased the st and sw asymmetry for subjects 2 and 6, while it did not 
have effects on subjects 3 and 4. A more inclusive set of quantitative data regarding the patient’s gait (i.e. spatial 
gait parameters and EMG data from selected muscles) could improve the setting of the suit before the training. 
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Figure1.Subject 
wearing the Regent suit. 

subj. 
id 

no. of  
elastic bands 

band tension 
affvs n-aff 

 front back side front back 
1 2 2 2 > = 
2 2 2 2 = > 
3 2 2 2 > > 
4 2 2 2 = = 
5 2 2 0 > > 
6 2 2 0 > > 

Table2.Regent suit main set up parameters. 

subj.  stp st sw 
id NS S NS S NS S 
1 8 4 -11 -7 24 17 
2 -3 -1 1 -5 0 7 
3 4 3 3 4 -4 -6 
4 7 6 1 1 -1 0 
5 21 14 -3 -2 7 3 
6 -2 -5 1 5 0 -8 

Table2.AI of temporal parameters. 



 

 

STRIDE-BY-STRIDE GAIT SPATIO-TEMPORAL PARAMETERS ESTIMATE FROM SHANK-

WORN IMU RECORDINGS: VALIDATION ON PARKINSON, CHOREIC, HEMIPARETIC AND 

HEALTHY ELDERLY SUBJECTS 
 
D. Trojaniello (1), A. Cereatti (1), E. Pelosin (2), A. Mirelman (3), J. M. Hausdorff (3), L. Avanzino (2), U. Della Croce (1) 

(1) Information Engineering Unit, POLCOMING Department, University of Sassari, Italy 
(2) Department of Neurosciences, University of Genoa, Italy 
(3) Movement Disorders Unit of the Department of Neurology, Tel Aviv Sourasky Medical Center, Israel  
 
Main topics: Analysis of clinical movement data, Analysis of gait and motor disorders 
 
INTRODUCTION 
In recent years, methods for estimating spatio-temporal parameters of gait from wearable inertial sensors (IMUs) 
measurements have been proposed and tested, mostly on healthy subjects, with few exceptions [1,2], which focused 
on single pathologies. No method was validated for the stride by stride analyses of spatial measures in various gait 
abnormalities. In this work, we evaluate a novel IMU based technique for the determination of both gait temporal 
and spatial parameters in four groups, characterized by different gait patterns. 
 
MATERIALS and METHODS 
The study included 11 hemiparetic (H) (FAC=3.6±1.5), 12 choreic (C) (UHDRS=34.9±16.9), 10 Parkinsonian (P) 
(UPDRS=62.7±19.1) and 10 healthy elderly (E). Data from two IMUs (Opal, APDM) attached to the subject ankles 
(20 mm above the malleolus) were acquired simultaneously with data from an instrumented gait mat (GAITRite, CIR 
System) used as gold standard (GS). Subjects walked for one minute at a self-selected speed, back and forth along a 
12-meter walkway. Gait events (GEs) (initial contact - IC and final contact - FC) and resulting gait temporal 
parameters (stride Tstr and stance Tstn duration) were estimated using an algorithm previously developed based on the 
preliminary identification of trusted gait phases and then of GEs search intervals in the IMU signals [3]. The stride 
length (Lstr) was then estimated from the antero-posterior accelerations (i.e. along the direction of maximum average 
velocity in swing) by applying a modified version [3] of the OFDRI technique [4], followed by a further simple 
integration. The error in estimating IC, FC, Tstr, Tstn and Lstr was calculated as the difference of the IMU-based 
estimates and the GS estimates. Left and right side errors were averaged except for the H group (affected (A) and non-
affected (NA) side). The relevant mean, standard deviation and mean absolute values (maes) were averaged within 
groups (m, sd and mae). A Kruskal–Wallis test was used to compare the maes among the groups. 
 
RESULTS 
In total, 1642 gait cycles (E=574, P=532, C=290, H=246) were analyzed. Two C and one H subjects were 
excluded from the analysis since the method could not estimate Lstr. The descriptive statistics of the errors in 
estimating IC, FC, Tstr, Tstn and Lstr for all tested groups are reported in Table 1. None of the errors was 
significantly different among groups (p>0.05). 
 
DISCUSSION and CONCLUSIONS 
The method proposed was shown to be extremely accurate in estimating GEs, Tstr and Tstn for all groups (Table 
1). Moreover, Lstr estimate maximum error for E and P groups was lower than those reported in previous studies 
[1]. The Lstr estimation algorithm failed in one H subject probably due to the extremely low subject speed 
(<0.44m/s) and in two C subjects due to the excessive lateral swaying and stride-by-stride lateral deviations from 
the forward direction which prevented a correct signal realignment. The results are particularly promising 
considering the high variability of abnormal gait patterns evaluated (i.e. festinating, hyperkinetic, hemiparetic). 
 

Table 1: Mean errors (m), standard deviation (sd) and mean absolute errors (mae) of gait parameters estimates. 

 
speed [m/s] 

IC [ms] FC [ms] Tstr [ms] Tstn [ms] Lstr [mm] 

 m (sd) mae m (sd) mae m (sd) mae m (sd) mae m (sd) mae 

E 1.18 ± 0.15 0 (8) 9 -7 (14) 20 0 (12) 9 -8(18) 21 2(20) 17 

P 0.85 ± 0.15 10 (11) 13 -10 (18) 20 1 (15) 12 -9(19) 24 2(26) 19 

C 1.03 ± 0.22 8 (13) 14 - 2 (15) 19 0 (18) 14 -9(19) 25 -8(30) 27 

H (NA) 
0.71 ± 0.19 

-5 (11) 14 11 (13) 19 0 (15) 12 16(16) 23 1(30) 28 

H (A) 4 (12) 17 19 (9) 20 0 (16) 13 17(14) 25 9(25) 26 
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Abstract
Unstable gait is a risk factor for falls. Wearable accelerometers enable remote 
monitoring of daily walking. Here, new methods for measuring stride-to-
stride oscillations are validated against optical motion capture, normative 
data determined, and dependency on walking speed investigated. Walks by 
13 young people (mean age 32 years) at fast, usual, and slow speeds were 
completed. Accelerometers were attached to the head and pelvis and stride-
to-stride oscillation velocity and displacement were measured. Continuous 
tilt corrections were applied, filter cut-offs scaled by step frequency, and 
thresholds optimized using optical motion capture as a reference. Oscillations 
depended on walking speed, accelerometer placement, and measurement axis. 
Vertical oscillations increased with walking speed (Pearson’s r = 0.78–0.89) 
and were the most accurate (1.4–2.3% error). Mediolateral or anterioposterior 
oscillations were less accurate (5.9–19.5% error) and had more complex 
relationships with walking speed (increasing, decreasing, uncorrelated, and/
or ‘U-shaped’ minimum at usual speed). In healthy gait, the head and pelvis 
undergo regular oscillations, measurable with accelerometers. The results 
suggest head oscillations in the transverse plane are attenuated by the trunk, 
and there may be advantages in minimizing stride-to-stride oscillations that 
coincide with self-selected usual pace. These methods may prove useful for 
remote assessment of changing health, mental status, and/or fall risk.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Unstable gait is a risk factor for falls (Hausdorff et al 2001, Senden et al 2012, Brodie et al 
2015a, Rispens et al 2014), and sway while walking is increased in clinical groups such as 
those with traumatic brain injury and Parkinson’s disease (Cole et al 2010, Findling et al 
2011). For higher risk individuals, health outcomes might be improved using new methods 
to remotely monitor stride-to-stride oscillations with wearable accelerometers. However, first 
measurement accuracy, normative data for people without impairment, and dependency on 
walking speed need to be investigated.

Previously, head, trunk, pelvis, and/or centre-or-mass translation while walking have been 
measured using optical motion capture (Whittle 1997, Whittle and Levine 1999, Orendurff et 
al 2004, Cole et al 2010, Galna et al 2013), extended force platforms (Cavagna et al 1983), 
instrumented treadmills (Zijlstra and Hof 1997, Tesio et al 2010), or shoes fitted with force 
platforms (Schepers et al 2009). However, such methods require expensive equipment and/or 
are limited to capturing short walks in controlled environments.

Accelerometers provide an inexpensive alternative (Kavanagh and Menz 2008), enabling 
up to a week of remote gait monitoring (Weiss et al 2013, Rispens et al 2014), and/or assess-
ment by using a smart phone (Michael et al 2014). Accelerometers have been attached to the 
head (Latt et al 2009), the sacrum (Moe-Nilssen 1998), and the trunk (Kavanagh et al 2005a, 
Kavanagh 2009, Wilhelmsen et al 2010). In clinical settings gait data have been used to iden-
tify differences between young and old (Kavanagh et al 2005b, Menant et al 2011), fallers 
and non-fallers (Yogev et al 2007, Weiss et al 2011), and people with Parkinson’s disease 
(Hausdorff 2009, Latt et al 2009).

Research has generally focused on the direct analysis of the acceleration signal (Kavanagh 
and Menz 2008). Measurement of velocity or displacement using accelerometers is less com-
mon and requires the data to be integrated with respect to time, which may lead to accumu-
lating measurement errors. Data quality may be improved by static calibration, averaged 
tilt corrections, or sensor fusion with gyroscopes (Smidt et al 1971, Moe-Nilssen 1998, 
Menz et al 2003, Kavanagh et al 2005a, Brodie 2009). Displacement may then be obtained 
using a high pass filter with a fixed 0.1 Hz cut-off and/or harmonic analysis (Zijlstra and Hof 
2003). However, previous efforts to improve data quality assumed fixed sensor orientation 
or required additional sensors. Filter cut-offs might not be optimal for remote gait monitor-
ing; if sensor orientation changes over time, or if walking speed varies, as may occur during 
daily life.

In this paper, the accuracy of wearable accelerometer derived stride-to-stride oscillations, 
normative data for people without impairment, and effect of walking speed are investigated. 
Stride-to-stride oscillations are defined as head and pelvic trajectories relative to the global 
progression while walking over ground. Conceptually, this is similar to head and pelvic trajec-
tories during treadmill walking if no long-term progression through space occurs. We propose 
a ‘scaled’ method to measure stride-to-stride oscillations, which is novel because: (1) continu-
ous pitch and roll corrections are used to improve data quality; (2) filter cut-offs are scaled 
by step frequency; and (3) scaling constants are optimized using optical motion capture as a 
reference.
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2. Methods

2.1. Participants

Thirteen healthy people volunteered: 9 female and 4 male, mean age 32 years (standard devia-
tion (SD) 6 years), height 169 cm (SD 10 cm), and weight 63 kg (SD 16 kg). Approval by the 
Human Studies Ethics Committee at the University of New South Wales was given for the 
study and informed consent was obtained from all participants prior to participation.

2.2. Collection of gait data

A tri-axial accelerometer (Opal™ by APDM, sampling frequency 128 Hz) was incorpo-
rated into a light plastic helmet liner (total mass 67 g) and secured to the participant’s head  
(figure  1(b)). A second tri-axial accelerometer was incorporated into an adjustable belt  
(figure 1(c)). Participants completed two repeated walks at self-selected fast, usual, and slow 
speeds over 6 m. Data were simultaneously collected with an optical motion capture system 
(OptiTrack® by NaturalPoint).

Figure 1. Accelerometer placement. (a) Schematic representation of ideal 
accelerometer placements. (b, c) ‘Real world’ implementation; sensors are not perfectly 
aligned with the global coordinate system and orientation may change over time with 
body movements. (b) Head accelerometer attached to plastic helmet liner. (c) Pelvic 
accelerometer incorporated into a belt. Insets show wearable device positions and 
local measurement axes enlarged. The global vertical body centred heading (GVBCH) 
coordinate system is visualized near the pelvis: positive VT points upwards and is fixed. 
In the transverse plane, AP generally points forwards and ML right to left.

M A D Brodie et alPhysiol. Meas. 36 (2015) 857
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2.3. Accelerometer attachment and local coordinate systems

The head accelerometer’s local z-axis was aligned with the global vertical (VT), the x-axis 
projected onto a line connecting the base of skull and tip of nose pointing forwards, and the 
y-axis was aligned right to left. The pelvic accelerometer’s local y-axis was aligned right to 
left with a line connecting the posterior superior iliac spines, the x-axis pointed downward, 
and the z-axis pointed forward.

2.4. The global vertical, body centred heading, coordinate system

Data were reported according to the global vertical, body centred heading, coordinate system 
(see figure 1). For both accelerometers, VT measurements were independent of body position 
or sensor orientation and aligned to global VT. The anterioposterior (AP) and mediolateral 
(ML) axes were body fixed and could rotate in the transverse plane if the orientation of the 
head or pelvis changed. Within the transverse plane, AP generally pointed forwards and paral-
lel to the floor and ML right to left across the direction of travel.

2.5. The continuous tilt correction

Prior to measuring head and pelvis oscillations from the accelerometers mathematical cor-
rections were required to align the local sensor axes with the global coordinate system and 
improve data quality. Unlike the ideal sensor alignments depicted by the schematic represen-
tation (figure 1(a)), we did not assume fixed orientation with respect to the global coordinate 
system during gait measurements (figures 1(b) and (c)) and therefore mathematical correc-
tions were required (Moe-Nilssen 1998). Here, a low-pass filter scaled to one quarter of the 
step frequency (0.25 × Fo ≈ 0.45 Hz, see figure 2) was used to model the continuous pitch and 
roll corrections.

Technical details of the continuous pitch and roll correction method used are provided 
in the appendix. Figure 3 demonstrates accelerations measured at the head before (left side) 
and after the continuous correction with gravity removed (right side). The most noticeable 
improvement is in the reduction of zero offset errors for the AP accelerations (top panel, right 
side). These errors were caused by ‘head nodding’ that resulted in the head sensor orientation 
changing as the participant looked towards the floor.

2.6. Optical motion capture measurement of stride-to-stride oscillations

The optical motion capture system (OptiTrack® by NaturalPoint) used six cameras in pairs, 
each side of the walkway, focused on the posterior aspect of the participants. A triad of mark-
ers was attached to each accelerometer. Optical data were synchronized to accelerometer data 
using a data acquisition board.

First the displacement data were de-trended to improve interpretation (Zijlstra and Hof 
1997). A 5th order polynomial was used to separate the stride-to-stride oscillations in gait 
(figures 4(c)–(e)) from the global movements through the measurement space (figure 4(a)). 
Relative velocity was then found by differentiating displacements with respect to time.

2.7. Accelerometer measurement of stride-to-stride oscillations

The corrected accelerations (in the global vertical body centred heading coordinate system) 
were integrated with respect to time and high-pass filtered to obtain stride-to-stride oscillation 
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velocity and displacement (figure 5). High-pass filtering was used to remove integration errors 
that accumulated over the walk. The calculation procedure follows:

 (a) Step frequency (Fo) was determined by identifying the dominant harmonic (see appendix).
 (b) Measured accelerations were aligned with the global coordinate system using the con-

tinuous pitch and roll correction (see appendix).

Figure 2. Head accelerations while walking in the frequency domain using discrete 
Fourier transform. The step frequency (Fo  ≈  1.8 Hz) is represented by the first peak 
in the AP and VT traces. The stride frequency (0.5 × Fo ≈ 0.90) is represented by the 
first peak in the ML trace. A low-pass filter scaled to one quarter the step frequency 
(0.25 × Fo ≈ 0.45, dashed vertical line) separates most noise caused by slow changing 
sensor orientation from most accelerations of interest, and was used by the continuous 
tilt correction to maintain vertical alignment between the local sensor axes and the 
global coordinate system.
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Figure 3. Head accelerations during gait. Raw data (left panel) shows the raw 
accelerations are offset from zero and the bias changes because of head movements. 
The most marked difference is in the AP channel, the corrected AP accelerations (top 
right panel) are properly centred about zero after the continuous tilt correction (see 
appendix for details).

Figure 4. Head oscillation from optical motion capture data. (a) Global progression 
through the measurement space along the AP axis (in metres) was approximately 100 
times greater than the stride-to-stride oscillations (in centimetres, panels (c)–(e)). (b) 
ML global displacement (dashed line) was de-trended with a 5th order polynomial 
(solid curve).
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 (c) Corrected accelerations were integrated with respect to time to obtain velocities and 
displacements.

 (d) Velocities and displacements were filtered with a 4th order high-pass bi-directional 
Butterworth filter to obtain stride-to-stride oscillations.

2.8. Optimization of high-pass filter scaling

The high-pass filter cut-off frequency (from step four above) was scaled to step frequency 
(cut-off = C × Fo) by a constant (C) because preliminary work indicated measurement errors 
were linked to step frequency (see figure 6). The scale factors for each sensor along each axis 
were found by a grid search that minimized the root mean squared error (RMSE) using the 
optical measurements as a reference. Scale factors (C) between 0.05 and 1 were searched in 
0.05 steps.

Figure 5. Head displacements relative to the global progression while walking. Optical 
(solid line) and accelerometer (dotted line) measurements are compared. Intra-class 
correlations above the panels indicate level of agreement at each epoch. Left to right 
represents stride-to-stride oscillations along the AP, ML, and VT axes.

Figure 6. Reduction in systematic error was observed by both scaling, and increasing 
the cut-off frequency (right panel) relative to a fixed 0.1 Hz value (left panel). The 
negative displacement errors (left panel) indicates that the 0.1 Hz high-pass filter 
systematically overestimated the oscillations and the downward trends indicates that 
increasing errors were linked to increasing step frequency.
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2.9. Statistical analysis

Agreement between optical and accelerometer measurements of displacement and velocity at 
each epoch (time step) were investigated, for example see figure 5. The intra-class correlation 
coefficient (ICC (2,1)) was calculated. Values closer to unity indicate higher agreement.

For each walk, oscillation magnitudes along each axis were calculated using the root mean 
squared (RMS) statistic. Absolute errors for each walk were calculated by subtracting RMS 
optical measurements from RMS accelerometer measurements (figure 6). Absolute errors of 
all walks were then combined using the RMSE statistic. For the grid search, scale factors were 
selected that minimized the RMSE (table 1).

For the optimum scale factors, the normalized root mean square errors (NRMSEs) were 
also reported (table 1). To obtain NRMSE, along each axis, the RMSE was divided by the 
range (maximum-minimum) of oscillation magnitudes for that axis. Similar to Bland–Altman 
techniques that visualize the ratio between measurement range (on a horizontal axis) and 
measurement error (on a vertical axis), the percentage NRMSE reports the error as a ratio 
of the measurement range. This enabled the errors for the 12 new oscillation parameters 
to be numerically compared relative to their different measurement ranges using a single 
parameter.

Walking speed, step frequency, RMS oscillation velocity, and RMS oscillation displace-
ment along each axis and at each walking speed are reported (table 2). Correlations between 
oscillation magnitudes and walking speed were investigated using Pearson’s correlation coef-
ficients. To prevent pseudo replication artificially inflating the number of data points used to 
determine statistical significance, the two repeat walks for each condition (slow, usual, and 
fast) were averaged before calculating the Pearson’s correlation coefficients. Data were pro-
cessed using MATLAB version 7.10.0 (R2010a) and SPSS version 22.

Table 1. Head and pelvic oscillation ranges, optimum filter cut-offs, and errors. Optical 
motion capture was used as the reference. RMSE were normalized by the measurement 
range (NRMSE) and reported as a percent enabling comparison of errors between gait 
parameters with different measurement ranges using a single numerical quantity.

Measurement range High-pass Errors

Min Max Range Cut-off (Hz) RMSE NRMSE

Head velocity (cm s−1)
 RMS AP 2.82 15.68 12.86 0.50 1.36 10.6%
 RMS ML 2.89 28.83 25.93 0.40 2.16 8.3%
 RMS VT 3.08 42.09 39.02 0.45 0.56 1.4%
Head displacement (cm)
 RMS AP 0.22 4.15 3.93 0.45 0.56 14.2%
 RMS ML 0.41 7.40 6.98 0.40 0.52 7.4%
 RMS VT 0.35 2.93 2.58 0.40 0.06 2.3%
Pelvic velocity (cm s−1)
 RMS AP 3.97 25.88 21.91 0.25 1.30 5.9%
 RMS ML 3.93 27.92 23.99 0.30 2.40 10.0%
 RMS VT 2.93 43.26 40.33 0.40 0.62 1.5%
Pelvic displacement (cm)
 RMS AP 0.31 2.57 2.26 0.30 0.44 19.5%
 RMS ML 0.44 4.93 4.49 0.25 0.68 15.1%
 RMS VT 0.35 2.91 2.56 0.35 0.05 2.0%
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3. Results

Stride-to-stride head oscillations while walking are presented in figure 5. At each epoch, oscil-
lation displacements as measured by an accelerometer (dotted lines) are compared to oscil-
lation displacements from optical motion capture (solid lines). The level of agreement along 
each axis is indicated using the intraclass correlation coefficient. Typically, VT displacements 
had the highest agreement (ICC = 0.98). Agreement was lower along the ML (0.92) and AP 
(0.85) axes, but the characteristics of the motion were mostly retained.

Optimum high-pass filter scaling coefficients were higher for the head (0.40–0.50 times 
step frequency) relative to the sacrum (0.25–0.40 times step frequency), see table 1. Oscillation 
velocity could be measured more accurately (NRMSE = 1.4–10.6% of measurement range) 
than displacement (2.0–19.5%), and VT measurements were more accurate (1.4–2.3%) than 
AP measurement (5.9–19.5%) or ML measurements (8.3–15.1%). Scaling by step frequency 
reduced the effect of step frequency on error (figure 6). Furthermore, the grid search revealed 
broad valleys of minimum error indicating the oscillation measurements were not sensitive to 
small changes in scaling coefficients.

Four different relationships were observed between oscillation magnitudes and walk-
ing speed (figure 7). Correlations were highest for VT oscillations (table 2, r = 0.78–0.89). 
Significant increases in oscillation with increased walking speed were also observed for AP 
pelvic velocity (figure 7(a), r = 0.80), but not for AP head velocity (figure 7(b)), which showed 
no significant correlation. Significant decreases in oscillation with walking speed were 

Table 2. Changes in stride-to-stride oscillation magnitudes and correlations with usual 
walking speed. * indicates the minimum group oscillation magnitude for each parameter. 
For oscillation velocity of the head, for example, AP and ML were minimized at usual 
speeds, and VT minimized at slow speeds.

Walking speed Speed correlation

Slow Usual Fast Pearson’s

Mean SD Mean SD Mean SD r p

Walking speed (m s−1) 0.60* 0.17 1.33 0.14 2.06 0.30 1.00 <0.001
Step frequency (Hz) 1.51* 0.45 1.90 0.10 2.33 0.28 0.79 <0.001
Head velocity (cm s−1)
 RMS AP 6.61 3.44 6.12* 2.49 8.20 4.07 0.15 0.23
 RMS ML 16.24 7.18 9.99* 3.82 11.14 5.48 −0.40 <0.001
 RMS VT 5.99* 2.25 18.60 4.49 30.23 7.23 0.89 <0.001
Head displacement (cm)
 RMS AP 1.24 1.05 0.77* 0.37 0.78 0.45 −0.32 0.007
 RMS ML 3.59 1.98 1.61 0.69 1.40* 0.87 −0.62 <0.001
 RMS VT 0.63* 0.18 1.55 0.37 2.14 0.59 0.78 <0.001
Pelvic velocity (cm s−1)
 RMS AP 8.89* 2.95 13.04 2.23 17.39 3.69 0.80 <0.001
 RMS ML 11.51 5.07 8.30* 2.34 16.70 5.38 0.40 <0.001
 RMS VT 6.09* 2.92 16.70 4.46 30.31 7.00 0.89 <0.001
Pelvic displacement (cm)
 RMS AP 1.17 0.59 1.12 0.24 1.09* 0.22 −0.10 0.43
 RMS ML 2.40 1.31 0.96* 0.36 1.43 0.47 −0.44 <0.001
 RMS VT 0.56* 0.18 1.36 0.36 2.06 0.53 0.82 <0.001
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also observed for ML head displacement (figure 7(c), r = −0.62), ML pelvic displacement  
(r = −0.44), and AP head displacement (r = −0.32). For five parameters, the measured oscil-
lations were least at usual speeds relative to faster or slower speeds (table 2), suggesting 
U-shaped relationships may exist (see figure 7(d)), these included: ML pelvic velocity, ML 
pelvic position, ML head velocity, AP head velocity, and AP head position.

4. Discussion

4.1. Defining stride-to-stride oscillations

In healthy gait, the head and pelvis undergo regular oscillations that can be measured using 
accelerometers (figure 5). In this paper, stride-to-stride oscillations were defined as head and 
pelvis trajectories relative to a participants’ long-term progression over-ground. Similar to 
treadmill walking (Zijlstra and Hof 1997), the optical motion capture data were de-trended 
to aid interpretation. Polynomial de-trending was used for the optical data because for over-
ground walking, global progression (figure 4(a)) may be orders of magnitude greater than 
stride-to-stride oscillations (figure 4(c)–(e)) and participants may not strictly maintain straight 
trajectories (see the curved fit for ML oscillations, figure 4(b)).

Figure 7. Oscillations in the transverse plane had varied relationships with walking 
speed. (a) AP pelvic velocity increased with walking speed, but in (b) AP head velocity 
was unchanged. (c) A negative correlation was observed for ML Head displacement. 
(d) ‘U-shaped’ ML pelvic velocity was minimized at usual walking speed. Pearson’s 
correlation coefficients (r) superimposed, significant correlations were observed for (a), 
(c) and (d).
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4.2. Correcting for changing sensor alignment

For the accelerometer measurement of stride-to-stride oscillations, filter cut-offs were scaled 
by step frequency to reduce bias. Previously, a single mean correction has been used (Moe-
Nilssen 1998). However, for our participants walking over ground, head and pelvic orienta-
tions were not constrained and could change with respect to the global coordinate system 
(figure 1(b)). Therefore, any slow changes in sensor orientation were modelled using a low-
pass filter (see appendix). During pre-processing, the low-pass filter cut-off frequency was 
scaled to one quarter of the step frequency (0.25 × Fo ≈ 0.45 Hz, figure 2) to improve the data 
quality, and may have been close to optimum; retaining most information of interest about 
stride-to-stride variability while rejecting most measurement noise associated with gravita-
tional cross-talk.

4.3. Optimizing high-pass filter thresholds

Stride-to-stride oscillations were then obtained by integrating the corrected accelerations, but 
during integration small errors might have accumulated. These accumulated errors were likely 
to be low frequency in nature, and previously high-pass filtering with a 0.1 Hz cut-off threshold 
(Zijlstra and Hof 2003), has been used to remove ‘gravitational components’ (Liu et al 2011). 
However, for tracking vertical foot clearances in gait, higher frequency thresholds have been 
used (Lai et al 2008). Suggesting optimum high-pass filter thresholds may depend on both the 
body part and the characteristics of the movement. In this study, the high-pass filter thresh-
olds were optimized by grid search for head and pelvic motion in gait. Filter thresholds were 
scaled to step frequency because participants walked over a wide range of step frequencies 
(0.8–2.8 Hz) and preliminary work indicated errors were linked to step frequency (figure 6).

The new scaled approach incorporated: (1) a new method for continuously aligning the 
accelerometer axes with the global coordinate system; (2) higher cut-off frequency thresholds, 
and; (3) scaling to step frequency. For remote monitoring of gait during daily life or in ‘real 
world’ scenarios (figure 1(b)) sensor alignment may be more difficult to control, and walks 
may be over a wide range of step frequencies; thus all three processes may be important. 
However, because the grid search indicated measurement errors were not sensitive to small 
changes in scaling coefficients, in more controlled environments (as depicted by the ideal 
schematic, figure 1(a)) or over a narrower range of step frequencies, the methods might be 
simplified.

4.4. Agreement with optical motion capture

Agreement between accelerometers and optical motion capture was generally better for oscil-
lation velocity than oscillation displacement, probably because data were integrated only once 
with respect to time to obtain velocity, leading to the accumulation of fewer integration errors. 
Measurement accuracy was higher for VT movements that may have better approximated 
simple harmonic motion (figure 5) relative to ML and AP movements. Accuracy reduced as 
movements became more complex, suggesting the new ‘scaled’ method works better on rela-
tively stable body segments such as the pelvis, head, and/or thorax, which experience limited 
fluctuations in orientation with respect to the vertical. For more complex movements, accuracy 
might be improved by the use of gyroscopes (Allum and Carpenter 2005) and sensor fusion 
(Brodie 2009), although gyroscopes increase cost and weight, as well as demands on battery 
life, which are important considerations for large scale remote monitoring applications.
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4.5. Agreement with previous research

The large range of stride-to-stride oscillations we observed (0.22–7.40 cm) agrees with pre-
vious research. For example, over one stride, a 5.39 cm range of movement was measured 
along the VT axis and 3.33 cm along the AP axis by accelerometers attached to the lower 
trunk (Meichtry et al 2007). Vertical excursions of the centre-of-gravity from 3.88 to 5.53 cm 
were measured with an accelerometer attached to the L3 vertebra (Gonzalez et al 2009). ML 
pelvic amplitudes of 1.5 to 2.7 cm were measured by harmonic decomposition (Zijlstra and 
Hof 2003). Centre of mass excursions of 2.74 to 4.83 cm were measured along the VT axis 
using optical analysis (Orendurff et al 2004). Measurements ranges agree with those from an 
instrumented treadmill (Tesio et al 2010). Measurements also agree with optical motion cap-
ture of: pelvis motion (Zijlstra and Hof 1997), head and pelvic motion (Cole et al 2010), and 
ML centre of mass sway speeds (Galna et al 2013).

4.6. Interpretation of head and pelvic oscillations

VT oscillations consistently increased with walking speed (table 2), agreeing with a geometric 
model proposed for VT pelvic motion based on stride length (Zijlstra and Hof 1997). Similar 
to VT pelvic oscillations, VT head oscillations may also be governed by the walking mechan-
ics, with little attenuation by the trunk. Similar to a model proposed for ML pelvic displace-
ment based step frequency (Zijlstra and Hof 1997), we also observed decreasing ML head 
oscillation displacement with increased walking speed (figure 7(c)), which in turn was highly 
correlated to step frequency (table 2).

For head and pelvic oscillations in the transverse plane more complex relationships with 
walking speed were observed. ML pelvic oscillation velocity, for example, demonstrating a  
‘U shaped’ relationship and was minimized at usual walking speed (figure 7(d)). ML pelvic 
position, ML head velocity, AP head velocity, and AP head position were also minimized 
at usual walking speeds. The ‘U shaped’ relationships suggest there might be stability, effi-
ciency, and/or control advantages from minimizing stride-to-stride oscillations, that coincide 
with self-selected usual pace.

Interestingly, while AP pelvic oscillation velocity was highly correlated with walking 
speed (r = 0.80, figure 7(a)), AP head oscillation velocity was not (figure 7(b)). Furthermore, 
across all speeds AP pelvic oscillation velocities were faster than AP head oscillation veloci-
ties. These observations suggest that AP head oscillations are attenuated by the trunk. AP 
pelvic oscillations have previously been described purely by gait mechanics (Zijlstra and 
Hof 1997), but it appears additional control mechanisms may be involved in minimizing 
AP head oscillations. Our findings agree with attenuation by the trunk reported previously 
(Kavanagh et al 2005a). In healthy gait, the independence of AP head oscillation velocity 
from gait mechanics, variations in walking speed, and pelvic oscillations may provide a 
stable platform for visual and vestibular feedback mechanisms to better maintain postural 
stability while walking.

4.7. Limitations

We acknowledge certain limitations. This was a pilot study and focused on method develop-
ment. Further research is required to determine generalizability and/or clinical usefulness in 
populations with known gait impairments. We measured head and pelvis oscillation displace-
ment and velocity while walking in a healthy young population. Concurrent validity has yet to 
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be established in either older adults or people with unstable gait. Furthermore, gait efficiency, 
visual, vestibular, and/or control mechanisms were not directly measured. More research is 
required to better understand the complex theoretical relationships we observed between some 
transverse plane head oscillations and different walking speeds (see figure 7). In a compan-
ion paper, head oscillations are used to help characterize gait impairments in people with 
Parkinson’s disease (Brodie et al 2015b).

5. Conclusion

Methods for remotely measuring head and pelvic oscillations while walking using wearable 
accelerometers were developed. In healthy gait, the head and pelvis undergo regular oscil-
lations that can be measured with accelerometers. Consistent with previous mechanical gait 
models, VT oscillations of both the head and pelvis increased with walking speed, suggesting 
very little attenuation of VT motion by the trunk. However, some ML and AP head oscilla-
tions were uncorrelated and/or were minimized at usual speed, suggesting additional control 
mechanisms may be involved in the control of some transverse plane head oscillations in 
healthy gait. Because many consumer devices, including smart phones, already contain accel-
erometers, the methods presented may supplement existing gait analysis techniques and prove 
useful for remote assessment of changing health, mental status, and/or fall risk.

Appendix. The continuous pitch and roll correction

The continuous pitch and roll correction is visualized by figure 3 and designed to improve data 
quality prior to analysis by reducing errors from slow changing sensor orientation. Technical 
details using MATLAB commands is described in several steps below. Implementation in 
MATLAB and example accelerometer data from healthy and Parkinsonian gait are provided 
in a companion paper (Brodie et al 2015b).

Step frequency by fast Fourier transform

MATLAB’s fft() function was to transform the recorded acceleration into the frequency 
domain (see figure 2). The next power of 2 harmonics with relative to the data length was used. 
Step frequency (Fo) was determined by the peak power recorded in channels 1 and 3 of the 
pelvic sensor. The AP and VT harmonics were combined because step frequency was present 
in both axes (figure 2, top and bottom panels). The frequency of the dominant harmonic was 
determined using a moving average filter with a five point data window.

The continuous pitch and roll correction

The changing rotation required to correct for unintended and slow changing sensor tilt was 
calculated. The effects of this correction are demonstrated in figure 3. Calculation was simi-
larly to methods used previously (Moe-Nilssen 1998), but instead of applying a one-off mean 
fixed correction, we calculated the low frequency error using a low-pass filter scaled to one 
quarter of the step frequency. The changing low frequency error was then converted into angu-
lar corrections about a floating unit vector using dot products, cross products, and a rotation 
matrix.
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First, the complete data set, including at least two seconds of stationary data, were low-pass 
filtered using an 4th order Butterworth filter (CutOff = Fo/4 ≈ 0.45 Hz, with respect to the data 
in figure 2) to obtain a changing low frequency acceleration (LFA) vector. MATLAB’s butter() 
and filtfilt() functions were used.

Because steady state walking was assumed, if no orientation error were present, then the 
LFA would have been coincident to the gravitational acceleration (G = [0, 0, 9.81]′). Slow 
changing sensor orientation causes the LFA vector to be angled away from the vertical. The 
continuous rotational corrections were therefore calculated by converting the LFA vector 
(LFA = [LFAAP, LFAML, LFAVT]′) into an angular correction (θ) about a floating unit vector 
(u = [ux, uy, uz]′) in the XY-plane at each epoch.

The angular correction (θ, equation  (A.1)) and floating axis (u, equation  (A.2)) at each 
point in time were found using dot and cross products of the LFA and gravitational accelera-
tion (G) vectors. For implementation refer to the supplementary material and the function. 
The pitch and roll corrections (θ, radians) about the unit vector (u) were then put into matrix 
form (R, equation (A.3)) and applied to the acceleration data (A = [AAP, AML, AVT]′) to give 
acceleration corrected for pitch and roll (ACorr, equation (A.4)).

Linear accelerations of the head and pelvis were calculated by subtracting gravity (G) from 
the corrected acceleration (ACorr, see figure 3, right panels). The most noticeable improve-
ment is in the reduction of zero offset errors for the AP accelerations (figure 3, top panel, 
right side). Such errors may have been caused by a slow and continuous ‘head nodding’ that 
resulted in the head sensor orientation changing.
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Abstract
Fall injuries in people with Parkinson’s disease (PD) are a major health problem. 
Increased sway while walking is a risk factor and further understanding of this 
destabilizing gait change may assist with rehabilitation and help prevent falls.
Here, stride-to-stride head oscillations are used to help characterise different 
aspects of gait impairment in 10 people with PD on medication (67 years, 
SD 4), 10 healthy age-matched (HAM) participants (66 years, SD 7), and 10 
young (30 years, SD 7). A wearable accelerometer was used to analyse head 
oscillations during five repeat 17 m walks by each participant.

People with PD had significantly faster transverse plane head oscillations 
than the HAM or young groups; both along mediolateral (PD 47.2 cm s−1, 
HAM 32.5 cm s−1, and young 32.7 cm s−1) and anterioposterior axes (PD 
33.3 cm s−1, HAM 24.5 cm s−1, and young 20.6 cm s−1). These differences were 
uncorrelated with reduced vertical oscillation velocity (PD 15.5 cm s−1, HAM 
18.8 cm s−1, and young 20.1 cm s−1) and reduced walking speed (PD 1.2 m s−1, 
HAM 1.4 m s−1, and young 1.4 m s−1).

Increased transverse plane head oscillations in people with PD may reflect 
motor impairment and the inability to respond sufficiently to perturbations 
while walking, which appears to be distinct from gait hyperkinesia, reduced 
vertical oscillations, step length, and walking speed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Approximately 68% of people with Parkinson’s disease (PD) fall annually (Wood et al 2002). 
Most falls occur while moving or taking steps, provoked by postural instabilities, tripping, or 
freezing (Ashburn et al 2008). People with PD walk slowly and often with increased cadence 
to compensate for an inability to regulate stride length (Morris et al 1994). Assessments of 
people with PD often combine gait with postural instability, however these impairments may 
provide separate targets for treatment (Maetzler et al 2013). Typically, hypokinetic gait may 
be treated with medication (Rocchi et al 2002), physical therapy (Morris 2006), and deep 
brain stimulation (Johnsen et al 2009), but postural instabilities may respond less satisfac-
torily to medication (Nantel and Bronte-Stewart 2014) or deep brain stimulation (St George  
et al 2014).

Increased sway, while walking is a risk factor for falls. People with PD who fall have 
increased head motion while walking (Cole et al 2010), increased sway that is exacerbated by 
obstacle avoidance (Galna et al 2013), and increased sway velocity correlated to the severity 
of impairment (Galna et al 2013). Consensus, however, has yet to be reached about what con-
stitutes postural instability while walking (Maetzler et al 2013) and research has not focused 
on separating this motor impairment from hypokinesia. We hypothesised that measurement of 
stride-to-stride oscillations using wearable accelerometers might help characterise the effects 
of these different motor impairments on gait in people with PD.

Accelerations measured with body worn sensors have been used to identify gait differences 
in old and young (Kavanagh et al 2005, Menant et al 2011), fallers and non-fallers (Yogev et 
al 2007), and people with Parkinson’s disease (Hausdorff 2009, Latt et al 2009). Measurement 
of stride-to-stride oscillations (requiring accelerations to be integrated with respect to time) is 
less common (Brodie et al 2015).

In this paper, we investigate if stride-to-stride oscillations measured at the head using a 
wearable accelerometer might be used to help characterise both hypokinetic (slowing) and/
or stability-related gait impairments in people with PD. We focused on head oscillations 
because according to a double inverted pendulum model of whole body balance (MacKinnon 
and Winter 1993), any balance perturbations may be amplified by the long lever arms con-
necting the supporting subtalar, hip, and cervical joint centres. Head movements may there-
fore be sensitive to small changes in postural instability while walking. Such insights may 
assist in guiding rehabilitation aimed at improving mobility and/or reducing fall injuries in 
people with PD.

2. Methods

Thirty participants: 10 with PD on medication, 10 healthy age-matched (HAM) controls, and 
10 young participated. Participants were recruited from existing databases. Exclusion criteria 
were medical conditions that affect gait and impaired cognition (<24 on the Mini Mental 
State Examination (MMSE) (Folstein et al 1975). PD participants were eligible if they had a 
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diagnosis of idiopathic PD, lived in the community, were able to walk 21 m unassisted, had a 
clinical stage I–IV of illness according to Hoehn and Yahr (Hoehn and Yahr 1967), and had 
normal hearing and vision (table 1). Approval by the Human Studies Ethics Committee at the 
University of New South Wales was given for the study and informed consent was obtained 
from all participants prior to participation.

A tri-axial accelerometer (Opal™ by APDM, sampling frequency 128 Hz) was incorpo-
rated into a light plastic helmet liner (total mass 67 g) and secured to the participant’s head 
(Brodie et al 2015). Data were reported according to a global vertical, body centred heading, 
coordinate system. Vertical (VT) measurements were independent of body position or sensor 
orientation and aligned to global vertical. The anterioposterior (AP) and mediolateral (ML) 
axes were body fixed and could rotate in the transverse plane if the orientation of the head 
changed. AP generally pointed forwards and parallel to the floor and ML right to left across 
the direction of travel (Brodie et al 2015). Participants completed five walks of 21 m at self-
selected usual pace. The middle 17 m of data for each walk were marked with an external 
trigger and analysed using custom software.

Stride-to-stride oscillation velocity and displacement of the head were measured by inte-
grating the corrected acceleration with respect to time and high-pass filtering (Brodie et al 
2015). Head oscillations were visualised using cyclograms (Wong et al 2004, Tesio et al 2010) 
adapted for 3D representation (figure 1). Example data and MATLAB code to reproduce these 
diagrams are available as supplementary material (see appendix for details and stacks.iop.org/
PM/36/050873). For all head oscillation calculations, the high-pass filter cut-off was scaled 
to 0.40 of step frequency for simplicity, and because previous worked has shown errors were 
relatively insensitive to small changes in filter thresholds (Brodie et al 2015).

For each walk, oscillation velocity and displacement along each axis were summarised 
using the root mean square (RMS) statistic to define magnitude and the 95% range to define 
extent of oscillations. Walking speed, step length, cadence, 95% oscillation range, and RMS 
oscillations were recorded. The likelihood of a normal distribution for each group was 
determined using the Lilliefors test. Correlations with walking speed were measured using 
Pearson’s correlation coefficients. Between test reliability between the first two repeat walks 
by each participant was tested using intraclass correlation coefficients ICC(2,1). Significant 
associations between PD and aging were investigated using the mean values across the five 
walking trials for each participant. ANOVA with post-hoc t-tests were used. Effect size 
was calculated using the difference between group means divided by the pooled standard 

Table 1. Pilot study, participant background characteristics. MMSE—mini mental 
state examination.

Characteristics
Parkinson’s  
disease (N = 10)

Healthy  
age-matched  
(N = 10) Young (N = 10)

Age (year) 67.1 (SD 4.1) 65.6 (SD 6.9) 29.6 (SD 6.6)
Male:female (ratio) 7:3 5:5 6:4
Height (cm) 166.3 (SD 12.5) 171.5 (SD 9.7) 171.0 (SD 9.5)
Weight (kg) 72.2 (SD 15.2) 75.3 (SD 9.3) 68.2 (SD 17.1)
MMSE (0–30) 28.7 (SD 1.3) 29.9 (SD 0.3)
Duration of PD (year) 7.1 (SD 4.2)
Hoehn & Yahr (1–5) 1.9 (SD 1)
# of people with stage 1 and 2 5 and 3
# of people with stage 3 and 4 1 and 1
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deviation. Cluster boundaries for hypokinetic and unstable gait were determined by visual 
inspection. Data were processed using MATLAB (R2010a, The Mathworks Inc.) and SPSS 
(Version 22, IBM Corp).

3. Results

Tests for normality, between test reliability, and correlations with walking speed are sum-
marised in table 2. No gait parameters were found to have distributions significantly different 
from normal (Lilliefors p ≤ 0.05) and between test reliability was good (ICC: 0.75–0.98). Step 
length and all VT oscillations were all highly correlated with walking speed (0.68–0.88). AP 
oscillation velocity, ML oscillation velocity, and ML oscillation displacement were not sig-
nificantly correlated with walking speed.

Head oscillations differed among the three groups (figure 1). Typically, young people (left 
panel) walked with greater VT oscillations of the head, which may be expressed as the RMS 
VT velocity. People with PD presented faster and less controlled transverse plane oscillations 
(right panel), which may be expressed as an increased 95% range of AP head velocity.

Statistical associations for people with PD, healthy age-matched and young were investi-
gated (table 3). ANOVA revealed significant group differences for walking speed, step length, 
and five of the twelve head oscillation parameters investigated. Post-hoc analysis between 
the PD group and the healthy age-matched group revealed large effect sizes for step length 
(−1.28), walking speed (−1.22), the 95% range of AP head velocity (1.21) and the 95% range 
of ML head velocity (1.18). In summary, people with PD walked slower, took shorter steps, 
presented slower VT oscillations, but had faster oscillations in the transverse plane.

Interactions between walking speed, the 95% range of AP head velocity, and the RMS VT 
head velocity were investigated graphically with each walk plotted as a data point (figure 2). 
We observed strong linear correlations with walking speed for step length (panel A, r = 0.88), 
and for RMS VT head velocity (panel B, r = 0.77), but not for the 95% range of AP oscillation 
velocity (panel C), nor for the 95% range of ML oscillation velocity (panel D). According to 
panels A and B, hypokinetic gait in the PD group may be defined similarly by reduced VT 
oscillation magnitude, slower walking speed, and shorter steps. The interaction between walk-
ing speed and AP oscillation velocity (panel C) suggests that people with PD might be fur-
ther separated into subgroups that have hypokinetic, unstable, and/or normal gait patterns. A 

Figure 1. 3D visualisation of the effects of age and PD on head oscillations. The young 
person (left panel) walked with greater VT displacements. The person with PD (right 
panel) presented faster and less controlled transvers plane head movements. The healthy 
age-matched person was between.
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similar interaction was observed for ML oscillation velocity (panel D), although the subgroup 
boundaries were less distinct.

4. Discussion

Measuring stride-to-stride head oscillations using wearable accelerometers provides a new 
way of monitoring gait in people with Parkinson’s disease. The head oscillations parameters 
had both normal distributions and good between test reliability, which enables parametric stat-
ics, such as ANOVA, to be used with greater confidence.

Progressive changes in head oscillations are visualised in figure 1. Increased transverse 
plane head oscillation velocities (as measured by the AP and ML 95% range) were signifi-
cantly associated with PD (effect size: AP = 1.21 and ML = 1.18) and age (effect size: AP = 
1.13), but were not significantly correlated with walking speed (Pearson’s r: AP = −0.16 and 
ML = −0.12). Therefore, for people with PD, measurement of transverse plane oscillations 
during walking may provide additional information about gait impairments, which may be 
distinct from gait hypokinesia.

Our findings agree with previous research that found people with PD who fall have 
increased ML head motion (Cole et al 2010), increased sideways sway that is exacerbated by 
obstacle avoidance (Galna et al 2013), and increased sway speeds correlated to the severity of 
impairment (Galna et al 2013). Consistent with previous work in older people (Brodie et al 
2013), the control of head movements, and control of walking speed may represent different 
gait constructs in people with PD.

Table 2. Measuring stride-to-stride head oscillations using accelerometers, tests for 
normality, between test reliability, and correlations with walking speed. Lilliefors  
p-value ≤ 0.05 indicates the data are not normally distributed. A retest ICC(2,1) of unity 
indicates perfect agreement between the first two repeat walks. Pearson’s r of unity 
indicates perfect correlation with walking speed; significant (p  ≤  0.05) correlations 
marked (*).

Lilliefors test for normality Retest Speed correlation

PD HAM Young ICC(2,1) r p

Walking speed [ms−1] 0.07 0.09 0.50 0.96
Step length [cm] 0.25 0.11 0.50 0.97 0.88* <0.001
Step frequency [Hz] 0.50 0.50 0.50 0.96 0.19* 0.02

Head velocity [cm s−1]
 RMS AP 0.50 0.06 0.50 0.84 −0.13 0.13
 RMS ML 0.50 0.5 0.14 0.81 −0.03 0.69
 RMS VT 0.12 0.39 0.50 0.97 0.77* <0.001
 95% range AP 0.45 0.16 0.48 0.78 −0.16 0.06
 95% range ML 0.50 0.5 0.50 0.95 −0.12 0.16
 95% range VT 0.08 0.5 0.50 0.96 0.74* <0.001

Head displacement [cm]
 RMS AP 0.50 0.5 0.14 0.80 −0.20* 0.02
 RMS ML 0.50 0.34 0.44 0.95 0.03 0.71
 RMS VT 0.36 0.23 0.50 0.98 0.72* <0.001
 95% range AP 0.50 0.5 0.16 0.75 −0.19* 0.02
 95% range ML 0.50 0.5 0.31 0.95 0.02 0.78
 95% range VT 0.12 0.1 0.32 0.98 0.68* <0.001
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Interactions between walking speed and head oscillations were identified by visual inspec-
tion (figure 2). Three subgroups were observed. The first group comprised people with PD 
who walked slowly and generally also had reduced step length and VT oscillation (figures 2(a)  
and (b)). This ‘hypokinetic’ subgroup generally presented transverse plane oscillations within 
the normal range (figures 2(c) and (d)). The second group comprised people with PD who were 
‘unstable’ in that they had increased transverse plane oscillations. The third group included 
people with ‘normal range’ gait and appeared to be neither hypokinetic nor unstable.

This observation of hypokinetic and unstable subgroups is consistent with previous 
research that found people with PD walk slower (Morris et al 1994), and also present postural 
instability that may respond poorly to treatment (Nantel and Bronte-Stewart 2014, St George 
et al 2014). However, additional studies, with larger sample sizes are required to determine if 
transverse plane head oscillations can categorise gait impairment in all people with PD. Such 
information may aid rehabilitation or fall prevention interventions and help provide greater 
distinction between hypokinesia and postural instability while walking as has been advocated 
(Maetzler et al 2013).

Figure 2. Head oscillations may provide one way of separating hypokinetic gait from 
unstable gait and/or normal range gait in people with PD. Panels A and B—walking 
speed, step length and vertical oscillation velocity were all highly correlated and may 
similarly characterise hypokinetic gait as slower, with shorter steps, and reduced VT 
oscillation. Panels C and D—increased transverse plane oscillation velocity may help 
characterise unstable gait patterns in people with PD, independent of reduced walking 
speed and related hypokinetic gait symptoms.
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One method of assessing postural instability is to observe responses to rapid external per-
turbations in standing (Oude Nijhuis et al 2014). In gait, heel-strikes may provide alterna-
tive ‘self-induced’ perturbations and therefore an alternative way to define postural instability 
while walking. At the pelvis, heel-strikes can be identified by changes in AP acceleration 
(Zijlstra and Hof 2003) caused by rapid pelvic breaking after falling forward onto the lead 
foot. AP pelvic oscillations have been shown to depend primarily on step length and walking 
speed in gait mechanics studies (Zijlstra and Hof 1997). In healthy gait, however, AP head 
oscillation velocity is consistently lower than pelvic oscillation velocity and not correlated 
to walking speed, which suggests AP head oscillations may be controlled by additional pro-
cesses and attenuated by the trunk (Brodie et al 2015). Therefore, we propose that the faster 
AP head oscillations observed in people with PD may quantify an inability to respond suffi-
ciently to ‘self-generated’ perturbations caused by heel-strikes, but further research is required 
to confirm this hypothesis.

We acknowledge certain limitations. First, because this was an exploratory study, unadjusted 
p-values were reported (Perneger 1998). Further, because of the small group sizes, and because 
only people with mild PD on medication (mean Hoehn & Yahr 1.9, table 1) comprised the study 
participants, further research is required to determine if our findings can be generalised to all 
people with PD including those with more severe disease, both on and off medication. Second, 
as hypokinetic and unstable clusters were determined through visual inspection, further studies 
are required to confirm the validity of this classification and the clinical significance of iden-
tifying these subgroups. Third, based on the inverted pendulum model, we focused on head 
oscillations only. The assumption that head oscillations are more sensitive than pelvic oscilla-
tions to postural instability in people with PD requires confirmation. Finally, additional work is 
required to better characterise postural instability while walking for people with PD, and might 
include the full kinematic and kinetic assessment of the whole body movements recorded in a 
motion capture laboratory and more detailed neurological examination.

5. Conclusion

Control of head oscillations in the transverse plane appears to be compromised in people with 
Parkinson’s disease. Increased transverse plane oscillations may reflect motor impairment 
and the inability to respond sufficiently to perturbations while walking, which appears to be 
distinct from gait hypokinesia, reduced vertical oscillations, step length, and walking speed. In 
the future, this distinction could be further explored using miniaturised wearable technology 
which may provide insights for rehabilitation and fall prevention. Further research could also 
focus on remotely collecting data from larger samples and investigating oscillation changes 
associated with medication, severity of PD, and/or increased fall risk.
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Th objective of the current investigation was to explore whether upper body accelerations obtained during gait provide sensitive
measures of postural control in people with Parkinson’s disease (PD). Thi teen people with PD (70 ± 11 years) and nineteen
age-matched controls (70 ± 7 years) walked continuously for two minutes while wearing three inertial sensors located on their
lower back (L5), shoulder level (C7), and head. Magnitude (root mean square (RMS)), attenuation (attenuation coeffici t), and
smoothness (Harmonic ratios, HR) of the accelerations were calculated. People with PD demonstrated greater RMS, particularly
in the mediolateral direction, but similar harmonic ratio of head accelerations compared to controls. In addition, they did not
attenuate accelerations through the trunk and neck as well as control participants. Our findi gs indicate that measuring upper
body movement provides unique information regarding postural control in PD and that poor attenuation of acceleration from the
pelvis to the head contributes to impaired head control. Thi information is simple to measure and appears to be sensitive to PD
and, consequently, is proposed to benefit researchers and clinicians.

1. Introduction

People with Parkinson’s disease (PD) walk with a gait pattern
that is characterised by slowness (bradykinesia), muscle
rigidity, and postural instability [1–3]. As the disease pro-
gresses, postural control deteriorates and predisposes people
with PD to falls [4–6]. Current measures of postural control,
based on the ability to maintain upright balance during quiet
stance, poorly reflect real life situations when people with PD
are at risk of falling. Consequently, researchers and clinicians
are promoting the measurement of postural control during
gait [7, 8].

Th recent development of small and inexpensive wireless
inertial sensors has helped facilitate routine measurement
of postural control during gait in the clinic, laboratory, and
the community. Emerging evidence suggests that measuring
upper body acceleration during gait using inertial sensors

can objectively quantify differences in gait patterns between
those with and without PD [9, 10]. It has also been shown that
upper body accelerations are sensitive to differences between
PD fallers and nonfallers [11]. Specific lly, these studies
have revealed a deterioration of the smoothness of trunk
accelerations in people with PD as measured by harmonic
ratios, which was more pronounced in those with a history
of falls.

Despite emerging evidence that maintaining head stabil-
ity during gait is a key determinant of postural control [12–
16], accelerations of the head have been neglected in these
previous studies examining upper body acceleration in PD.
One potential reason head stability is important is that the
head contains the visual and vestibular systems, which are
critical for navigation and preplanning of adaptive motor
strategies [13]. Head stability may have added importance
for people with PD because they rely heavily on vision to
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maintain their postural control [5]. Recent evidence suggests
that vision during gait is aff cted in PD [17] and that the
smoothness of trunk accelerations is also altered [9, 10].
However, it has not yet been established whether PD affects
the stability of the head during gait. A key mechanism in
maintaining head stability is the attenuation of accelerations
through the trunk. People with PD often develop axial
rigidity, which may impair their ability to attenuate the
accelerations that are applied to the lower limbs during
gait from impacting on head stability. The measurement of
attenuation of accelerations through the upper body has
previously been investigated as a strong postural control
indicator for children, adults, and elderly individuals [18–21]
but has not yet been examined in people with PD.

Th objective of the current investigation was to explore
whether upper body accelerations obtained during gait pro-
vide sensitive proxy measures of postural control in people
with Parkinson’s disease (PD). More specifically, the aims of
this study were to assess the magnitude, attenuation, and
smoothness of upper body accelerations in people with PD
compared to age-matched controls. We tested the hypotheses
that: people with PD would demonstrate impaired smooth-
ness and attenuation of accelerations. To address these aims,
accelerations of the head, trunk, and pelvis were assessed
during gait in a cohort of people with PD and an age-matched
control group.

2. Materials and Methods

2.1.Participants. A subsection of community dwelling older
adults and people with PD were tested as part of the
ongoing ICICLE-PD (Incidence of Cognitive Impairment in
Cohorts with Longitudinal Evaluation—Parkinson’s Disease)
Gait study [22, 23]. Participants were excluded if they had any
neurological (other than PD), orthopaedic, or cardiothoracic
conditions that may have markedly aff cted their walking or
safety during the testing sessions. In addition, PD participants
had to be diagnosed with idiopathic PD according to the UK
Parkinson’s Disease Brain Bank criteria and were excluded if
they presented with signific nt memory impairment (Mini
Mental State Exam (MMSE) ≤ 24 [24]), dementia with Lewy
bodies, drug induced parkinsonism, “vascular” parkinson-
ism, progressive supranuclear palsy, multiple system atrophy,
corticobasal degeneration, or poor command of English.This
study was conducted according to the Declaration of Helsinki
and had ethical approval from the Newcastle and North
Tyneside research ethics committee. All participants signed
an informed consent form.

2.2. Experimental Protocol. All participants walked for two
minutes at their preferred pace around a 25 m circuit, fully
described in [27]. Spatiotemporal gait variables (walking
speed, step time, step length, and step width) were mea-
sured using a 7 m long Gaitrite pressure activated electronic
walkway (Platinum model Gaitrite, softw re version 4.5, CIR
systems, United States of America). Upper body accelerations
were measured using three OPAL inertial sensors sampling at
128 Hz (APDM Inc, Portland, OR, USA) located at 5th lumbar
vertebra to represent the pelvis level (P), the 7th cervical

vertebra to represent the shoulder level (S) and upon the back
of the head (H). The Gaitrite and the OPAL system were
synchronised and the data was collected using the same A/D
converter.

2.3. Data Analysis. To ensure only steady-state, straight-line
walking was analysed, only the portion of the acceleration
data recorded while participants who were in contact with
the Gaitrite walkway was used. As detailed in Mazzà et
al. [20], prior to collecting the gait data, a calibration trial
was captured using a sensor placed on the fl or to create a
global reference frame for the laboratory. Thereafter, the local
reference frame of each sensor was reoriented for each time
sample to the newly established global reference frame [19,
28]. Following, the acceleration data was further segmented
based upon the foot contact and foot off values obtained
from the Gaitrite walkway. Then, the mean value of the signal
was removed and a low-pass fourth order Butterworth filter
with a cut-off frequency of 10 Hz was applied [19]. Data for
each stride was normalised to 100 data points using linear
interpolation. All signals were processed using MATLAB
(version 8.1.0).

2.4. Magnitude of Acceleration. Th magnitude of accelera-
tions was calculated using the root mean square (RMS) of the
accelerations, measured by each sensor for each stride in the
Anteroposterior (AP), Mediolateral (ML), and Vertical (V)
directions.

2.5.Attenuation ofAcceleration. Th ability to attenuate accel-
erations through the upper body was quantifi d using the
attenuation coeffici t. The attenuation coeffici t describes
the ability to reduce accelerations from inferior to the supe-
rior anatomical locations and was calculated using the RMS
values for each stride.

The attenuation coefficients were computed using the
RMS values of the head (RMSH), shoulder (RMSS), and pelvis
(RMSP) as follows [18–20]:

𝐶PH = (1 −
RMSH
RMSP
) × 100,

𝐶PS = (1 −
RMSS

RMSP
) × 100,

𝐶SH = (1 −
RMSH
RMSS
) × 100

(1)

with 𝐶PH representing the attenuation from the pelvis to the
head, 𝐶PS representing the attenuation from the pelvis to
the shoulder, and 𝐶SH representing the attenuation from the
shoulder to the head. Each equation provides a percentage
representing the amount of acceleration that is attenuated
from the inferior sensors to the superiorly located sensor. A
positive coeffici t indicates reduced acceleration at the supe-
riorly located sensor relative to the inferiorly located sensor.
A negative coefficient value indicates a greater acceleration at
the superiorly located sensor.
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Ta bl e 1: The mean (±SD) participant characteristics and spatial-temporal gait variables for the PD and control group.

PD (𝑛 = 13) Control (𝑛 = 19) 𝑃 (𝑡-test)
Age (years) 69.7 ± 11.1 70.2 ± 6.7 0.90
Height (m) 1.70 ± 0.10 1.72 ± 0.10 0.99
Mass (Kg) 77.9 ± 13.3 83.2 ± 14.2 0.30
BMI 26.1± 3.3 28.0 ± 4.5 0.20
MDS UPDRS III 35.6 ± 12.6 NA NA
Hoehn and Yahr stage HY II: 11;HY III: 2 NA NA
Gait speed (m/s2) 1.22 ± 0.22 1.32 ± 0.15 0.14
Step time (s) 0.54 ± 0.21 0.54 ± 0.44 0.97
Step length (cm) 0.66 ± 0.12 0.71± 0.07 0.15
Step width (cm) 0.09 ± 0.03 0.09 ± 0.02 0.46
∗Significant diffe ence at 𝑃 < 0.05.
BMI: body mass index.
MDS UPDRS III: Movement Disorders Society Revised Unifie Parkinson’s Disease Rating Scale–Movement Subsection [25].
HY: Hoehn and Yahr stage [26].

2.6. Smoothness of Accelerations. We quantifi d the smooth-
ness of upper body accelerations using the harmonic ratio
(HR).The HR accurately describes the step-to-step symmetry
within a stride but for upper body gait analysis is also
commonly referred to as a measure smoothness [29]. Th
HR was calculated via discrete Fourier transform for each
of the acceleration components measured at the H, S, and P
levels in the AP, ML, and V directions [30]. Th fundamental
frequency was set equal to the stride frequency.

For the AP and V Components, the HRWas Defined as:

HR =
Σ Amplitudes of even harmonics
Σ Amplitudes of odd harmonics

(2)

For the ML Component, the HRWas Defined as:

HR =
Σ Amplitudes of odd harmonics
Σ Amplitudes of even harmonics

(3)

Higher values of HR are associated with a higher similarity
between the pattern of the upper body movements occurring
during the right and left steps and are therefore favourable [9,
31]. Following calculation, the HR’s were normalised to each
participant’s gait speed [9, 14].

2.7. Statistical Analysis. A series of two-tailed paired 𝑡-tests
were used to test the difference between groups for the
magnitude, attenuation, and smoothness of accelerations.
Th level of signific nce was set at 𝑃 = 0.05. Given the
exploratory nature of this study, the 𝑃 value was not adjusted
for multiple comparisons.

3. Results

Th characteristics of the participants are reported in Table 1.
All the participants with PD were tested within 18–54 months
post diagnosis. No signific nt differences were found between
the two groups in terms of anthropometric characteristics or
spatiotemporal gait values.

3.1. Magnitude of Acceleration. Significantly higher ML head
accelerations were observed in people with PD compared to
controls (1.08 ± 0.29m/s2 versus 0.86 ± 0.21m/s2, 𝑃 = 0.024)
but not at the pelvis or the shoulder level. There were no
other signific nt between-group differences although AP and
V head accelerations tended to be greater in the PD group
(Table 2).

3.2. Attenuation of Acceleration. People with PD did not
attenuate AP or ML accelerations as well as controls
(Figure 1). For 𝐶PH, a signific nt difference existed between
PD and the control participants in the ML direction (0.12 ±
34.7% versus 33.8 ± 21.3%, 𝑃 = 0.003). For 𝐶PS, a significant
difference existed between PD and controls in the AP (16.0 ±
15.6% versus 33.1 ± 12.4%, 𝑃 = 0.002), as well as the ML
direction (5.5 ± 24.5% versus 27.7 ± 18.6%, 𝑃 = 0.009).
For 𝐶SH, a signific nt difference existed between the PD and
the control group in the ML direction (−3.6 ± 15.5% versus
9.4 ± 15.3%, 𝑃 = 0.031).

3.3. Harmonic Ratio. The HRs normalised to gait speed
showed no signifi ant differences between the PD and control
participants (Table 3).

4. Discussion

Our current investigation provides evidence that upper body
accelerations obtained during gait provide sensitive measures
of postural control in people with Parkinson’s disease (PD).
As hypothesised, the results of this study showed that people
with PD walked with altered upper body accelerations com-
pared to age-matched controls. In particular, people with PD
walked with greater magnitude of ML head accelerations and
demonstrated impaired attenuation of accelerations from the
pelvis and neck to the head. In contrast to our hypothesis,
smoothness of upper body accelerations as measured by the
HR was not signific ntly affected in this sample of PD.

To our knowledge, this is the first study to show impaired
head stability in people with PD using inertial sensors. A
greater magnitude of ML head acceleration was found for
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Ta bl e 2: The mean (±SD) root mean square (RMS) for the PD and
the control participants calculated at the head (H), shoulder (S), and
the pelvis (P) levels.

Sensor
location

Component PD Control 𝑃 (t-test)

H
AP 1.02 ± 0.24 0.92 ± 0.20 0.22
ML 1.08± 0.29 0.86 ± 0.21 0.02∗

V 2.15 ± 0.74 2.41± 0.47 0.26

S
AP 1.03 ± 0.18 0.96 ± 0.16 0.31
ML 1.05± 0.24 0.96 ± 0.17 0.25
V 2.04 ± 0.64 2.28 ± 0.46 0.24

P
AP 1.28 ± 0.38 1.47 ± 0.33 0.14
ML 1.17 ± 0.36 1.41± 0.42 0.11
V 2.16 ± 0.70 2.35 ± 0.47 0.37

∗Significant diffe ence at 𝑃 < 0.05.
H: head; S: shoulder level; P: pelvis.
AP: anterior/posterior; ML: medial/lateral; V: vertical.

Ta bl e 3: The mean (±SD) Harmonic ratios normalised to gait speed
for the PD and the control participants calculated at the head (H),
shoulder (S), and the pelvis (P) levels.

Sensor
location

Component PD Control 𝑃 (𝑡-test)

H
AP 0.71± 0.36 0.53 ± 0.23 0.11
ML 1.22± 0.56 1.02 ± 0.38 0.27
V 2.03 ± 0.57 2.18± 0.60 0.50

S
AP 0.70 ± 0.23 0.66 ± 0.22 0.64
ML 0.80 ± 0.50 0.80 ± 0.22 0.95
V 2.34 ± 0.77 2.51± 0.72 0.55

P
AP 1.22 ± 0.38 1.13± 0.48 0.61
ML 1.05± 0.69 0.80 ± 0.38 0.22
V 2.02 ± 0.60 2.17 ± 2.17 0.58

H: head; S: shoulder level; P: pelvis.
AP: anterior/posterior; ML: medial/lateral; V: vertical.

the PD group.This was interpreted as a result of poor postural
control for the PD participants and a failure to stabilise their
head in space [18, 21]. High values for the head accelerations
have been previously described as a reduced ability to stabilise
the head in space. This is particularly crucial for people with
PD because of their aforementioned increased dependence
upon visual input for correcting postural control [5]: higher
accelerations are likely disturbing their visual system, leading
to an impaired ability to preplan effective motor strategies
[13], causing an increased likelihood to fall. Although they
might be a useful measure of postural control, RMS values
of head accelerations are known to be dependent upon step
length and gait speed [31]. Despite no signific nt differences
being observed for these parameters between the PD and
the control group in this sample, it is common that PD
aff cts both gait speed and step length [1–3]. As a result, the
magnitude of accelerations may lack sensitivity when used for
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Figur e 1: Mean (±SD) values of the attenuation coeffici ts (𝐶PH,
𝐶PS, and 𝐶SH) of the three acceleration components (AP = ante-
rior/posterior, ML = medial/lateral; V = vertical), computed for the
control and group with PD. ∗𝑃 < 0.05.

discriminating PD patients, which in other studies have been
shown to possess a decreased step length and gait speed, when
compared to age-matched controls.

Alternatively, being computed as a ratio between acceler-
ations measured during the same trial [18], the coeffici ts of
attenuation do not suffer from being speed dependent. In the
current investigation; the coeffici ts of attenuation provided
insight into why the PD participants demonstrated greater
accelerations at the head. Participants with PD were less
able to attenuate accelerations through the trunk, as shown
by impaired pelvis-shoulder attenuation coeffici ts, which
were reduced on average by at least a half in the PD cohort,
both in the AP and in the ML direction. It is not possible
to fully explain why the people with PD did not attenuate
accelerations well through the upper body; however, it may
be associated with en bloc movement and axial rigidity. It
has previously been stated that increased rigidity may cause
underlying changes in the physiological and mechanical
functioning of the axial muscles which results in en bloc
movement, where the head, trunk and pelvis move together
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as one rigid unit [12, 32]. It might be assumed that the
same mechanisms could be responsible for poor attenuation
of accelerations through the spine in PD. However, more
research is certainly needed to test this hypothesis and explain
the mechanisms ruling altered head accelerations and poor
attenuation in PD, as well as the implications of poor head
stability on vision and postural control.

Interestingly, the findings regarding attenuation coeffi-
cients were strongest in the ML direction. Similar results
were found even when analysing healthy elderly subjects
[21]. Th fact that instability was predominantly found in the
ML direction, suggests that when utilising a coeffici t of
attenuation, the ML direction is potentially most informative
of an impaired walking stability. Consequently, assessments
in the ML direction may be best for proxy measures of
postural control in PD.

In contrast with our hypothesis and previous studies
[9], the smoothness of upper body accelerations (harmonic
ratios) was not significantly aff cted in our sample of PD par-
ticipants. Th discrepancy with previous studies is unlikely
due to methodological differences, as the studies were similar
in design. It is possible, however, that we were statistically
underpowered to detect group difference, as suggested by a
25% reduction of AP HRs and 16% reduction of ML HRs
at the head in the PD group that did not reach statistical
signific nce (𝑃 = 0.106). Further research is required to
determine the effectiveness of harmonic ratios as a sensitive
measure to PD at different stages of their disease progression,
as well as its ability to predict future falls.

Clinicians require objective measures to assess postural
control during locomotion in people with PD to supplement
standard clinical assessments and conventional rating scales
which are not sensitive to subtle postural control disturbance
[31, 33, 34]. Our findings indicate that it is feasible to measure
the magnitude, attenuation, and smoothness of upper body
accelerations in people with PD using body worn sensors.
Th rapid technological development of inertial sensors
may affor a quick, clinically appropriate, and cost effective
method to measure postural control in the clinic and com-
munity settings [5]. Specific lly, the attenuation coeffici t
is a promising measure that is sensitive to PD; however,
larger longitudinal studies are needed to assess its ability to
monitor disease progression, determine intervention effic y,
and inform clinical management [5, 34, 35].

5. Conclusion

Th current investigation suggests that assessing upper body
acceleration off rs additional and unique information about
postural control during gait in people with PD. In particular,
the magnitude of ML head accelerations and attenuation
of upper body acceleration appear sensitive to PD and
consequently hold promise as useful proxy measures that can
be utilised in clinical and community settings.
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Background. The e are likely marked differences in endotracheal intubation (ETI) techniques between novice and experienced
providers. We performed a proof of concept study to determine if portable motion technology could identify the motion
components of ETI between novice and experienced providers.Methods.We recruited a sample of novice and experienced providers
to perform ETIs on a cadaver. Thei movements during ETI were recorded with inertial measurement units (IMUs) on the leftwrist.
Th signals were assessed visually between novice and experienced providers to identify areas of differences at key steps during ETI.
We then calculated spectral smoothness (SS), a quantitative measure inversely related to movement variability, for all ETI attempts.
Results. We enrolled five novice and five experienced providers. When visually inspecting the data, we noted maximum variability
when inserting the blade of the laryngoscope into the mouth and while visualizing the glottic opening. Novice providers also had
greater overall variability in their movement patterns (SS novice 6.4 versus SS experienced 26.6). Conclusion. Portable IMUs can
be used to detect differences in movement patterns between novice and experienced providers in cadavers. Future ETI educational
efforts may utilize portable IMUs to help accelerate the learning curve of novice providers.

1. Introduction

Endotracheal intubation (ETI) is an advanced airway proce-
dure that is defin d by a series of movements that result in
a tube passing through the glottic opening into the trachea
to allow for oxygenation and ventilation. Unsuccessful or
prolonged ETI efforts can lead to multiple complications
including hypoxia, brain damage, and even death [1–3]. The e
complications may be magnified when performing ETI in
acute care settings including the emergency department and
out-of-hospital environments [1, 3, 4]. As a result, learning
ETI in acute care settings is challenging and often the
learning curve for ETI in these settings is prolonged [5, 6].
Procedural competency is essential for low-frequency and
high-consequence procedures such as ETI and therefore it is
essential to accelerate the learning curve for emergent ETI.

While there are educational programs for teaching ETI,
there are few objective metrics available to assess procedural
competency, specific lly the kinematics involved in ETI. An
improved understanding of the motions involved in ETI and
their connections with airway exposure and visualization
could impact airway education practices, shedding light on
the unrecognized actions needed to accomplish ETI and
improve patient outcomes. Previous work with motion cap-
ture has identifi d differences in movement patterns between
novice and experienced providers [7]. Thi work has been
restricted to mannequin models due to limited portability of
motion analysis technology. Portable inertial measurement
units (IMUs) have been used in other clinical settings, but
their utility in ETI is unknown [8, 9].

We demonstrate proof of concept that ETI motions can
be recorded by portable IMUs. We hypothesize that portable
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IMUs can identify movement patterns that differentiate
novice from experienced providers when performing ETI
outside of mannequins.

2. Methods

2.1. Study Design and Setting. We performed an interven-
tional, observational study examining the movement patterns
of providers while performing intubation on a cadaver. Aft r
providing informed consent, participants were outfitted with
IMUs (Emerald Model, APDM Inc, Portland, OR) on the left
wrist. Participants then performed one intubation attempt
on a cadaver using the CMAC video laryngoscope (Model
8402, Karl Storz Corp., Tuttlingen, Germany) with a #4
Macintosh blade. Participants used the CMAC as a direct
laryngoscope; however, their ETI attempts were recorded for
offli review. All intubation attempts were made with the
cadaver on the anatomy table (fi ed height of 89.5 cm). The
providers’ movements were recorded with the IMUs. Prior
to each ETI attempt, providers were instructed to clap three
times, pick up the laryngoscope with their left hand, move the
laryngoscope up and down three times, lay the laryngoscope
back down, and rest their hands on the table. This provided
a unique signal, allowing us to synchronize the videos from
the CMAC and the movement patterns from the IMUs to
identify the beginning of the intubation attempt. Providers’
movements, as recorded by the IMUs, were then compared
offli between experienced and novice providers. Thi study
was approved by our Institutional Review Board.

2.2. Selection of Participants. We recruited a convenience
sample of fiv providers from a pool of attending physicians
and fourth year emergency medicine residents with each
having over 100 ETIs in the clinical setting, and define these
as “experienced” providers. We also recruited a convenience
sample of five third and fourth year medical students with
each having <10 ETIs in the clinical setting and defin d
these as “novice” providers. All providers had previous
formal airway training. We defined “previous formal airway
training” as having attended a structured airway didactics
of ≥1 hour in length for experienced providers (emergency
medicine resident or attending physician). Novice providers
must have attended a structured airway didactics of≥1 hour in
length or completed a rotation in anesthesia. No participants
reported signific nt experience with the CMAC prior to this
study. We excluded providers who had performed between 10
and 100 ETIs or if they had no formal airway training.

2.3. Cadaver Preparation. All intubations were made on a
single, embalmed, male human cadaver. The cadaver had no
oral, pharyngeal, or neck trauma, craniofacial abnormality,
or a known history of tracheostomy. We recorded anatomic
measurements related to airway placement including thyro-
mental distance (6 cm), thyrohyoid distance (2 cm), and neck
circumference (56 cm) at the level of the thyroid cartilage [10].
Initially, a 2-inch incision was made through the skin over
the area of the zygomatic arch down towards the jaw line.
Th skin was refl cted inferiorly to expose the underlying

structures. The parotid gland and subcutaneous tissues were
removed in order to expose the masseter and its origins
on the zygomatic arch. The superficial and deep heads of
the masseter were detached from the zygomatic arch and
retracted inferiorly in order to expose the mandible. In
order to permit more free motion of the jaw, the temporalis
muscle was then detached from its insertion on the coronoid
process of the mandible.This allowed providers to instrument
anatomic structures during ETI attempts and created a grade
3 Cormack-Lehane view as assessed by the investigators. We
created a grade 3 Cormack-Lehane view as we felt this would
allow for greater discrimination between the movement
patterns of novice and experienced providers.

2.4. Methods and Measurements. We collected provider
demographics and recorded both the movement patterns
of the IMUs using the IMU integrated software along with
video of the intubation attempt using the integrated CMAC
softw re. Placement of the endotracheal tube (trachea versus
esophagus) was assessed by visual inspection by the inves-
tigators after each ETI attempt. We defin d an intubation
attempt each time the blade of the laryngoscope entered the
mouth. We defin d attempt time as the time in seconds from
when the blade of the laryngoscope entered the mouth until
it was fully withdrawn from the mouth after placement of the
endotracheal tube (either successful placement in the trachea
or unsuccessful in the esophagus).

2.5. Outcomes. Our primary outcome was variability in
movement patterns assessed by spectral smoothness and
visual accelerometer patterns between novice and experi-
enced providers during ETI.

2.6. Analysis. Providers had their movements recorded dur-
ing ETI using an IMU placed on the posterior aspect of
the left wrist. We collected accelerometer data in the 𝑥-,
𝑦- and 𝑧-axes (Figure 1). We visualized the data to identify
the IMU and axis with maximum variability and utilized
these data for analysis. We segmented the IMU data into
portions of the ETI attempt based on previous ETI motion
analysis: laryngoscope entering the mouth, obtaining the
view of the vocal cords, placing the endotracheal tube, and
removing the laryngoscope [7]. We computed 16-point Fast
Fourier Transform (FFT) on the segmented signal [11, 12].
A quantitative measure of spectral smoothness (SS) was
computed over all trials corresponding to each group (novice
and experienced). Th SS measure was computed from the
FFT of accelerometer data as follows [13]:

(1)𝑋 is the FFT vector;
(2) SS = 𝜎(𝛿[𝑋])/‖𝑚(𝛿[𝑋])‖, where ‖ ⋅ ‖ is the absolute

value, 𝜎(⋅) is the standard deviation, 𝛿[⋅] is fi st order
diff rential, and𝑚(⋅) is the mean function.

SS is a nonnegative (>0) measure, which is inversely propor-
tional to the absolute value of the mean of signal differential.
Therefore, the choppier the signal (e.g., greater variability
or less smooth), the lower the SS value. This is due to
larger differences in successive signal samples and thus
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Ta ble 1: Provider characteristics. EM: emergency medicine.

Novice (𝑛 = 5) Experienced (𝑛 = 5)
Age in years, (SD) 27 (2.8) 31.4 (1.3)
Sex: male (𝑛) 80% (4) 80% (4)
Handedness: right 100% (5) 100% (5)

Experience Fourth year medical student: 4
Thi d year medical student: 1

Fourth year EM resident: 4
EM attending: 1

First attempt success (𝑛) 20% (1) 40% (2)
Attempt time in seconds (mean, SD) 38.3 (9) 33 (5.5)

Figur e 1: Inertial measurement unit on the left wrist. Blue arrow,
𝑥-axis. Red arrow, 𝑦-axis. Green arrow, 𝑧-axis.

high absolute value of the mean of diff rential signal. A
smooth signal results in low absolute mean value of the
differential signal, thereby increasing the SS value. Thus,
the SS measure represents the extent of redundant motion
variations (i.e., choppiness) associated with ETI attempts [13].
The e computations were completed with MATLAB, release
2012b(version 8.0, MathWorks, Inc, Natick, MA).

We also sought to identify patterns that may exist in
the movement signals between novice and experienced
providers. Movement patterns consist of two aspects, the
dispersion or distance traveled and the acceleration or quick-
ness. Dispersion in the 𝑥-, 𝑦-, and 𝑧-axes is not simple
straight lines, but it represents complex mathematical signals.
As a result, dispersion is often difficult to represent as a
single sinusoidal equation. However, each ETI dispersion
signal can be represented as a collection of simpler sinusoidal
waves with different frequencies (as measured in hertz or Hz)
that combine to form the overall sinusoidal equation. Th
second movement component, acceleration, can be measured
by the accelerometers in the IMUs, and expressed as force
(in gravitational constants or 𝑔). To directly compare the
overall movement patterns between novice and experienced
providers, we graphed the net value of force, in 𝑔2, by the
various simpler sinusoidal frequencies that constitute the
overall complex sinusoidal equation for dispersion [11, 12].

Based on the computed 16-point Fast Fourier Transform
(FFT) of the overall complex signal, the components can
be equally transformed into 16 discrete units representing
simpler sinusoidal waves between −60 Hz and 60 Hz. (11,
12) This allowed us to visually compare the movement
components, both dispersion and force, between experienced
and novice providers.

3. Results

We enrolled five novice (one third year and four fourth
year medical students), and five experienced providers (four
fourth year emergency medicine residents and one attending
physician) (Table 1). Due to troubles with recording, one
provider in each group did not have their IMU signal
available for analysis and was thus excluded from the study.
Th IMU data corresponding to the laryngoscope insertion
and glottis visualization was then segmented out for further
analysis (Figure 2). We compared the IMU data to the videos
recorded during the intubation attempt and identified the
four segments of the kinematic signals: laryngoscope entering
the mouth, obtaining the view of the vocal cords, placing
the endotracheal tube, and removing the laryngoscope [7].
Th orange box (Figure 2) represents the steps where the
laryngoscope entered the mouth and a view of the vocal
cords was obtained. Visually, there appeared to be the greatest
movement variability during this step; thus, this area is
magnifie in Figure 3.

After transforming the data via the FFT, the spectral anal-
ysis of the 𝑍-component from these sections had a parabolic
curve for both novice and experienced providers (Figure 4).
Thi curve was smoother for experienced providers both on
visual inspection and when analyzed by spectral smoothness
(SS novice 6.4 versus SS experienced 26.6).

When the complex movement patterns in the 𝑧-axis were
broken down into simpler frequencies, there appeared to
be a unique, parabolic relationship between these sinusoidal
waves (the description of movement) and force with expe-
rienced providers (Figure 4). Experienced providers had a
bimodal distribution of forces, where greater forces were
noted at lower frequency signals and then again at higher
frequency signals.

4. Limitations

The e are several limitations to this study. Our study was
limited to a small sample. Initially, we sought to compare five
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Figur e 4: Spectral analysis of the 𝑍-component of IMU signal from insertion until glottic visualization for the four novice and experienced
providers. Spectral range (blue to red) for each subject is ±60 Hz divided into 16 equal segments. The overall signals are shown in the top
graphs. The orange box represents the areas magnifie in the lower graphs. Exp: experienced.

novice and five experienced providers but had to limit the
study size to four providers in each group due to incomplete
recording of the data. Second, this study was performed in
a cadaver model with a difficult airway (grade 3 Cormack-
Lehane). Th cadaver underwent a modifi d dissection of
tissue, masseter, and temporalis muscle detachment to allow
for a grade 3 Cormack-Lehane view. We felt a difficult

airway (Cormack-Lehane grade 3) would allow for greater
discrimination between the movement patterns of novice and
experienced providers. As Cormack-Lehane grade 3 views are
infrequently encountered in emergency airway management,
we focused our efforts on the cadaver model [14–16]. Also,
from a patient safety and research ethics standpoints, we
did not feel it was in patients’ best interest to perform
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multiple intubation attempts on a patient or patients with a
difficult airway, especially with novice providers, for a proof
of concept study. The cadaver allowed us to standardize the
intubation attempts as all attempts could then be made on
one airway. While we are able to show proof of concept
that IMUs are able to collect data and differentiate between
novice and experienced providers in ETI using human tissue,
future efforts will be needed to assess IMUs in the clinical
setting with varying glottic views. Studies involving com-
parison between cadaver and human subjects would provide
further insight with the kinematics involved in ETI. Other
movement patterns that may be critical to ETI success were
not investigated. As we were only able to analyze left wrist
movement patterns, future investigations may examine other
joints (elbow, shoulder, right wrist, etc.) to provide a more
complete analysis of the kinematics involved in ETI.

5. Discussion

We were able to identify differences between experienced
and novice providers using IMUs in a cadaver model. By
identifying these key differences, future work may provide
further quantification and impactful feedback during ETI
instruction. Eventually, this may be incorporated with a
model that allows real-time feedback via instruction and cor-
rection while performing the task of ETI in a clinical setting.
ETI proficien y is associated with procedural experience with
this skill [6]. If we are able to further accelerate the learning
curve of providers, competency may be achieved at a faster
rate, thus reducing the potential harmful of the learning
curve.

In a multicenter analysis including over 6,000 ETIs, the
fi st attempt success rates varied by provider experience
with the first year emergency medicine residents having
success rate of only 72% compared to 82% and 88% in the
second year and third year, respectively [17]. First attempt
success also decreases with Cormack-Lehane view where
grade 3 views have first attempt success rates near 40%,
similar to those noted in our study [16]. Complications occur
more frequently in cases where multiple ETI attempts are
made [3]. Accelerating the learning could directly address
the complications related to multiple attempts in novice
providers in the acute setting.

We chose to evaluate the movements of the left wrist in
novice and experienced providers during intubation. While
there is not yet a clear link between wrist movements and
intubation success or side effects, there are distinct differences
in the movement patterns of the leftwrist between novice and
experienced providers [7]. As providers gain experience with
emergency airway management, they demonstrate greater
intubation success and lower rates of complication related
to intubation [17, 18]. Examining the link between these
movement patterns and intubation outcomes may provide
insight into why these differences in intubation success
exist and identify opportunities for improvement in ETI
techniques.

To our knowledge, ours is the first study using portable
movement mapping technology to evaluate intubation. Th
benefits of portable sensors have yet to be fully realized

in the acute care setting. Portable sensors may not be
limited to the use of IMUs but may also make use of
other technologies such as smartphones with incorporated
cameras and accelerometers. Previous work has shown that
smartphones may help with ETI and can even monitor chest
compression during cardiopulmonary resuscitation [19–21].
Th ubiquitous nature of the technologies incorporated into
smartphones represents an ideal tool for capturing informa-
tion and providing feedback.

While our study was designed as a proof of concept,
we believe that portable sensors may be able to identify
movement patterns between providers with different levels
of experience. The e technologies can identify patterns of
force that may vary with diff rent components of the overall
dispersion signal (i.e., there might be dispersion differ-
ences between not only novice and experienced providers
measured in space, but also the force with which these
actions take place). Despite our small sample size, there
appear to be differences in the combination of dispersion
and force between novice and experienced providers where
experienced providers had a bimodal distribution of forces,
where greater forces were noted at lower frequency signals
and then again at higher frequency signals while this was not
seen with novice providers (Figure 4).

Interpreting these findings can be challenging but may
be contextualized more easily using an example outside of
medicine. When assessing how someone may swing a golf
club, there are two components to the swing, the dispersion
(or measurement of the distance moved) and the acceleration
or force. Th golfer needs the ideal “mechanics” or dispersion
combined with the proper force at the correct time during the
swing. Representing the relationship between the dispersion
and force allows for the identific tion of key differences
within the movement pattern. Identifying the unique interac-
tion between dispersion and force may also help to explain the
differences in ETI success rates between providers and allow
for focused feedback to novice providers.

6. Future Directions

Th clinical implications of this line of work are broad. Future
work with portable sensors may help to track the movements
of novice providers, compare these movements to those
of experienced providers, and provide real-time, objective
feedback to trainees on their movement patterns. While
we have focused on ETI, similar educational models could
be developed for other medical procedures. The successful
development of these models requires multiple steps:

(1) identify portable sensors that can objectively track
movement patterns in the clinical setting;

(2) classify movement patterns that differentiate novice
from experienced providers;

(3) incorporate analysis algorithms that will allow for
rapid assessment of movement patterns and recognize
areas that require focused educational attention (e.g.,
what portion of the ETI attempt differed from that of
previously analyzed experienced ETI attempts);
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(4) develop teaching curriculum that incorporates these
measurements to allow for impactful, timely feed-
back.

While we have shown proof of concept that ETI motions
can be recorded by portable IMUs (step (1)), future work
will be needed to effectively develop this technology into an
educational modality (steps (2)–(4)).

Ericsson’s model of deliberate practice presents a frame-
work for this information to be leveraged [22, 23]. Erics-
son states that deliberate practice must provide immediate
feedback, correction, remediation, and repetition [6, 22, 23].
Th inclusion of additional feedback to the student from
the kinematic data allows for more precise and immediate
feedback beyond a simple yes/no of success with the per-
formance of ETI. While kinematic feedback may require a
better understanding of the whole body movements of the
provider during ETI, we chose to focus our preliminary
efforts on the left wrist as there are distinct differences in
the movement patterns of the left wrist between novice and
experienced providers [7]. Experienced providers also have
greater intubation success and lower rates of complication
indicating a potential link between movement patterns and
intubation success [17, 18]. A more nuanced understanding
of the entire ETI process presents additional opportunity
for the practitioner to receive immediate feedback on these
movement differences and accelerate the learning curve.

Specifi to simulation and mannequin based learning,
prior studies including Hall et al. have also shown increased
skill acquisition with the combination of simulated and
mannequin based training [24]. With the additional data
gleaned from a more complex mapping of the novice versus
experienced movements made during ETI, we may further
enhance skill acquisition outside of clinical practice. Seg-
menting the steps and breaking down the process of ETI
may also allow for more precise practice with cadavers and
mannequins.

Movement sensor analysis provides valuable, objective
data and has been used in a variety of clinical settings.
Other studies have used portable sensors to track progression
aft r stroke [8, 9]. This line of work has shown that motion
sensor analysis presents a linear relationship with subjective
measures of stroke severity. In a similar manner, motion
sensor analysis in the use of ETI may provide a more objective
measure of techniques utilized in successful ETI beyond
subjective feedback of an instruction practitioner. Future
efforts are needed to advance the kinematic analysis process
and provide subjects with real-time feedback.

7. Conclusion

IMUs can be used to identify the kinematics of both novice
and experienced providers in a cadaver model. By further
understanding movement patterns for ETI and quantitatively
analyzing ETI kinematics, we are better able to understand
the mechanics of intubation. These are the first steps in
designing a real-time feedback system to accelerate the
learning curve of ETI.
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Human Joint Angle Estimation with Inertial Sensors and Validation
with A Robot Arm

Mahmoud El-Gohary, and James McNames

Abstract—Traditionally, human movement has been captured
primarily by motion capture systems. These systems are costly,
require fixed cameras in a controlled environment, and suffer
from occlusion. Recently, the availability of low-cost wearable
inertial sensors containing accelerometers, gyroscopes, and mag-
netometers have provided an alternative means to overcome the
limitations of motion capture systems. Wearable inertial sensors
can be used anywhere, cannot be occluded, and are low cost.
Several groups have described algorithms for tracking human
joint angles. We previously described a novel approach based on
a kinematic arm model and the Unscented Kalman Filter (UKF).
Our proposed method used a minimal sensor configuration with
one sensor on each segment. This article reports significant
improvements in both the algorithm and the assessment. The
new model incorporates gyroscope and accelerometer random
drift models, imposes physical constraints on the range of motion
for each joint, and uses zero-velocity updates to mitigate the
effect of sensor drift. A high-precision industrial robot arm
precisely quantifies the performance of the tracker during slow,
normal, and fast movements over continuous 15 minute recording
durations. The agreement between the estimated angles from
our algorithm and the high-precision robot arm reference was
excellent. On average, the tracker attained an RMS angle error
of about 3◦ for all six angles. The UKF performed slightly better
than the more common Extended Kalman Filter (EKF).

Index Terms—Inertial Measurement Units, Inertial sensors,
Kinematics, Joint Angle Tracking, Shoulder, Elbow.

I. INTRODUCTION

THE need to characterize normal and pathological human
movement has consistently driven researchers to develop

new rigorous tracking systems. These systems need to be accu-
rate, unobtrusive, and suitable for continuous monitoring over
long periods while subjects perform normal daily activities.

Magnetic resonance imaging-based methods for measuring
the mechanics of human joints have been successfully applied
to evaluate biomechanics in different human joints [1], [2].
Bey et al. developed and validated a tracking technique for
measuring glenohumeral joint translations during shoulder
motion from x-ray images [3]. These systems require a ded-
icated laboratory, trained staff to operate the systems, and
are restricted to static or very slow and limited range of
motion. Tracking of bone pins has also been used, but this
is an invasive technique which limits the number of subjects
who might be willing to participate in these studies [4],
[5]. Motion capture systems have been successfully used to
quantify joint kinematics by tracking the position of reflective
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surface markers during dynamic activities [6]. However, these
systems are costly, restricted to controlled laboratory settings,
suffer from occlusion, and are susceptible to skin movement
artifact; all of which limit their usage [7].

To overcome many of the limitations associated with con-
ventional motion measurement techniques, inertial measure-
ment units (IMU) consisting of triaxial accelerometers were
used to estimate thigh, shank and knee pitch and yaw angles
[8], [9]. These studies were limited to measuring only 2 de-
grees of freedom (DOFs) movement during limited activities.

Most studies using IMU’s, combine accelerometers and gy-
roscopes in wearable sensor systems [10], [11]. Traditionally,
the orientation of a segment has been estimated by integrating
the angular velocities measured by gyroscopes and position is
obtained by double integration of the translational accelera-
tion measured by accelerometers. A significant problem with
integration, however, is that inaccuracies inherent in the mea-
surements quickly accumulate and rapidly degrade accuracy.
Roetenberg showed that integration of noisy gyroscope data
resulted in a drift between 10 − 25◦ after one minute [12].
Roetenberg et al. argued that errors due to magnetic field
disturbance may be compensated by adequate model-based
sensor fusion [13]. They developed a Kalman filter that oper-
ated on two inputs: the difference between inclination from the
accelerometer and gyroscope, and from the magnetometer and
gyroscope. The states of the model included the gyroscope bias
error, orientation error, and magnetic disturbance. The filter
was tested with ferromagnetic materials close to the sensor for
less than a minute. The results show that the orientation esti-
mates improved significantly when the magnetic interference
correction was used. However, the accuracy could decrease if
the magnetic disturbance was due to varying sources that are
present during longer periods of testing.

To reduce the effect of gyroscope drift on orientation
estimates, accelerometers and magnetic sensors have been
used to compensate the drift about the horizontal plane, and
the vertical axis respectively [14], [15]. Favre et al. integrated
angular velocity data and corrected angle estimates based on
known joint anatomical constraints and inclination data from
accelerometers during static periods [16]. Luinge et al. used
physical constraints in the elbow to measure the forearm ori-
entation relative to upper arm [17], [18]. They minimized the
error around the vertical axis by using the knowledge that the
elbow joint does not permit abduction/adduction movement.
Although they reported an improvement in estimating the
orientation, the average orientation error was 20◦. Cooper et
al. also used biomechanical constraints to estimate knee joint
flexion/extension with 2 IMU’s with triaxial accelerometers
and gyroscopes attached to the thigh and shank. The perfor-
mance of the algorithm was evaluated with data obtained from
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7 healthy subjects during walking and running over 5 minute
periods. The average measurement error ranged from 0.7◦ for
slow walking to 3.4◦ for running [19]. However, the algorithm
only used a simplified model of a single hinge knee joint.

In other studies, systems with accelerometers, gyroscopes
and magnetometers were used to measure the orientation of
different body segments [20]–[24]. Accelerometer and gy-
roscopes were used to estimate inclination and orientation.
Magnetometers were used to measure orientation around the
vertical axis, assuming uniform local magnetic field. Bach-
mann et al. investigated the effect of magnetic disturbance
on the accuracy of orientation tracking systems and observed
errors that ranged from 12◦ to 16◦ [25]. Yun et al. presented
a simplified algorithm for orientation estimation using only
accelerometers and magnetic field measurements [26]. The
gyroscope-free system was only suitable for tracking slow
movements. Cutti et al. used inertial and magnetic data to
measure arm kinematics in one subject performing tasks in-
volving shoulder and elbow single-joint-angle movements [27]
and obtained an average RMSE ≤ 3.6◦.

In summary, other groups have used accelerometers and
magnetometers to compensate for the orientation error that
occurs when integrating the angular rate from gyroscopes, but
all of these methods were only applicable under limited cir-
cumstances. Some groups restricted the application to simple
tasks and short tracking periods. In other studies, the estima-
tion was accurate for only brief periods when the acceleration
measurements were only due to gravity. Others reported large
orientation errors due to magnetic field disturbances.

In a previous study [28], we combined kinematic models
designed for control of robotic arms with state space methods
to estimate human joint angles using two wearable inertial
measurement units. Each IMU consisted of triaxial gyroscopes
and accelerometers. We used the unscented Kalman filter
(UKF) to estimate shoulder and elbow joint angles from eight
subjects performing prescribed and free arm articulation for
an average of 2 minutes. Compared to angles obtained from
an optical reference system, we achieved an RMS angle error
of less than 8◦. Although errors between optical and inertial
angle estimates are minimal, some of these errors might be
attributed to markers moving independently of each other,
especially during fast movements [29]. Tracking performance
is also limited by the noise and drift of MEMS inertial sensors.

In this study, we incorporate sensor random drift models,
prior knowledge of physical constraints and human natural
range of motion to obtain better joint angle estimates, and to
mitigate the effect of sensors drift on the estimated angles
during long periods of movement. We also employ zero-
velocity updates to mitigate the effect of gyroscope drift on
the estimated heading angles. We quantify the performance
of our UKF-based method by comparing the angle estimates
to those obtained directly from a 6-axis high-precision robot
during 15-minute recordings for slow, regular and fast-speed
arm movement. We evaluate the performance of the extended
Kalman filter (EKF) compared to that of the UKF in estimating
the joint angles, given the nonlinear relationship between the
joint angles and the sensor measurements.

II. THEORY

To describe angles and movements of an arm segment
relative to its neighboring segments, we use an established
method of biomechanical modeling based on a sequence of
links connected by joints. This method was proposed by
Denavit and Hartenberg in 1955, and has been used in the
analysis and control of robotic manipulators [30]. The method
is based on characterizing the relationship between links and
joints with a (4 × 4) homogeneous transformation matrix.
The matrix depends on four parameters associated with each
link. The first parameter is the link length ai which is the
distance from the rotation axis Zi to Zi+1 measured along their
common normal axis Xi. The link twist αi, is the angle from
Zi to Zi+1 measured about the Xi axis. The distance from
Xi−1 to Xi measured along the Zi axis is known as the link
offset di. The fourth parameter is the joint angle θi, which is
the angle from Xi−1 to Xi measured about the Zi axis. These
four parameters are known as the Denavit-Hartenberg (D-H)
parameters and will be specified for the 6 DOFs arm model
in the following section. To describe the kinematics of each
link relative to its adjacent link, it simplifies this description
to attach a frame to each link. The convention of attaching
frames to the arm was detailed in [31].

A. Arm joint angles

We present a model for an arm movement with six degrees
of freedom. Typically, the shoulder joint is modeled as a ball-
and-socket joint with three DOFs. However, for the purpose of
quantifying the performance of our algorithm, we model the
shoulder with only two DOFs to match those of the industrial
robot used in this study for comparison. Fig. 1 shows the arm
model with static base reference frame 0 at the center of the
shoulder joint. Frame 1 represents shoulder internal/external

Fig. 1. Kinematics diagram of the arm model with Frame 0 as the static
reference at the base. Frames 1 and 2 represent shoulder internal/external
rotation, and flexion/extension, respectively. Frame 3 represents elbow flex-
ion/extension. Frame 4 represents forearm pronation/supination. Wrist flex-
ion/extension, and wrist twist are represented by frames 5 and 6, respectively.

rotation, and frame 2 represents shoulder flexion/extension.
The elbow joint is a hinge joint that allows movement in
one plane, flexion/extension, represented by frame 3. The
fourth joint is a pivot joint that allows for the forearm
pronation/supination, and is represented by frame 4. Frames 5
and 6 represent wrist flexion/extension, and twist respectively.
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Table I shows the D-H parameters of the arm model, where lu
is the length of the upper arm, lf is the length of the forearm,
and θi is the ith angle of rotation.

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE 6 DOFS ARM MODEL.

Frame αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 a1 0 θ2 + π/2
3 0 lu 0 θ3
4 π/2 0 0 θ4 + π/2
5 −π/2 0 lf θ5 − π/2
6 π/2 0 0 θ6

We used three inertial measurement units (IMUs) to track
the arm movement. Two IMUs, with triaxial gyroscopes and
accelerometers, were secured with Velcro straps to the robot
upper arm and forearm, and a third unit was secured inside a
box on the wrist; see Fig. 2.

Fig. 2. Two IMUs were secured with Velcro straps to the robot upper arm
and forearm, and a third unit was secured inside a box on the wrist.

B. Propagation of velocity and acceleration

To formulate the dynamic equations for arm sensor mea-
surement, including gyroscope and accelerometer data, we use
three of the Newton-Euler equations of motion. Each link of
the arm in motion has some angular velocity, angular and
linear acceleration (ω, ω̇, v̇). The velocity i+1ωi+1 of link i+1
is that of link i plus the new velocity component added by joint
i+1. Similarly, the angular and linear acceleration of each link
are related by the following recursive equations:
i+1ωi+1 =i+1

i R iωi + θ̇i+1
i+1Zi+1 (1)

i+1ω̇i+1 =i+1
i R iω̇i +

i+1
i R iωi × θ̇i+1

i+1Zi+1 + θ̈i+1
i+1Zi+1

(2)
i+1v̇i+1 =i+1

i R
[
iω̇i ×iPi+1 +

iωi × (iωi ×iPi+1) +
i v̇i

]
(3)

where i+1
i R is the rotation matrix between the ith and

(i+1)th link, × represents the cross product operation, iPi+1

is the position vector of frame i + 1, which is the upper
right 3 × 1 vector of the D-H matrix. The rotation matrices
R, can be obtained by taking the transpose of the upper
left 3×3 transformation matrix and the D-H parameters shown

in Table I. The single and double dot notation represents the
first and second derivatives with respect to time. We initialize
ω0 = ω̇0 = (0, 0, 0)T . Effect of gravity is included in the
model at no extra cost by setting v̇0 = (gx, gy, gz)

T , where g
is gravity along each of the three axes. These forward recursive
equations are used to propagate angular velocity, and angular
and linear acceleration from the reference coordinate system
through the links of upper arm, forearm and wrist.

C. State Space Model

The general discrete time state-space model is of the form,

x(n+ 1) = fn [x(n), u(n)] (4)
y(n) = hn [x(n), v(n)] (5)

where x(n) is the unobserved state of the system, y(n) is
the observed or measured data, fn[·] and hn[·] are nonlinear
state and observation equations, u(n) and v(n) are the state
and observation white noise with zero mean. Our state model
equations which describe the evolution of the states with time
are given by

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2T

2
s θ̈i(n) (6)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n) (7)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i(n) (8)

where i = {1, . . . , 6} of the six angles, θi(n) is the ith angle at
time n, θ̇i is the angular velocity, θ̈i is the angular acceleration,
uθ̈i(n) is a white noise process with zero mean, α is a process
model parameter, and Ts = 1/fs is the sampling period.
These are standard equations for a physical object traveling at
a constant acceleration. The model assumes the acceleration
is constant for the duration of a sampling interval. This is
sufficient for our data, which was acquired with a sample rate
of fs = 128Hz. The angular acceleration is modeled as a first-
order autoregressive process with zero mean. Depending on
the choice of the parameter α, this represents process models
ranging from a random walk model (α = 1) to a white noise
model (α = 0). For values of α < 1 the estimated angular
accelerations are biased towards 0. Typically, the value of α is
assigned an intermediate value that represents typical patterns
of constrained human joint rotation, which does not grow
unbounded. It is one of the filter parameters tuned to improve
the tracking performance. Its value and other parameter used
in the tracker are described in Table II.

The observation model describes the measurement obtained
by the triaxial gyroscope for the angular rate and the triaxial
accelerometer for the translational acceleration

y(n) =

[
ω(n)
v̇(n)

]
+

[
vg(n)
va(n)

]
where ω = {ωx, ωy, ωz}T is the angular velocity along the X ,
Y and Z axes. The gyroscope noise is described by the 3D
vector vg. Similarly, the translational accelerations and their
noise along the three axes are v̇ = {v̇x, v̇y , v̇z}T . It should
be noted that the acceleration measurement vector includes
translational accelerations and the effect gravity.
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D. Modeling Sensor Random Drift

To reduce the effect of random drift on shoulder rotation
angle estimates, we model the bias of the sensors placed on
the shoulder. Bias is modeled as a random walk, adding 6
more dimensions to the process model:

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2T

2
s θ̈i(n)

...
bω(n+ 1) = bω(n) + ubω(n)

ba(n+ 1) = ba(n) + uba(n)

The 3D gyroscope bias bω and 3D accelerometer bias ba are
random walk with zero-mean white noise ubω and uba. The
observation equation for the inertial measurement unit placed
on the upper arm is given below:

ωx(n) = θ̇1 cos(θ2) + bωx (9)

ωy(n) = −θ̇1 sin(θ2) + bωy (10)

ωz(n) = θ̇2 + bωz (11)

v̇x(n) = a1 sin(θ2)θ̇1
2
+ g cos(θ2)− θ̇1

2
a2 sin(θ2)

2

− θ̇2
2
a2 + bax (12)

v̇y(n) = a1 cos(θ2)θ̇1
2
− g sin(θ2)− θ̇1

2
a2 cos(θ2) sin(θ2)

+ θ̈2a2 + bay (13)

v̇z(n) = a1a2 cos(θ2)θ̇1θ̇2 + θ̈1a2 sin(θ2)

+ θ̇1θ̇2a2 cos(θ2)− a1θ̈1 + baz (14)

where θi is the ith angle at time n, θ̇i is the angular velocity,
and θ̈i is the angular acceleration. The distance between elbow
flexion joint and the device is a2. The time index n was
dropped from right-side of the equations for ease of readability.
Observation equations for the forearm and wrist sensors are
too large to be shown here.

E. Anatomical Constraints in The Shoulder And Elbow

The state model equations provide an elegant and con-
venient mean of incorporating prior knowledge of physical
constraints on state estimates to obtain accurate estimation.
Human shoulder rotation around the humerus bone cannot
exceed 90◦. Similarly, shoulder cannot attain more than 180◦

of abduction or flexion [32]. The natural range of elbow flexion
is between zero and 145◦. The range of forearm supination
is between zero and 85◦, and between zero and 80◦ for the
forearm pronation. The wrist flexion/extension natural range
is ±75◦. There are many ways to incorporate state constraints
into the nonlinear state estimators [33]. In this study, the
constraints information are incorporated in the UKF algorithm
during the time update, by restricting the sigma points within
the natural range of motion region. The constrained sigma
points are then used to in the measurement update, Kalman
gain calculation, and state updates. During the measurement
update, the constraints may be violated due to the linearization.
However, these violations are rare and small in magnitude.

F. Zero-Velocity Updates
To mitigate the effect of gyroscope drift on the estimated

heading angles during long periods of movement, we employ
the zero-velocity updates. Zero-velocity updates has been used
in ambulatory gait analysis and pedestrian navigation. During
walking cycles, human feet alternate between a moving stride
phase and a stationary stance phase when the foot is on
the ground. In their tracking algorithm, Feliz et al. detected
the stationary phase when the total angular rate was below
1rad/ sec [34] to reset the angular rate to zero. Resetting the in-
ertial data to zero is referred to as hard update. Foxlin detected
the stationary phase when gyroscope and accelerometer data
stayed below a prescribed threshold for at least 0.15 seconds.
He applied zero-velocity updates as pseudo-measurements in
an EKF navigation error corrector [35]. This is classified as
soft zero-velocity updates [36]

In this study, we only apply zero-velocity to update esti-
mates of the gyroscope bias around the vertical axis. Since our
algorithm uses gravity to estimate the attitude and we only lack
an absolute reference for heading about the vertical axis. When
the rotational rate around the vertical axis stays below 3◦/ sec
for at least 0.25 sec , movement is considered static. During
this static period, the measurement equation is augmented
with a pseudo-measurement of gyroscope vertical axis random
bias. Putting pseudo-measurements into the UKF filter, instead
of applying a hard update by resetting the velocity to zero,
provides additional benefits. Firstly, the filter provides an
estimate of the gyroscope bias, and corrects rotational rate
estimates. Thus, the filter corrects estimates of heading angle,
and consequently other distal arm angles.

G. Nonlinear state estimator
The model introduced above has a nonlinear relationship

between the angles and sensor measurements. The EKF is the
most common method of nonlinear state estimation. It is based
on linearizing the state and observation models with a first-
order Taylor series expansion. It models the state variables
with first and second order moments, which is most appropri-
ate when the distribution is Gaussian. The linearization leads to
poor performance if the dynamics are highly nonlinear and the
local linearization insufficiently characterizes the relationship.
The EKF also requires calculation of Jacobian matrices, which
can be difficult, tedious, error prone, and time consuming.

Sequential Monte Carlo methods, also known as particle
filters, can overcome the performance and implementation
limitations of the EKF [37]. These algorithms can be applied
to highly nonlinear and non-Gaussian estimation problems, but
they have computational requirements that are often orders of
magnitude larger than the EKF or UKF. The UKF has nearly
the same computational requirements as the EKF, but uses a
more accurate method to characterize the propagation of the
state distribution through the nonlinear models [38]. While the
methods described in this article could be implemented with
any of these nonlinear state space tracking algorithms, in our
tracker we used the UKF. We also implement the tracker with
the EKF to compare its performance versus UKF.
Q and R, are user-specified parameters to represent the pro-

cess and the measurement noise covariance. Since we assume
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white Gaussian noise, we set the off-diagonal entries of the two
matrices to zeros. The diagonal elements of R are determined
empirically and account for the uncertainty in the measurement
data. We approximate the measurement noise based on short
static periods at both ends of sensor measurements. Q is the
process noise covariance matrix, and its diagonal elements
are used as tuning parameters. These parameters control the
tradeoff between certainty in the process model representing
accurate motion dynamics, and how precisely the model tracks
the sensor measurements. Table II lists the different parameters
used to generate the tracking results.

TABLE II
USER-SPECIFIED PARAMETERS AND SAMPLE RATE FOR THE UKF- AND

EKF-BASED TRACKER. I REPRESENTS AN IDENTITY MATRIX.

Name Symbol Value
Variance of gyroscope measurement white Gaussian noise σvg

2 .0001
Variance of accelerometer measurement white Gaussian noise σva

2 .0064
Variance of process white Gaussian noise σu2 1.00
Initial state covariance matrix P I
Angular acceleration process parameter α 0.90

H. Performance assessment

To evaluate the performance of the inertial tracking system
in monitoring arm movement, we compared the joint angles
calculated by the inertial tracker with those obtained from
an industrial Epson C3 robot arm (Epson Robots, California)
with six degrees of freedom. The arm is a high speed, and
a very high precision industrial robot, that is normally used
for medical device and parts assembly. Three Opal sensors
(APDM, Portland, OR), each containing triaxial accelerome-
ters and gyroscopes were placed on the upper arm, forearm
and wrist as shown in Fig. 2. Table III shows the Epson C3
range of motion and operating speed of the six joints.

TABLE III
MAXIMUM OPERATING SPEED AND MOTION RANGE FOR THE ROBOT ARM.

Task Rate Max. Motion Range
Shoulder Internal/External Rotation 450◦/ sec ±180◦

Shoulder Flexion/Extension 450◦/ sec −160◦ , +65◦

Elbow Flexion/Extension 514◦/ sec −51◦ , +225◦

Forearm Supination/Pronation 553◦/ sec ±200◦

Wrist Flexion/Extension 553◦/ sec ±135◦

Wrist Twist 720◦/ sec ±360◦

Inertial sensor and robot data were synchronized by calcu-
lating the lag time using cross-correlation analysis.

r̂yx(`) ≈ E[y(n)x(n− `)] (15)

If max(r̂yx) is significant at lags |`| > 0, then ` gives
information about the delay between the signals. In this study,
inertial sensors were started before the robot arm. Hence, the
robot data was lagging. The lagging robot data was augmented
with ` zeros to synchronize it with the leading sensor data.

The majority of the tracking algorithms discussed in the
introduction limit their performance assessment to movement
performed with slow articulation. To verify the performance of
our inertial algorithm in tracking normal and fast movement,
we collected planar and complex arm movement at three
different rotational rates. The first data set was of the arm
movement at slow speed, which was defined as one fourth of

the arm maximum rotational rate. The second and third data
sets were of the arm movement at medium and fast speed,
which were defined as one half and full range of the maximum
arm rotational rate, respectively.

Another limitation of previous systems, is the brief time
duration of correct tracking or assessment. In this study, each
data set lasted at least15 minutes. Each recording started with
a stationary period of 3 seconds at the initial pose. This period
was used to estimate the gyroscope deterministic bias offset.
The mean of each gyroscope-axis stationary measurement was
removed from gyroscope data before calculating the joint
angles. The rest of the recording was designed to include
simple planar movement around each of the six joints. Each
planar movement, explained in Table III, was repeated four
times. This was followed by a second of stationary movement,
and ended with a complex joints movement that involved the
three joint simultaneously to mimic regular arm movement for
about two minutes. This arm trajectory was repeated a few
times to obtain 3 continuous 15-minute recordings of robot
arm movements at slow, medium and fast rotation rate.

III. RESULTS

We used two different trackers to compare the performance
of the EKF to that of the UKF in estimating the joint angles.
The assessment of the tracking performance is based on the
entire 15-minute duration of recording of arm movement.

A. Baseline Performance Results

In this section, we present baseline performance results of
the tracker before employing the modified model to account
for sensor drift, physical constraints and zero-velocity updates.
The baseline results will be used to assess the performance
improvement introduced by employing the drift reduction
techniques. We calculated the correlation coefficient r, and the
average root mean squared error (RMSE) between angle esti-
mates from the inertial tracker and true arm angles. Table IV
shows the baseline RMSE for the three data sets.

TABLE IV
BASELINE RMSE BETWEEN TRUE ROBOT ANGLES AND ESTIMATED

USING THE UKF OF THE THREE DATA SETS.

Task Slow (◦) Medium (◦) Fast (◦)
Shoulder Internal/External Rotation 25.0 8.1 9.6
Shoulder Flexion/Extension 1.1 2.4 2.5
Elbow Flexion/Extension 1.1 2.6 3.3
Forearm Supination/Pronation 1.4 2.1 2.4
Wrist Flexion/Extension 1.2 2.2 2.9
Wrist Twist 1.8 3.9 3.8
Rotational Rate ≤ 180 ◦/ s ≤ 360 ◦/ s ≤ 720 ◦/ s

B. UKF Performance with Modified Arm Model

We combined the three techniques discussed above into
one modified arm model to account for sensor drift, and to
employ physical constraints and zero-velocity updates. Fig. 3
show the last two minutes of the wrist true angles (dotted red
lines) and their estimates (solid blue lines) using the UKF-
based inertial tracking system during slow rotation rate up
to 180◦/ sec. Fig. 4 shows the last two minutes of shoulder
internal/external rotation, and flexion/extension angles and
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Fig. 3. True (dotted red line) and estimated (solid blue line) wrist angles
during the last 2 minutes of slow arm movement.
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Fig. 4. Baseline shoulder angle estimates compared to the true angles during
the last 2 minutes of slow arm movement.
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T ime (sec )Fig. 5. Shoulder angle estimates using the modified model compared to the
true angles during the last 2 minutes.

their baseline estimates during slow rotation. Fig. 5 shows the
same angles estimated using the modified model.

Table V shows that the new modified model dramati-
cally decreased shoulder internal/external rotation angle error
from 25.0◦ to 7.8◦; an error reduction of 69% compared
to baseline estimates around the vertical axis. The modi-
fied model also resulted in an increased average correlation

TABLE V
RMSE BETWEEN ANGLE ESTIMATES AND TRUE ROBOT ARM ANGLES

DURING SLOW, MEDIUM AND FAST SPEED MOVEMENT USING UKF.

Task Slow (◦) Medium (◦) Fast (◦)
Shoulder Internal/External Rotation 7.8 3.0 5.9
Shoulder Flexion/Extension 0.8 1.6 2.5
Elbow Flexion/Extension 0.9 2.0 2.8
Forearm Supination/Pronation 1.3 1.2 1.1
Wrist Flexion/Extension 1.1 1.5 1.8
Wrist Twist 1.7 2.8 2.2
Error reduction 69% 63% 39%

from 0.92 to 0.98 for slow movement. Consistent with the
results for slow arm movement, tracking errors between iner-
tial angle estimates and true robot joint angles were ≤ 3.0◦

during medium-speed movement, and ≤ 5.9◦ during fast-
speed movement. Error in shoulder internal/extension rotation
estimates was still higher than the joint angle error, although
it dropped from 8.1◦ to 3.0◦ during medium movement, and
from 9.6◦ to 5.9◦ during fast movement. Error in the other
five arm angles were consistently lower that estimation error
the shoulder rotation, with a maximum error of 2.8◦ in elbow
flexion/extension during fast arm movement.

C. EKF Performance

We implemented the inertial tracker with the EKF using the
modified arm model, and the same user-specified parameters
which were used with the UKF-based tracker. Fig. 6 shows
the last two minutes of the robot shoulder during medium
internal/external rotation around the vertical axis at a rotational
rate of 225◦/ sec. We obtained consistent agreement between
the true arm angles and their inertial estimates.
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Fig. 6. True shoulder angles and their estimates of the last 2 minutes at an
average rotation rate of 225 ◦/ s. Angles were estimated using the modified
arm model with the EKF-based tracker.

TABLE VI
RMSE BETWEEN ANGLE ESTIMATES AND TRUE ROBOT ARM ANGLES

DURING SLOW, NORMAL AND FAST SPEED MOVEMENT USING EKF.

Task Slow Regular Fast
Shoulder Internal/External Rotation 8.8 8.6 9.7
Shoulder Flexion/Extension 1.2 1.9 2.5
Elbow Flexion/Extension 1.3 2.1 3.1
Forearm Supination/Pronation 0.8 1.4 1.4
Wrist Flexion/Extension 1.2 1.9 2.9
Wrist Twist 1.8 3.7 3.4
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IV. DISCUSSION

In this study, we combined kinematic models with state
space methods to estimate human joint angles using wearable
inertial measurement units. The state model equations provide
elegant and efficient means of incorporating sensor bias model,
prior knowledge of physical constraints on state estimates,
and zero-velocity updates to obtain accurate estimation of
continuous long recordings. Besides the rotational rate data,
the state space model includes both the translational and
gravitational components of acceleration. This enables the
system to provide state estimates during both fast and slow
movements with consistent accuracy. States estimates included
joint angles, angular rotation and acceleration. This framework
could easily be extend to estimate joint segment lengths and
segment positions, to provide full human body kinematics
during spontaneous daily activities.

We used the unscented Kalman filter (UKF) to estimate
shoulder, elbow and wrist joint angles from an industrial robot
arm with 6 DOFs. Despite the different characteristics of
human movement from the movement of robots, we argue that
using a robot arm for assessment has many advantages over
the traditional optical systems. The different characteristics
are mainly due to the type of joints. According to [32], the
human arm mechanism is composed of 7 DOFs, with shoulder
joint as a ball-and-socket joint with 3 DOFs. However, the
robot shoulder has only 2 DOFs, which limits the comparison
to only 6 DOFs. Despite this limitation, using the robot
arm for assessment provides many advantages. Unlike motion
capture systems, which require estimation of joint angles from
marker positions and interpolation during marker occlusions,
the robot system provides direct angle measurements with
high precision. The arm movement rate can be controlled to a
desired rate ranging from slow to very fast, up to 720◦/ sec.
The robot provides a wide range of motion that can easily
mimic human movement in performing various tasks.

A stationary calibration period of 3 seconds at the initial
pose preceded each data set served multiple purposes. The
first was to align the inertial sensors and the robotic reference
system. The second was to calculate the variance of sensor
measurement noise. The stationary period was also used to
calculate the gyroscope constant bias. This bias was removed
from the gyroscope data before calculating the joint angles.

Compared to joint angles obtained from the robot reference
system, we achieved an average RMS angle error ≤ 3◦ during
slow arm movement at a rotational rate ≤ 180◦/ sec. As
expected, a maximum error of 7.8◦ was obtained for heading
angles around the vertical axis. Estimation error accumulates
around the vertical axis during slow or static periods. In
absence of changes in acceleration, gravity alone does not
provide any complementary data to that of the gyroscope.
Shoulder angle estimates around the vertical axis rely only on
gyroscope data, therefore error accumulates due to gyroscope
drift after 15 minutes. This, however, is a very reasonable
error range compared to what was reported by Roetenberg
who showed that integration of noisy gyroscope data resulted
in a drift between 10–25◦ after one minute [12].

In contrast to many studies discussed in the introduction, we

validated the performance of our tracking algorithm during
different speeds, over 15 minutes. Angle estimates during
arm movement at medium rotation rate ≤ 360◦/ sec are very
similar to those obtained during slow movement. On average,
the RMS angle error was 2.0◦, with a maximum error of 3.0◦

between true and estimated shoulder internal/external rotation.
The error slightly increased during fast movement with an
average RMS angle error of 2.7◦, and a maximum error
of 5.9◦ between true and estimated shoulder internal/external
rotation. Besides the effect of gyroscope drift on the accuracy
of the estimated angles, there was another source of noise that
contributed to the larger error. That was the effect of fast arm
movement on the table on which the arm is mounted. Due
to the very fast movement, the table was vibrating strongly,
especially during rotation around the vertical axis, adding more
noise to the sensor measurements. Despite the slightly higher
estimate error during fast movement, we maintained a very
reasonable error range compared to what was achieved by
other studies which reported error range of 12◦ − 16◦ [25].

The combined effect of imposing physical constraints,
modeling sensor bias, and employing zero-velocity updates
resulted in a considerable decrease in tracking error. The
RMSE dropped from 25.0◦ of the baseline heading angle
to 7.8◦ for estimates during slow rotation; an error reduction
of 69%. Similarly, the RMSE dropped from 8.1◦ with the
baseline heading angle to 3.0◦; an error reduction of 63% for
joint angles during medium-speed rotation. Estimation error of
fast shoulder rotation around the vertical axis was reduced also
from 9.6◦ to 5.9◦. The combined effect of using the modified
model in reducing the error due to sensor drift can be observed
especially during the last few minutes of the recording in
Fig. 4. With the prior knowledge that the arm rotation cannot
exceed a certain limit, the effect of gyroscope drift on angle
estimates was reduced to a very reasonable range of errors.
This eliminates the need to using magnetic sensors which leads
to large errors due to magnetic field disturbances [25].

Results for the EKF-based tracker shows that the UKF
performs slightly better. On average, the RMSE was 2.5◦, 3.3◦,
and 3.8◦ during slow, regular and fast arm movement respec-
tively. As in the UKF case, maximum error was obtained
for heading angles around the vertical axis. Shoulder inter-
nal/external rotation ranged from 8.6◦ to 9.7◦. The additional
complexity of the EKF in deriving a Jacobian matrix, besides
the UKF better performance, leads to the conclusion that the
UKF is a better choice for estimating Joint angles.

Natural resting positions of the human arm could be de-
tected, and used to correct long-term drift during the day. We
are currently collecting continuous data from human subjects
performing daily life activities. We plan to study the effect
of employing drift-correction to shoulder joint angles during
these resting positions.

V. CONCLUSION

The results presented here demonstrate that wearable inertial
sensors have the potential to achieve a level of accuracy that
facilitates the study of normal and pathological human move-
ment. We combined kinematic models designed for control of
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robotic arms with state space methods to directly and con-
tinuously estimate human joint angles using wearable inertial
sensors. These algorithms can be applied to any combination
of synchronized sensors and can be generalized to track any
limb movement. The state space framework enables one to
efficiently impose physical constraints on state estimates, and
to track in real-time or with improved accuracy offline. The
agreement with a high-precision robot arm reference system
was excellent. Unlike other motion systems, which require
fixed cameras in a controlled environment and suffer from
problems of occlusion, wearable inertial sensors can be used
anywhere, cannot be occluded, and are low cost. Our proposed
method used a minimal sensor configuration with one sensor
on each segment. In addition, our method is very accurate
during long periods of movements at various rotational rates.
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Abstract—We present a novel method for quantifying femoral 

orientation angles using a thigh-mounted inertial measurement 
unit (IMU). The IMU-derived femoral orientation angles 
reproduce gold-standard motion capture angles to within mean 
(standard deviation) differences of 0.1 (1.1) degrees on cadaveric 
specimens during clinical procedures used for the diagnosis of 
Femoroacetabular Impingement (FAI). The method, which 
assumes a stationary pelvis, is easy to use, inexpensive and 
provides femur motion trajectory data in addition to range of 
motion measures. These advantages may accelerate the adoption 
of this technology to inform FAI diagnoses and assess treatment 
efficacy.  To this end, we further investigate the accuracy of hip 
joint angles calculated using this methodology and assess the 
sensitivity of our estimates to skin motion artifact during these 
tasks.  
 

Index Terms—Inertial Measurement Unit, Femoroacetabular 
Impingement, Hip Angles 

I. INTRODUCTION 
EMOROACETABULAR impingement (FAI) is one of the 
most common mechanical precursors to the development 

of osteoarthritis of the non-dysplastic hip [1].  FAI is caused 
by surfeit acetabular coverage and/or asphericity of the 
femoral head, leading to repetitive microtrauma to the labrum 
and/or the acetabular cartilage [2], resulting in hip pain for 
patients of all ages [2]–[4].  Diagnosis of FAI often proceeds 
from standard clinical range of motion (ROM) tests (i.e. 
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FABER, FADIR, etc.) used to identify abnormal deficits in 
terminal joint motion and/or specific, pain inducing hip angles 
[2].  The  ROM values in these tests are often estimated 
visually or from goniometers [2], both of which exhibit poor 
intertester reliability [5].  Moreover, goniometric and visual 
assessments provide only an end measure of hip ROM in each 
motion plane and not the hip motion trajectory that achieves 
that end position.  Without trajectory information, clinicians 
potentially lose valuable diagnostic data.  Significant benefits 
would follow from the development of a precise, non-invasive 
method for measuring hip angles (ROM and motion 
trajectory) in clinical settings to reveal pathology.  
 Optical motion capture (MOCAP) is a common tracking 
modality used to quantify joint angles [6].  MOCAP typically 
employs an array of high-speed cameras arranged around the 
perimeter of a measurement volume. The cameras record 
three-dimensional position coordinates of a set of markers 
which are often reflective targets (e.g., [6]–[8]).  To estimate 
hip joint angles, markers are affixed to bony anatomical 
landmarks which are then used to construct anatomical 
reference frames for the pelvis and femur [9].  The relative 
orientation of these reference frames can  be decomposed into 
joint angles following standard Euler decomposition [10].  
These joint angle estimates are susceptible to artifacts due to 
the additional movement of markers affixed to soft tissue [11].  
MOCAP systems are expensive, and the associated marker 
placement, calibration, data collection, and data processing 
require considerable time and expertise.  For these reasons, 
MOCAP has not been widely adopted in clinical settings.    
 Fortunately, many of these shortcomings are addressable by 
advancing an alternative technology for calculating joint 
angles, namely miniaturized inertial measurement units 
(IMUs). Miniature IMUs, which incorporate 
microelectromechanical systems (i.e., MEMS accelerometers 
and angular rate gyros), measure the angular velocity and 
linear acceleration of any rigid body to which they are 
attached. When deployed on body segments adjacent to a 
joint, miniature IMUs provide data which can be used to 
calculate joint angles [7], [8], [12]–[17].  Moreover, IMUs are 
highly portable and can be deployed in the clinic for a small 
fraction of the cost of MOCAP [18], [19].  These advantages 
provide substantial motivation for advancing IMUs for 
quantifying joint angles in clinical settings. 
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 Recent studies have investigated the validity of IMU-
technology for estimating joint angles.  For example, [12], 
[13], [16], [17], [20], [21] employ IMUs for calculating knee 
angle during gait and address the effects of drift error on the 
estimated joint angles by fusing separate estimates from 
accelerometer, gyro, and magnetometer data (if available).  
The accuracy of orientation drift correction methods are 
evaluated in [7] by comparing IMU and MOCAP estimates of 
pelvis, thigh, and shank orientation during maximal hip 
flexion and abduction, walking, squatting, and standing on one 
leg. The accuracy of a commercially available IMU system 
(Xsens MVN BIOMECH, Enschede, Netherlands) for 
estimating rotations across the hip, knee, and ankle during 
level walking, stair ascent, and stair descent is revealed in [8]. 
Excellent agreement in flexion/extension is observed with 
poor agreement in abduction/adduction and internal/external 
rotation.  Interestingly, few studies report inaccuracies due to 
the relative motion between soft tissue and the underlying 
bony anatomy which remains a potential source of error.  One 
excellent example [16] explores the error in IMU-derived knee 
angles during gait trials from a transfemoral amputee, and 
cites skin motion as the primary source for larger errors in the 
intact leg  knee angle estimates as compared to the prosthetic.  
However, no studies investigate the level of accuracy 
achievable from this technology in the clinical tests used for 
the diagnosis of FAI or how soft tissue motion may impact the 
clinical relevance of these measurements.    

 We build upon this body of research by presenting a 
novel IMU orientation drift correction technique for 
estimating hip joint angles using optimization during the 
clinical tests used to diagnose FAI, we establish the validity of 
this technique compared to gold standard MOCAP, and 
specifically investigate the effects of soft tissue motion on 
angle estimates. The promising results presented herein may 
accelerate the adoption of this technology to inform FAI 
diagnoses and assess treatment efficacy. 

II. METHODS 
Two fresh-frozen human cadaveric hemi-pelvises (one male 

and one female, ages 55 and 76 years, respectively) were 
harvested for testing following a protocol approved by The 
University of Michigan Institutional Review Board.  
Specimens with a history of illness, injury, or treatment 
affecting the hip or pelvis were excluded. Specimens were 
stored at -29°C and thawed for a minimum of 24 hours prior to 
testing. The intact pelvis of each specimen was affixed to a 
custom base using external fixator constructs (Smith and 
Nephew, Stryker Hoffman II) positioned at the bilateral iliac 
wings, and further secured with tensioned nylon straps to 
restrict pelvis motion (Fig. 1). Prior to testing, care was taken 
to ensure that fixation did not interfere with rotation across the 
hip joint. 

A. Dynamic Testing Protocol 

Hips were pre-cycled 10 times in flexion, abduction, 
adduction, and internal and external rotation prior to data 
collection. The right hip of each specimen was then taken 

through two movement sequences designed to exercise the hip 
through its full range of motion.  All hip manipulation was 
performed by the same experienced clinician.  In the first 
sequence, referred to as the ‘combined’ test, the hip was 
moved in isolated flexion, abduction and adduction in 
approximately 0° flexion (leg flat on table), as well as internal 
and external rotation in both 0° flexion and 90° flexion.  In the 
second sequence, referred to as the ‘clinicians’ test, the hip 

was placed into a position of simultaneous maximum flexion, 
abduction and external rotation (FABER), and subsequently 
simultaneous maximum flexion, adduction and internal 
rotation (FADIR) to replicate two commonly used clinical 
tests for the diagnosis of FAI [2].  In both motion sequences, 
the hip was exercised to the point of terminal motion and held 
in this position for at least 2 seconds.  Each hip was taken 
through the protocol three times in succession, before the hip 
joint capsule was surgically altered for a separate, but related 
study.  Four capsular conditions were investigated for each 
hip, yielding 12 ‘combined’ and 12 ‘clinicians’ tests.  Issues 
with MOCAP and IMU data precluded the use of two trials, 
resulting in 46 tests for analysis (24 ‘combined’ and 22 
‘clinicians’).  Following testing, anatomical hip angles and 
femoral orientation angles were calculated using data from 
two motion sensing technologies: 1) optical motion capture, 
and 2) a femur-mounted inertial measurement unit. 

 
Fig. 1.  Hemi-pelvis specimen mounted to testing base using bilateral 
external fixator constructs and tensioned nylon straps.  MOCAP markers 
mounted to bone pins inserted into the pelvis.  
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B. Anatomical Hip Angles from Motion Capture 

 Twenty-six retro-reflective markers (7 calibration; 19 
tracking), 12-mm in diameter, were affixed to each specimen. 
A 12-camera VICON MX system (VICON Motion Systems, 
Oxford, UK) operating at 240 Hz tracked three-dimensional 
(3D) marker trajectories.  To eliminate the effect of soft tissue 
artifact, pelvis motion was derived from three markers affixed 
to pins surgically inserted into the ilia (Fig. 1). Similarly, a pin 
was inserted into the femoral shaft and mounted with a frame 
containing four markers (Fig. 2) that were used to record the 
motion of the underlying bone. An identical frame was 
superficially mounted on the skin of the thigh using elastic, 
self-adhesive athletic tape, congruent with typical in-vivo 
motion capture conditions.  In previous and current studies, we 
have found that mounting devices to the skin in this fashion is 
simple and provides adequate hold even for highly dynamic 
motions (e.g. running, cutting, jumping).  The markers on each 
frame were used to create arbitrary ‘bone-mounted’ and ‘skin-
mounted’ segmental reference frames from which hip joint 
kinematics were subsequently derived. 
 Prior to the dynamic protocol, a static trial was collected in 
accordance with the calibrated anatomical systems technique 

[22]. The bilateral anterior super iliac spines (ASIS) and the 
midpoint of the posterior superior iliac spine (PSIS) markers 
were stored in the reference frame created by the surgically 
attached iliac markers. Likewise, the medial and lateral 
femoral condyles were stored in the arbitrary femoral 
reference frames. The knee joint center was considered as the 
3D midpoint of the femoral condyle markers. Hip joint center 
was calculated for each motion using a “pivoting” algorithm 
[23]. The abovementioned landmarks and joint centers were 
then used to define the anatomical reference frames in each 
trial according to the standards outlined in [10](Table 1). 
 Gaps in the raw marker trajectories were identified 
automatically within the VICON Nexus software (VICON 
Motion Systems, Oxford, UK). These gaps were infrequent, 
persisted for no more than 15 frames and were ultimately 
interpolated using a cubic spline. Data were subsequently 
filtered using a Woltring filter [24] with the optimal mean 
squared error of 1 mm determined by a residual analysis. In 
accordance with [10], anatomical hip joint rotations were 
expressed using the Euler ZXY decomposition yielding 
flexion/extension, adduction /abduction, and internal/external 
rotation angles. 

C. Anatomical Hip Angles from an Inertial Sensor 

 The femur-mounted IMUs were commercially available 
YEI 3-Space sensors (Yost Engineering, Portsmouth, Ohio).  
Prior to use, the IMUs were calibrated following the procedure 
detailed in [25]. Data was sampled at approximately 300 Hz, 
written to flash memory on the device, and subsequently 
downloaded to a computer via USB after each data collection 
session.  The devices were secured to the motion capture 
marker frames used to define the ‘bone-mounted’ and ‘skin-
mounted’ segmental reference frames (Fig 2).  The IMUs were 

calibrated while attached to the marker frames to ensure 
alignment between the sense axes of each IMU and the 
reference directions of the attached frame. 
 Defining anatomical hip angles poses a challenge for 
inertial sensor based measurement techniques as the 
anatomical angles rely on reference frames defined by the 
location of bony anatomical landmarks—locations the IMU 
has no means of sensing.  As an alternative, one can identify 
these reference frames using functional ‘calibration’ motions 
before the anatomical hip angles are calculated [12], [20].  
Calibration motions were performed prior to each round of the 
dynamic protocol, where the hip was moved in isolated 
internal and external rotation with 0° flexion.  A principle 
component analysis of the measured angular velocity yields 
the primary rotation axis during this motion.  This axis is 
assumed to define the mechanical axis of the femur thereby 
establishing the relationship between the ‘bone-
mounted’/‘skin-mounted’ frames and the y-axis of the 
anatomical femoral reference frame.  This direction is then 
held fixed in the femur for the following round of the dynamic 
protocol.  The remaining anatomical reference directions are 
established by considering the initial orientation of the 
mechanical axis of the femur.  Specifically, we assume that 
the femur is at rest at the beginning of each test, the 

 
Fig. 2.  Mounting location of the two inertial sensors on MOCAP marker 
frames affixed to each subject.  The pin sensor is secured to an ex-fix pin 
inserted into the femoral shaft while the skin sensor is secured to the soft 
tissue of the thigh.  

TABLE I 
Segment Definition 
Pelvis   

Origin 3D midpoint of ASIS markers 
x-axis Unit vector directed from mid-PSIS to pelvis origin 
y-axis Cross product of z and x axes 
z-axis Unit vector directed from left ASIS to right ASIS 

Femur   
Origin Hip joint center 
x-axis Cross product of y and z axes 

y-axis 
Unit vector directed proximally from knee joint center 
to hip joint center 

z-axis Unit vector directed from medial to lateral femoral 
condyles 

Anatomical reference frame definitions for the pelvis and femur. 
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anatomical femoral and pelvic reference frames are aligned, 
and the z-axis of each lies in the horizontal plane.  Since the 
accelerometer measures translational acceleration as well as 
gravity, when the IMU is at rest, the accelerometer establishes 
the direction of gravity in the sensor frame of reference.  The 
cross product of this direction with the mechanical axis of the 
femur establishes the relationship between the ‘bone-
mounted’/‘skin-mounted’ frames and the z-axes of the 
anatomical frames.  Finally, the x-axes of the anatomical 
frames follow from right-handed frame convention.  This 
procedure establishes the (constant) direction cosine matrix 
between the femoral anatomical frame (F) and either the 
‘bone-mounted’ frame (B) or the ‘skin-mounted’ frame (S) (

/F BC  and /F SC , respectively).  Acceleration and angular 
velocity data from each IMU are then used to calculate the 
direction cosine matrix between the pelvic and femoral 
anatomical frames P

FC   for the duration of the trial beginning 
from an initially aligned state as follows.   
Assuming the pelvis is fixed, the evolution of the direction 
cosine matrix is governed by the differential equation 
 

/ /P F P F m F

d
C C

dt



  (1) 

 

where 
m F




 is the measured angular velocity vector of the 
femur, resolved in the femoral anatomical frame (e.g., 

 /m F B mF B
C 


 ), in skew symmetric form, and /P FC  

is the direction cosine matrix describing the orientation of the 
anatomical frame of the femur relative to the fixed pelvis (P).   
Numerical solution to Eq. (1) following [26] yields /P FC  at 
every sampled time during the trial using the trivial (3x3 
identity) initial condition.  This solution for /P FC  is subject to 
drift error, a well-known phenomenon with inertial sensors 
[27], [28].  To provide the best estimates of femur orientation, 
and therefore hip angle, this error needs to be estimated and 
removed.  This is often accomplished by fusing drift-prone 
orientation estimates from the gyro with drift-free but noisy or 
incomplete orientation estimates from the accelerometer 
and/or magnetometer (e.g., [27], [29]).  Because of the 
possibility of locally changing magnetic fields in clinical 
settings, we utilize orientation estimates from the 
accelerometer alone to correct for orientation drift.  This 
correction is accomplished via a novel optimization approach, 
which uses estimates of the direction of gravity from the 
accelerometer and rate gyros throughout the test to define 
small corrections to the angular velocity data.  The corrected 
angular velocity is defined according to  
 

1 0 0
0 1 0
0 0 1

x x

y m y

z z
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s b
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where xs , ys , and zs  are small adjustments to the scale 

factor values for each sense axis, and xb , yb  and zb  are 
corresponding small adjustments to the bias values identified 
for each trial.  To identify these six unknowns, we consider 
instances during the trial when the femur is held at rest, which 
is readily indicated when the magnitude of the measured 
angular velocity falls within the device noise floor, and the 
measured acceleration differs from 1 g by less than the 
magnitude of its noise floor.  At these sampled times ( it ), the 
gyro-derived direction of gravity predicted by integration of 
Eq. (1) follows from   
 

     / | , , , , , 0T

g i P F i x y z x y z a P
g t C t s s s b b b g  (3) 

 

where  g ig t  is the gyro-derived direction of gravity at time 

it  resolved in the femoral anatomical frame, 

 / | , , , , ,T

P F i x y z x y zC t s s s b b b  is the transpose of the 

direction cosine matrix at time it  parameterized by the six 

unknown gyro corrections, and  0a P
g  is the direction of 

gravity determined from the accelerometer while the femur 
was held at rest at the start of the trial, resolved in the pelvic 
anatomical frame.  The accelerometer-derived direction of 
gravity is defined according to      
 

   /a i F B m ig t C a t  (4) 

 

where  a ig t  is resolved in the femoral anatomical frame, 

and  m ia t  is the measured acceleration at time it .  Equation 
(4) is written for an acceleration measured by the ‘bone-
mounted’ IMU, one could also construct the analogous 
equation for the ‘skin-mounted’ sensor.  The angular 
difference between these two vectors is defined by the dot-
product  
 

 
   

   
1| , , , , , cos a i g i

i x y z x y z

a i g i

g t g t
e t s s s b b b

g t g t


 
 
 
 

 (5) 

 
where  | , , , , ,i x y z x y ze t s s s b b b  is the angular difference at 

time it  parameterized by the six unknown gyro corrections.  
Drift, being a one-sided error, increases monotonically in time. 
Thus, as it  increases, the contribution of drift error to 

 | , , , , ,i x y z x y ze t s s s b b b  increases and overwhelms 

contributions from all other sources (i.e. noise in the 
accelerometer gravity estimate, small calibration 
misalignments, etc.).  Accordingly, we minimize the objective 
function  
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for all (n > 2) sampled “still” times  to solve for the six 
unknown gyro corrections. Here  , , , , ,x y z x y zE s s s b b b  

denotes the sum squared angle difference between gyro and 
accelerometer gravity directions weighted by the sampled 
“still” time to consider differences primarily due to drift.  This 
non-linear minimization is accomplished in Matlab 
(MathWorks, Natick, MA, USA) using the lsqnonlin function 
with the Levenberg-Marquardt (i.e. damped least squares) 
algorithm.  Following convergence of this numerical 
optimization, the corrected angular velocity follows from Eq. 
(2).  The method of [26] is used with this corrected angular 
velocity to define a corrected direction cosine matrix /P FC  
via numerical solution of Eq. (1).  As with MOCAP, the 
anatomical hip joint rotations are then calculated via an Euler 
decomposition yielding flexion/extension, 
adduction/abduction, and internal/external rotation angles for 
comparison.   

D. Comparing Femoral Orientation Angles from IMU and 

Motion Capture Data 

 As stated above, the definition of anatomical hip angles 
poses a challenge for inertial sensor based measurement 
techniques because of difficulties identifying anatomical 
reference frames.  Significant errors in adduction/abduction 
and internal/external rotation angles arise from small 
misalignments in the anatomical frames [8], [30].  To 
demonstrate the accuracy of the proposed IMU orientation 
drift correction, we must first correct for misalignment in the 
IMU anatomical reference frames.  To this end, we define the 
femoral orientation angles (X, Y, Z) as the IMU estimates of 
the anatomical hip angles defined above (flexion/extension, 
adduction/abduction, and internal/external rotation).  To 
calculate these same angles from MOCAP data, we construct 
the direction cosine matrix /P FC  by considering the 
orientation of the ‘bone-mounted’ or ’skin-mounted’ frames 
defined using the attached reflective markers, which we 
denote as /

M

P FC .  Specifically, the three-dimensional 
position data for each of the four markers is used to construct 
the direction cosine matrix which defines the orientation of the 
‘bone-mounted’ or ’skin-mounted’ frame relative to the 
ground frame (G) of the motion capture system ( /

M

G BC  for 

bone-mounted and /
M

G SC  for skin-mounted) established 
during system calibration.  The fixed rotation from the ‘bone-
mounted’ or ’skin-mounted’ frame to the femur anatomical 
frame ( /F BC for bone-mounted and /F SC  for skin-mounted), 
established by the IMU-based methodology, is then used to 
define the orientation of the femur anatomical frame relative 
to the ground motion capture frame per 
 

/ / /
M M T

G F G B F BC C C  (7) 
 
where /

M

G FC  defines the orientation of the femoral frame 
relative to the motion capture ground frame.  Since the pelvic 
and femoral frames are aligned at the beginning of each test, 

 / 0M

G FC  defines the fixed rotation ( /
M

P GC ) between the 
MOCAP ground frame and the IMU-defined pelvis frame.  
Finally, the orientation of the IMU-defined femoral frame 
relative to the pelvis frame is determined via 
 

/ / / /
M M M T

P F P G G B F BC C C C  (8) 
 
where /

M

P FC  defines the orientation of the femoral frame 
relative to the IMU-defined pelvic frame.  Equations (7) and 
(8) have been written for the ‘bone-mounted’ frame, but 
analogous equations can be developed for the ‘skin-mounted’ 
frame as well.  The matrix /

M

P FC  can then be decomposed 
multiple ways, but we follow the convention in [10]; namely, 
a ZXY decomposition, yielding X, Y, and Z femoral 
orientation angles for direct comparison with those from the 
IMU-based method.   

III. RESULTS 
 To establish the accuracy of the IMU orientation 
measurements, we report differences between 1) IMU and 
MOCAP estimates of anatomical hip angles, 2) IMU and 
MOCAP estimates of femoral orientation angles, and 3) pin 
and skin IMU estimates of femoral orientation angles.    

A. Anatomical Hip Angles 

 Fig. 3 illustrates flexion/extension (Flex/Ext), 
adduction/abduction (Ad/Ab), and internal/external rotation 
(Ir/Er) angles as estimated from IMU (gray) and MOCAP 
(black) data during representative ‘combined’ (Fig. 3A) and 
‘clinicians’ (Fig. 3B) tests.  Consistent with previous studies 
[8], [13], the results of Fig. 3 confirm  that, for both the 
‘combined’ and ‘clinicians’ tests, there is excellent agreement 
between IMU and MOCAP estimates of Flex/Ext angle, but 
poorer agreement in Ad/Ab and Ir/Er.   These facts are further 
revealed in the correlation plots of Fig. 4 where IMU 
anatomical angles are plotted against their MOCAP 
counterparts during the example ‘clinicians’ test reported in 
Fig. 3B.  A reference (black) line with unit slope and zero 
intercept is added.  Table 2 provides summary results of the 
full dataset (N=46) including the mean (SD) of the mean and 
standard deviation of the difference in the anatomical angles, 
as well as the mean (SD) of the slope, intercept, and R2 of 
best-fit lines to the correlation plot data.  These results reveal 
that the IMU estimates for the Flex/Ext, Ad/Ab, and Ir/Er hip 
angles exhibit mean (SD) differences of -1.0 (1.1), 5.7 (5.8), 
and 3.4 (3.6) degrees, respectively, relative to those estimated 
using MOCAP.  The differences in the anatomical angles  
derive from misalignment between IMU and MOCAP 
anatomical reference frames as evidenced by the accuracy of 
the femoral orientation angles reported next.  
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B. Femoral Orientation Angles 

 Fig. 5 illustrates example X, Y, and Z femoral orientation 
angles as calculated from IMU (gray) and MOCAP (black) 
data from representative ‘combined’ (A) and ‘clinicians’ (B) 
tests.  For reference, the X angle is nearly flexion/extension, 
the Y is nearly adduction/abduction, and the Z is nearly 
internal/external rotation.  The close agreement for all angles 
evident in Fig. 5 is further confirmed by the correlation plots 
for the ‘clinicians’ test (Fig. 5B) presented in Fig. 6A-C, 
where IMU X, Y, and Z angles are plotted against their 
MOCAP counterparts.  Again a reference (black) line with 
unit slope and zero intercept is added for comparison.  This 

TABLE II 
Angle Mean (deg) SD (deg) Slope Intercept R2 

Flex/Ext -1.00(1.12) 2.64(1.12) 1.01(0.03) 0.63(0.58) 1.00(0.00) 
Ad/Ab 5.72(4.64) 5.78(2.77) 0.96(0.16) -5.62(4.56) 0.74(0.13) 
Ir/Er 3.42(2.07) 3.58(1.82) 0.83(0.12) -2.26(1.71) 0.92(0.09) 
Agreement between IMU and MOCAP estimates of the flexion/extension 

(Flex/Ext), adduction/abduction (Ad/Ab), and internal/external rotation 
(Ir/Er) angles of the hip summarized by the mean (SD) of the mean and SD 
of the difference, and the slope, intercept, and R2 of the best-fit line to the 
correlation plot data.   

TABLE III 
Angle Mean (deg) SD (deg) Slope Intercept R2 

X -0.06 (0.32) 0.53 (0.18) 1.00 (0.01) -0.03 (0.24) 1.00 (0.00) 
Y 0.02 (1.39) 0.96 (0.49) 0.99 (0.04) 0.00 (1.35) 0.99 (0.02) 
Z -0.09 (0.85) 1.12 (0.68) 0.99 (0.06) 0.18 (0.63) 0.99 (0.01) 
Agreement between IMU and MOCAP estimates of the X, Y, and Z 

femoral orientation angles summarized by the mean (SD) of the mean and 
SD of the difference, and the slope, intercept, and R2 of the best-fit line to 
the correlation plot data.   

 
Fig. 4.  Correlation plots of flexion/extension (A), adduction/abduction (B), 
and internal/external rotation (C) angles during the example ‘clinicians’ test 
reported in Fig. 3.  A reference (black) line with unit slope and zero intercept 
is added. 

 
Fig. 3.  Example flexion/extension (Flex/Ext), adduction/abduction (Ad/Ab), 
and internal/external rotation (Ir/Er) angles as estimated from IMU (gray) 
and MOCAP (black) data during the ‘combined’ (A) and ‘clinicians’ (B) 
tests.  Example still phases used to correct for drift error indicated by gray 
shading in (B).  



0018-9294 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TBME.2015.2392758, IEEE Transactions on Biomedical Engineering

agreement is consistent across all trials considered (92 total: 
46 pin and 46 skin) as evidenced by average mean (SD) 
differences in the X, Y, and Z angles of -0.06(0.53), 
0.02(0.96), and -0.09(1.12) degrees, respectively.  Table 3 
summarizes the results for the 92 tests by reporting the mean 
(SD) of the mean and standard deviation of the difference in 
the three orientation angles, as well as the mean (SD) of the 
slope, intercept, and R2 of best-fit lines to the correlation plot 
data.  

C. Influence of Skin Artifact 

 Consider next possible differences between the pin- and 
skin-mounted IMU estimates of the femoral orientation angles 
due to soft tissue artifact.  Fig. 7 illustrates representative X, 
Y, and Z femoral orientation angles as calculated from the pin 
(black) and skin (gray) IMUs during the ‘combined’ (A) and 
‘clinicians’ (B) tests.  For the X femoral orientation angle, the 
pin and skin estimates are nearly identical.  By contrast, there 
are observable discrepancies in the Y and Z angles due to skin 
artifact.  These discrepancies are further revealed in the 
correlation plots for the ‘clinicians’ test (Fig. 7B) presented in 
Fig. 8A-C, 

 

where skin X, Y, and Z angles are plotted against the 
corresponding pin angles.  As before, a reference (black) line 
with unit slope and zero intercept is added.  It is evident from 
the correlation plots in Fig. 8, as well as from the time history 
plots in Fig. 7, that soft tissue artifact influences the femoral 
orientation angles, particularly in the frontal and transverse 
planes.  This influence is consistent across all trials (N=46) as 
evidenced by average mean (SD) differences in the X, Y, and 
Z orientation angles of -1.68(2.35), -2.63(3.13), and 6.41(6.44) 
degrees, respectively, reported with other summary results in 
Table 4.   

 

 
Fig. 5.  Representative X, Y, and Z femoral orientation angles estimated from 
IMU (gray) and MOCAP (black) data during the ‘combined’ (A) and 
‘clinicians’ (B) tests.  

 
Fig. 6.  Correlation plots (IMU vs. MOCAP) of X (A), Y (B), and Z (C) 
femoral orientation angles during the representative ‘clinicians’ test reported 
in Fig. 5.  A reference (black) line with unit slope and zero intercept is added 
for comparison. 
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IV. DISCUSSION 
 A new IMU orientation drift correction algorithm is 
proposed herein for quantifying the angular displacement of 
the femur during common clinical tests used for the diagnosis 
of FAI and other morphological abnormalities of the pre-
arthritic hip (e.g., [2]).  The validity of IMU-based hip angle 
measurements in these clinical tests has not previously been 
reported.  Below, we discuss the validity of 1) the estimated 
anatomical hip joint angles, followed by 2) the estimated 
femoral orientation angles. In so doing, we also comment on 
orientation estimates reported in the literature.  Finally, we 
discuss how soft tissue motion influences the estimated  

femoral orientation angles and the potential implications for 
clinical diagnosis of FAI.      

A. Validity of Anatomical Hip Angles 

 The validity of IMU-based measurements of anatomical hip 
angles has previously been explored in the literature in the 
context of gait analysis (e.g., [8], [17], [31]).  However, no 
studies have investigated the validity of IMU-based 
measurements for estimating hip angles during the common 
clinical tests for FAI.  Despite the simplification of a fixed 
pelvis, these tests exercise the hip through very large ranges in 

TABLE IV 
Angle Mean (deg) SD (deg) Slope Intercept R2 

X -1.68 (1.92) 2.35 (1.04) 1.03 (0.05) 0.45 (0.50) 1.00 (0.00) 
Y -2.63 (3.04) 3.13 (1.17) 1.02 (0.12) 2.52 (3.21) 0.89 (0.07) 
Z 6.41 (4.71) 6.44 (2.83) 0.83 (0.22) -3.82 (2.70) 0.80 (0.15) 

Difference between pin and skin IMU estimates of the X, Y, and Z 
femoral orientation angles summarized by the mean (SD) of the mean and 
SD of the difference, and the slope, intercept, and R2 of the best-fit line to the 
correlation plot data.   

 
Fig. 7.  Representative X, Y, and Z femoral orientation angles as estimated 
from the pin (black) and skin (gray) IMU data during the ‘combined’ (A) and 
‘clinicians’ (B) tests.  

 
Fig. 8.  Correlation plots (Skin vs. Pin) of X (A), Y (B), and Z (C) angles 
during the example ‘clinicians’ test reported in Fig. 7.  A reference (black) 
line with unit slope and zero intercept is added.. 
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each motion plane, which is distinct from the gait-induced hip 
motions (largely restricted to the sagittal plane) considered in 
related studies [7], [30].  According to [30], this increased 
range of motion can significantly amplify slight misalignments 
in the IMU anatomical frame, and yield erroneous joint angle 
estimates.  The proposed functional calibration seeks to reduce 
this misalignment error, yet its success is also limited as 
evidenced by the average mean (SD) differences in the 
anatomical hip angles across all trials (N=46) of -1.0 (1.1) 
degrees in flexion/extension, 5.7 (5.8) degrees in 
adduction/abduction, and 3.4 (3.6) degrees in internal/external 
rotation.  The effects of misalignment are further revealed by 
considering the average slope and coefficient of determination 
(R2) of the best-fit lines from the correlation plot data (IMU 
versus MOCAP angles), which are 1.01 (1.00), 0.96 (0.74), 
and 0.83 (0.92), for the flexion/extension, 
adduction/abduction, and internal/external rotation angles, 
respectively.  These results suggest that, on average, the IMU 
overestimates the MOCAP flexion/extension angle by 1%, and 
underestimates the adduction/abduction and internal/external 
rotation angles by 4% and 17%, respectively, relative to the 
MOCAP angle.  Moreover, the IMU-derived estimates explain 
nearly 100% of the variance in the flexion/extension angle, 
92% of the variance in the internal/external rotation angle, but 
only 74% of the variance in the adduction/abduction angle.  
Simple correction for anatomical frame misalignment yields 
the femoral orientation angles reported next having 
significantly improved levels of agreement. 

B. Validity of Femoral Orientation Angles 

 The accuracy of the hip angle drift correction algorithm is 
revealed after first correcting for the misalignment between 
the IMU and MOCAP anatomical reference frames.  Doing so 
allows a direct comparison of femoral orientation angles (X, 
Y, Z) calculated from IMU and MOCAP data to within a 
small residual misalignment error due to construction of the 
MOCAP marker frames. The resulting X, Y, and Z orientation 
angles correspond to IMU-estimated flexion/extension, 
adduction/abduction, and internal/external rotation angles 
since the MOCAP anatomical frame is now aligned with the 
IMU anatomical frame at the start of each test.  Across all 
trials (N=92), the average mean (SD) differences between the 
X, Y, and Z angles estimated from IMU and MOCAP data 
remain far below one degree and are -0.06(0.53), 0.02(0.96), 
and -0.09(1.12) degrees, respectively.  This outstanding 
consistency is superior (by an order of magnitude) to the 
reported accuracies of two widely used IMU systems, the 
Xsens MVN and APDM Opal, which advertise static 
(dynamic) orientation accuracies of 1.00(2.00) and 1.50(2.80) 
degrees, respectively.  These commercial systems fuse 
orientation estimates from accelerometers and rate gyros, as 
well as magnetometers.  In contrast, the algorithm presented 
herein achieves superior results while fusing estimates from 
accelerometers and rate gyros alone.  A recent study [7] also 
compares IMU-derived orientation angles (fusing gyro and 
accelerometer estimates) to MOCAP-derived orientation 
angles for quasi-static functional tasks, including maximum 
hip flexion and adduction, gait, two leg squats, and one leg 
standing.  However, the most successful drift error correction 
algorithm reported only achieves mean and standard deviation 

errors of 2-3 degrees in the most successful task. Thus, the 
drift correction algorithm reported herein may well set a new 
standard for accuracy for the clinical tests for FAI considered. 
 When compared to the orientation drift algorithms 
presented in [7], the algorithms above succeed by using data 
from the entire clinical tests for FAI.  Specifically, during the 
clinical tests for FAI, a device mounted to the femur is held 
stationary when each of its three sense axes nearly aligns with 
gravity for some subset of the test.  Data from these time 
periods provide the measurements that enable identification of 
the optimal drift correction constants (scale factor and bias) 
for each of the gyro sense axes as defined in Eq. (6).  Doing so 
accounts for drift present in all coordinate directions, 
including yaw, a limitation noted for several of the tests and 
methodologies presented in [7].      
 It is important to note that the accuracy of the algorithm 
described herein is accompanied by the loss of several 
generalities maintained by the commercial IMU systems as 
well as the algorithms tested in [7].  Specifically, the described 
drift correction algorithm relies on data collected over the 
entire duration of a given test, and therefore cannot be applied 
in real time.  Moreover, the tests considered herein exercise 
each femur-mounted device through its entire ROM, so these 
results may not extend to general applications where a more 
limited ROM is expected.    

C. Influence of Skin Artifact and Clinical Implications 

 The effects of skin artifact on measured hip angles during 
clinical tests for FAI have not previously been investigated.  In 
this study, the differences between skin- and pin-mounted 
IMU estimates of femur orientation were -1.68(2.35), -
2.63(3.13), and 6.41(6.44) degrees about the X, Y, and Z axes, 
respectively (Table 4).  The average slope and coefficient of 
determination (R2) of the best-fit lines to the correlation plot 
data (skin-mounted versus pin-mounted orientation angles) 
were 1.03(1.00), 1.02(0.89), and 0.83(0.80), in the X, Y, and Z 
directions, respectively.  These results reveal that the skin 
mounted IMU overestimates the X and Y orientation angles by 
only 3% and 2%, respectively, but underestimates the Z 
orientation angle by 17% relative to the MOCAP angle 
estimates.  Moreover, based on the R2 results, the skin 
mounted IMU explains nearly 100% of the variance in the X 
orientation angle, 89% of the variance in the Y angle, and only 
80% of the variance in the Z angle, on average, for the 46 
trials considered.   
 The differences in femoral orientation angle trajectories 
translate to range of motion (ROM) differences that have 
direct clinical significance.  For the 46 tests analyzed, the 
mean (SD) range of motion differences are 1.68 (3.12), 0.76 
(4.15), and -2.40 (9.18) degrees in the X, Y, and Z angles, 
respectively.  As illustrated in Fig. 2, the skin-mounted IMU is 
secured approximately at mid-thigh using self-adhesive, 
elastic, athletic tape. While this location is convenient, it likely 
induces considerable skin artifact. Smaller skin artifact, and 
therefore smaller ROM differences, would follow from 
mounting and indexing the IMU against the iliotibial band or 
the proximal end of the lateral femoral condyle [32].  
Regardless, normative (flex/ext: 110-120°; Ir/Er: 30-40°) [33] 
and surgically-confirmed FAI (flex/ext: 97(9)°; Ir/Er: 9(8)°) 
[34] cohorts have been shown to exhibit considerable 
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discrepancies in hip ROM.  Thus, any mounting location 
would be expected to resolve the large differences in ROM 
(13-23 and 21-31 degrees for flexion/extension and 
internal/external rotation, respectively) between healthy and 
FAI afflicted hips, irrespective of any likely skin artifact.  

V. CONCLUSION 
 This study presents compelling evidence of the validity of 
the proposed IMU-based method for quantifying femoral 
orientation angles during the common clinical tests used to 
diagnose Femoroacetabular Impingement.  This method 
provides levels of accuracy and precision superior to those 
advertised in commercial IMU systems and previously 
published IMU-based methods.  Even after accounting for 
expected skin motion artifact, the method will likely 
discriminate between healthy and FAI afflicted hips. The 
method is easy to use, inexpensive and provides hip motion 
trajectory data in addition to range of motion measures. These 
advantages may accelerate the adoption of this technology to 
inform FAI diagnoses and assess treatment efficacy. 
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Abstract 
 
Badminton is one of the most popular sports in Malaysia. The main aim of this project is to investigate sets  
of movements in badminton training using sensors, to identify the good movement that enhance badminton 
performance. In addition, this project also aims to identify measurable parameters to quantify badminton  
skill levels. The performance of elite players will be studied to identify benchmark values for these 
measurable parameters. A quantitative model will be proposed using these measurable parameters to help 
in the objective assessment of skill levels. Findings of this project will help badminton players to improve  
their techniques, as well as providing an objective measurement to assess badminton skills. 
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1.0  INTRODUCTION 
 
The Badminton World Federation estimated about 150 million 
people play badminton worldwide and more than 200 players 
participate in international competition [1]. Badminton is listed 
as top three of Malaysian most popular game. Most of Malaysian 
grown up playing Badminton, but only less than 10 Badminton 
athletics listed in top 100 players in BWF (Badminton World 
Federation) ranking [2]. Studies have shown that exercises using 
different joints surprisingly showed similar muscle activation and 
that strength training was not helpful for functional tasks that 
involved multiplanar movements [3]. Therefore, it is crucial to 
study specific exercises for specific type of sports.  
  A research on several movement-based or “functional” 
exercises has been carried out to assess their effect on technique 
change [4]. The exercises investigated included walkout in 
sagittal plance, overhead cable pushes, lateral cable walkouts, the 
good morning exercise and the bowler’s squat. It was found that 
despite the activities being rather strenuous, muscle activation 
levels were relatively modest. In addition, the exercises uses 
similar joint moments but the patterns of activity between 
muscles were different. The study further conclude that strength 
training muscles may not help in functional multiplanar tasks. 
Data from this study indicated that selection of exercise and 
movements are crucial for performance enhancement. In the 
context of badminton players, those at their beginning of training 
may require different sets of exercises from those who are at the 
intermediate level or subsequent higher levels. 

Researches had been carried out to analyze the movement by 
athletics through the years. Efforts at player motion tracking have 
traditionally involved a range of data collection techniques from 
live observation to post-event video analysis where player 
movement patterns are manually recorded and categorized to 
determine performance effectiveness [5]. Two most popular 
solutions are highlighted here. Firstly, a precise system that 
required high speed video camera and markers to record the 
athletics’ motion like Marker Instrumented Player [6]. Secondly, 
wireless inertial measurement unit that is portable and usable at 
any environment like Opal sensor from APDM, Inc [7]. There are 
custom-made products such as Zepp Tennis [8] for tennis players, 
developed by Zepp US Inc to track the useful data like power, 
spin, court time and connect with APPLE I-Pad to get the instant 
feedback. At the same time, Sony Corporation had announced the 
prototype of smart tennis sensor [9] at CES2014 which can detect 
the speed of the ball hit on the racket.  
  A review of vision-based motion analysis in sport study by 
Sian Barris had mention that problem of current motion analysis 
system by using video recording or motion capture such as 
TRAKUS™, SoccerMan™, TRAKPERFORMANCE™, 
Pfinder™ and Prozone™ is hard to apply at crowded place, often 
compounded by the quality of video capture, the relative size and 
occlusion frequency of people, and also changes in illumination 
[5]. Besides that, Inertial measurement unit or IMU had the 
advantage of high sample rate, tiny size and weight so it wouldn’t 
affect player’s performance much, no hidden spot, portable, low 
cost and suitable to use at real training condition. IMU is widely 
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used on vibration and impact detection, low velocity movement 
like gait and jogging, and detect orientation. 
  Hassan Ghasemzadeh had introduce a sensor-based 
quantitative model which takes into consideration signal 
processing techniques on the collected data and quantifies the 
correctness of the performed actions by a Golf player [10]. Linear 
projection methods, PCA and LDA which used as classification 
and dimension reduction technique used in this project to build a 
regression model which can provide feedback on quality of 
movements for the purpose of training. The model is able to 
provide information on quality of golf swing with respect to angle 
of wrist rotation. This model is good for gather the information 
on quality of swinging movements with the player wrist rotation 
which is suitable to apply on Badminton game but this method 
required at least five sensors to collect enough data for accurate 
analysis. 
  Thomas Jaitner and  Wolf Gawin had develop a mobile 
device to quantify the influence of variables that describe 
movement of arm on parameters of racket acceleration and 
shuttlecock speed by using Pearson’s correlation analysis [11]. 
He stated that about 70% of the variance of the shuttle velocities 
can be explained by the acceleration of the racket. And the 
remaining 30% might be explained by racket properties such as 
string stiffness and string gauge. Gowitzke also stated that around 
53% of shuttle velocity can be explained by the last rotation 
performed by shoulder and elbow [12]. 
  El-Gohary proposed to combine kinematic models designed 
for control of robotic arms with state-space methods to directly 
and continuously estimate human joint angles from inertial 
sensors [13]. They developed an inertia tracking algorithm and 
compare with unscented Kalman filter (UKF) based method. 
These algorithms can be applied to any combanitation of 
synchronized sensors and suitable for both regular and fast speed 
movement.  
  Despite sensor for motion analysis being widely available, 
sensor-based assessment for for badminton skill is currently 
unavailable. Since badminton is one of the most thriving sports in 
Malaysia, it is reasonable to investigate methods to make it easier 
to train more badminton players without being too dependent on 
the availability of expert coaches. Players who do not have 
coaches to train them could use these sensors to rate their own 
performance, improve their skills while avoiding movements that 
will lead to long term injuries. Even players with coaches 
sometimes have to train on their own without supervision and 
these sensors could help record their data for real-time feedback 
or post-analysis. 
  The main aim of this project is to investigate and create a 
database of sets of movements in badminton training to 
differentiate the good movements that enhance performance from 
the bad movements which potentially lead to musculoskeletal 
injuries. Besides investigation sets of movements in badminton 
training, this project also aims to identify crucial kinematics 
parameters to quantify badminton skill levels. The performance 
of elite players will be studied to identify benchmark values for 
these measurable parameters. A quantitative model will be 
proposed using these measurable parameters to help in the 
objective assessment of skill levels. This will help badminton 
players to improve their techniques and prevent some sports 
injuries, as well as providing an objective measurement to assess 
badminton skills. 
 
 
 
 
 
 

2.0  METHODOLOGY 
 
2.1  Interview Section 
 
Interview had been conducted for three badminton players 
comprising a state elite player, a coach and a casual player. Some 
useful information had been obtained about training and 
expectation on modern techniques. From these interviews, we 
found that the conventional badminton training is focused on skill 
and stamina training. The badminton coach stated that the modern 
training technology should be able to track the position of shutter 
lock and player location to determine the agility and skill of a 
player. Several algorithms need to be proposed and tested in 
producing the most precise and accurate evaluation of badminton 
players movements. The best way to achieve this is through 
collaboration with BAM (Badminton Association Malaysia), 
sports center, players and coach where pilot study can be 
conducted and feedbacks can be obtained from groups of interest. 
 
2.2  Hardware sourcing 
 
An inertial measurement unit, or IMU, is an electronic device that 
measures and reports on a craft's velocity, orientation, and 
gravitational forces, using a combination of accelerometers and 
gyroscopes, sometimes also magnetometers. IMUs are typically 
used to manoeuvre aircraft, including unmanned aerial vehicles 
(UAVs), among many others, and spacecraft, including satellites 
and landers. Recent developments allow for the production of 
IMU-enabled GPS devices. An IMU allows a GPS receiver to 
work when GPS-signals are unavailable, such as in tunnels, inside 
buildings, or when electronic interference is present. In this 
project, a wireless IMU device will be used to collect data from 
athletics.  
  Opal sensor from APDM INC. [9] had been selected in this 
project. Opal sensor is a miniature, wireless inertial measurement 
unit that can both log kinematic data and stream it in real-time 
continuously for over 8 hours. A wireless network of up to 24 
Opals is possible, maintaining time-synchronization of ≤1ms 
between Opals. WIMU like Opal sensor is useful to collect the 
kinematics value from athletics. Zepp Tennis sensor and X-IMU 
sensors also been considered in this project to validate the Opal 
sensor. 
 
2.3 Experiment Setup 
 
Experiments had been conducted for the purpose to validate the 
selected sensor and for data collection for smash performance.  
Figure 1 shows the axis of selected WIMU. 
 

 
Figure 1  Axis of APDM Opal sensor 

 
 
  Then the sensors are attached on wrist and right arm of the 
subject as shown in Figure 2 where sensor A is attached on the 
arm and sensor B is attached on the wrist. 
 



95                                                         Yeong Che Fai et al. / Jurnal Teknologi (Sciences & Engineering) 72:2 (2015) 93–96 
 

 

 
Figure 2  Opal sensor are attached on subject's arm and wrist 

 
 
2.3.1  Experiment 1–Swing hand 180° upward 
 
The objective of this experiment is to provide a simple movement 
that can be used as references for other complicated Badminton 
stroke like smashing. This experiment also aims to validate the 
Opal sensor. Figure 3 shows that the subject swinging hand 
upwards around 180°. The swinging are repeated 4 times. 
 

 
 

Figure 3  Flow of Experiment 1 
 
 
3.0  RESULTS AND DISCUSSIONS 
 
In this project, the Opal sensors which are attached on subject’s 
body are used to measure the kinematics parameters like 
acceleration, rotational velocity, magnetic force, temperature and 
orientation. Then, there are a APDM station that play the role to 
collect data via Bluetooth technique and transfer it to a PC 
application called APDM Motion Studio. 
 
3.1  Data Analysis 
 
The collected data during Experiment 1 is shown in Figure 4 
where Sensor A represent the Arm Sensor and Sensor B represent 
the wrist sensor. From the graph, we can observe that there are 
total 4 minor changes for all accelerometer, gyroscope and 
magnetometer which show that the 4 swinging performed by 
subject in experiment 1. 
 

 
Figure 4  Acceleration, rotational velocity and magnetic impact of sensor 
A and sensor B 
 

Then, from the collected orientation value, Euler angle had been 
calculated by using MATLAB. From Figure 5, we can clearly 
observe that there are around 180° swinging for 4 times in the 
graph. 
 

 
Figure 5  Euler angle of Experiment 1 

 
 
  From this experiment, we observed that the sensor is stable 
and validate for further study and experiments in this project due 
to its accuracy and the data of this experiment will become the 
references of future experiment such as smashing movement and 
etc. 
 
 
4.0  CONCLUSIONS 
 
From this stage of study, the most expected outcome is to identify 
the benchmark value of crucial parameters that affected player’s 
skill performance, an objective assessment is expected in this 
project. A study and review of investigation of sensor-based 
quantitative model for badminton skill analysis and assessment 
need to be continuing more in depth. The full training model for 
the purpose of improve player skill is expected in the future 
research. Other experiments which is focus on Badminton stroke 
like smashing, clear, drop and service will be conducted among 
larger population of sample subject who involve various level 
Badminton player from casual player to professional player. 
Position of player on the game court should be detected in future 
research to obtain a more completed automatic Badminton skill 
evaluation system. 
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Background: Following severe trauma to the brain (whether internally generated by
seizures, tumors or externally caused by collision with or penetration of objects)
individuals may experience initial coma state followed by slow recovery and rehabilitation
treatment. At present there is no objective biometric to track the daily progression of the
person for extended periods of time.

Objective: We introduce new analytical techniques to process data from physically
wearable sensors and help track the longitudinal progression of motions and
physiological states upon the brain trauma.

Setting and Participant: The data used to illustrate the methods were collected at the
hospital settings from a pregnant patient in coma state. The patient had brain trauma
from a large debilitating seizure due to a large tumor in the right pre-frontal lobe.

Main Measures: We registered the wrist motions and the surface-skin-temperature
across several daily sessions in four consecutive months. A new statistical technique is
introduced for personalized analyses of the rates of change of the stochastic signatures
of these patterns.

Results: We detected asymmetries in the wrists’ data that identified in the dominant
limb critical points of change in physiological and motor control states. These patterns
could blindly identify the time preceding the baby’s delivery by C-section when the
patient systematically brought her hand to her abdominal area. Changes in temperature
were sharp and accompanied by systematic changes in the statistics of the motions
that rendered her dominant wrist’s micro-movements more systematically reliable and
predictable than those of the non-dominant writst.

Conclusions: The new analytics paired with wearable sensing technology may help
track the day-by-day individual progression of a patient with post brain trauma in clinical
settings and in the home environment.

Keywords: coma, pregnancy, brain trauma, wearable sensors, analytics, statistics
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Introduction

According to the Centers for Disease Control (CDC) severe
trauma to the brain is a contributing factor to a third (30%)
of all injury-related deaths in the US (Carroll et al., 2012;
Centers for Disease Control and Prevention (CDC), 2013),
thus posing a large societal and economic toll (Finkelstein
et al., 2006). Non-fatal brain trauma may result in immediate
unconsciousness (coma) and amnesia states followed by slow
recovery with subsequent extended periods of impairments in
one or more general functional areas. Trauma may be due to
internal insult caused by seizures, tumors, among other factors.
Trauma may also be due to collision with an external object
(static or in motion). Different prognosis and subsequent states
emerge from different types of injuries to the brain. These
may include impaired cognitive and/or motor functions as well
as impaired sensations and/or emotional responses. Physicians
and researchers now generally recognize that the spectrum of
disorders related to coma can be more broadly defined as a range
of disorders of consciousness (DOC) that can be mapped onto
a multi-dimensional space primarily defined by cognitive and
motor impairments.

In many cases the initial coma state may evolve towards
improved levels of consciousness and physical function such as a
minimally conscious state (MCS). To assess coma and impaired
consciousness in the early stages of post brain trauma there
are several clinical tools based on reports from observation.
These include the Glasgow Coma Scale (GCS), Coma Recovery
Scale---Revised (CRS-R), the Abbreviated Injury Scale (AIS)
and the Trauma Score or Abbreviated Trauma Score, among
others. These observational tools can also be used to track
progress while at the hospital or during subsequent visits, in
cases where the patient improves and undergoes rehabilitation
at home. Other tools used in the hospital settings include
objective assessments of the brain condition using imaging
techniques. The use of these techniques is however limited to
a few times per year, due primarily to their cost and regional
availability.

Upon recovery from the initial coma state, many patients
undergo rehabilitation and eventually return home to be looked
after by a caregiver and to continue receiving therapy. At that
stage there are presently no objective tracking tools to help the
caregivers, and/or the occupational and physical therapists assess
the daily progression of the patient in response to treatments.
The current assessments to track physical progress rely primarily
on observation (e.g., the use of inventories such as the Western
Neuro Sensory Stimulation Profile, WNSSP among others). Yet
the human eye has limited capacity to detect subtle changes
in physical motions that could signal improvement, or call
for immediate attention to some sharp change in physiological
states. For example, physicians and therapists look for eye
opening to detect changes in arousal and behavioral command
following and/or changes in spontaneous/reflexive movement to
detect changes in awareness. Diagnoses of changes in states of
awareness or arousal based on clinical observation alone have
high rates of diagnostic error, approximately 40% (Schnakers
et al., 2009). There is no way to objectively track the longitudinal

rate of change of the person’s patterns so critical information
is being missed that could help the patient and caregivers cope.
In particular health insurance companies require evidence-based
improvements for coverage of therapies but under the present
observational methods it is a challenge to report accurate and
reproducible results.

With the advent of wearable sensing technology it may be
possible to use motion tracking in combination with other
physiologically relevant signals (temperature, electrodermal
activity, heart beat variability, etc.) to help medical personnel and
care givers assess the patient’s mental and physical states daily, as
they fluctuate, both during the hospitalization period and after
discharge, when the patient goes into rehabilitation.

Wearable sensors are now ubiquitous in our lives. They are
present in our smart phones, smart tablets, wellness and fitness
bracelets, etc. Yet the current analytical techniques embedded in
such devices have been recently called into question as somewhat
inaccurate and occasionally misleading. Such methods may be
acceptable to track fitness and wellness, but they may lack the
reliability necessary to be adopted as standard metrics in the
clinical domain. New analytical techniques to be embedded in
wearable sensors are needed to help caregivers and medical
personnel track the evolution of patients with severe post trauma
to the brain. In this paper we introduce new personalized
statistical methods thatmay be of help in tracking the progression
of patients with brain trauma (independent of the type of trauma
involved). We illustrate the methods with data from a pregnant
patient who underwent severe brain trauma, slipped into a coma
and had her baby successfully delivered by C-section.

Methods

All methods andmeasurements presented in this study have been
approved by the Rutgers IRB Committee in accordance with the
Helsinki Act.

Patient

Timeline of the Patient as Reported by Her
Doctors
AB is a 39-year-old, right handed woman who was pregnant
when diagnosed with a grade 2 oligoastrocytoma on 03/05/14
after worsening headaches, fatigue, nausea and some degree of
confusion which prompted an MRI scan. The MRI revealed
on 03/07/14 a right frontal lobe mass lesion (8.5 × 5)
with characteristics suggestive of oligodendroglioma. Surgical
excision was recommended by the neurologist and scheduled
for 03/12/14 in consultation with her high-risk Ob/Gyn. On
the morning of 03/13/14 AB suffered an acute neurological
decompensation with loss of consciousness and nonreactive
dilated right pupil, sluggishly responsive pupil and decorticate
posturing. It was thought that she had a seizure. She was
intubated and given Mannitol and hyperventilated for probable
increased intracranial pressure. A STAT CT of the brain revealed
cerebral edema with uncal herniation. She underwent surgical
decompression, a right hemicraniectomy with tumor debulking
(see Figure 1 showing brain after surgical removal of the
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FIGURE 1 | Brain views after tumor removal. Two different views of the right frontal lobe upon removal of the tumor (affected area marked by arrow).

tumor). EEG upon surgery did not reveal seizure activity.
Postoperative exams included decerebrate posturing, CT and
MRI. These tests revealed extensive hemorrhagic infarct or
cytotoxic edema involving multiple vascular territories in the
bilateral parietal temporal and occipital lobes, as well as bilateral
(right more than left) thalami. Small foci of ischemia were
also found on the right mid-brain, pons and right cerebellar
hemisphere.

During the first week post-operation, AB remained
unconscious. Her GCS was 3. Even under comatose state
she displayed spontaneous eye opening and movements in
the extremities. Some examiners reported hand movement
on command on 03/20/14, but subsequent reports have been
inconclusive, possibly due to delays in response and incon-
sistencies in responses. On 03/20/14 an external ventricular drain
was camped. AnMRI on 03/23/14 revealed interval development
of a large psudomeningocele at the right hemicraniectomy site.
The external ventricular drain was removed on 03/24/14.

On 05/22/14 AB underwent a C-section delivery of a healthy
baby boy. On 05/28/14 a percutaneous endoscopic jejunostomy
tube was placed. She was transferred from the hospital to a
rehabilitation hospital for neurorehabilitation.

At the hospital she had fever on 06/25/14 due to an infection.
She underwent a course of antibiotics. A clot in her IVC was
revealed by ultrasound on 06/26/14. She was fully anticoagulated
prophylactically and fully anticoagulated with Lovenox.

Patient AB is on a trach collar. Her ABG on 06/30/14 showed
adequate oxygenation. Her weekly scores on the WNSSP from
June 4th 2014 till October 8th 2014 are reported on Table 1. The
discharge medications are reported below.

Discharge Medications
Medications administered per feeding tube: Amantadine 150 mg,
50 mg in the AM and 100 mg noon; Desmopressin 0.1 mg

TABLE 1 | Weekly scores from the Western Neuro Sensory Stimulation
Profile (WNSSP) commonly used to track changes in neural sensory
processing.

Month (Day) WNSSP

June (4) 11 (11) 10 (18) 26 (25) 27
July (2) 27 (10) 22 (17) 22 (24) 22 (31) 29
August (6) 13 (13) 14 (20) 5 (27) 17
September (3) 7 (10) 3 (17) 10 (24) 3
October (1) 9 ( 8) 14

per day; Docusate 2 mg per day; Ferrous sulfate 300 mg;
Folic acid 1 mg; Glycopyrrolate 0.5 mg; Keppra 1000 mg;
Multivitamin (1 tablet); Potassium chloride 20 mEq; Senna two
tabs; Vitamin D3 2000 IU; Aquatears to both eyes four times a
day; Chlorhexidine 15 ml for oral care 4 times daily; Meropenem
1 g IV q 8.

Medications administered by subcutaneous bid: Enoxaparin
50 mg and Vancomycin 1 g IV.

Measurements
The wrist motions of patient AB were continuously captured in
various daily sessions across the months of April till July 2014
using inertial measurement units IMU (APDM opal, Portland,
OR). These IMU register linear and angular acceleration, a
signal related to surface skin temperature, gyroscopic data, and
magnetometer data at 128 Hz. The units are synchronized and
operate through wireless technology in live streaming mode
and also in robust logging mode. The former enables real time
visualization of the synchronous data with no loss of data, while
the latter allows the same without visualization of the recordings
streamed in real time. We report data from the right and left
wrists of the patient, synchronously recorded in robust logging
mode (no data loss). Each session comprises several hours.
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TABLE 2 | Number of hours recorded by the APDM sensors per each day session across the 4 months.

Day, hours Day, hours Day, hours Day, hours Day, hours Day, hours Day, hours

April 24 7.09 25 7.22 26 7.16 29 6.41
May 3 9.45 6 12.56 8 12.28 11 3.45 13 6.26 17 6.74 27 12.24
June 5 3.57 8 11.33 12 7.32 20 13.29
July 1 9.34 9 7.06 12 9.43 15 4.32 17 5.37 19 7.14

Table 2 provides information on the number of hours per session
when the data were registered. We describe statistical features
of the data using new biometrics that connect acceleration-
dependent motion and temperature-dependent data.

Biometrics
The motion patterns were analyzed along with those of the
temperature values, both registered simultaneously by the
sensors. We focus our analyses on the linear acceleration
obtained from the tri-axial linear accelerometers. To this end we
first express the linear acceleration as the time series of the norm
of the three-dimensional vector of accelerations expressed as a
function of the temperature range in each section. The patterns
of variability of the maximal instantaneous deviations of the
acceleration from the overall mean acceleration across the session
were examined using distributional analyses previously described
in other work involving velocity- and acceleration dependent
signals (Torres, 2011, 2013a,b; Torres et al., 2013, 2014). Figure 2
shows representative data from the patient’s wrists. The location
of the sensors is circled on the patient’s wrists in Figure 2A.
Figure 2B shows the plots of the tri-axial acceleration profiles
over several hours obtained on April 24th 2014 (see also Table 2).
Figure 2C shows the profiles of temperature registered by
the sensors while 1D shows the acceleration profiles. These
are built as the time series of the instantaneous norm of the
acceleration vector, accel =

√(
Ea1
)2
+
(
Ea2
)2
+
(
Ea3
)2 in a given

session. Here the ai are the tri-axial components along the x, y,
and z axes.

Figure 2E shows the scalar acceleration expressed as a
function of the temperature range registered by the sensors.
We take the mean acceleration value and the instantaneous
maximal deviation from the overall mean of the session. These
profiles are then obtained as a function of temperature. For
each minute of the session all samples of the maximal deviation
from the mean acceleration are obtained and plotted in matrix
form in Figure 2F (shown for a session in May 8th 2014) for
12.28 h (739.6 min shown along the rows). The columns of the
matrix show one-degree Celsius intervals spanning the range
of temperatures for that session. Notice that the temperature
output includes the skin surface temperature, the ambient
temperature and the internal temperature of the sensors’ battery
as it drains when motions are being registered. The color of
each entry in the matrix reflects for each minute and degree
interval the maximal amount of motion deviating from the
mean acceleration (see color bar) in units/s2. Figure 3 illustrates
the steps followed to build these matrices. The acceleration
and temperature data is first harnessed in one-minute-long
intervals (128 Hz × 60 s, 7,680 registered frames). For each

degree the range of motion registered is obtained over time.
The example in Figure 3 shows this for the 34--35◦C-interval.
All motion data occurring in that interval is harnessed (inset in
right panel). Then for each minute and each ◦C the maximal
deviation from the mean acceleration is obtained. Across the
minutes and degrees, these are the entries of the matrix
depicted in Figure 3. The color indicates the amount of motion
maximally deviating from the mean acceleration of the session
on May 8th.

In Figure 4 we continue to use the May 8th matrix
to further illustrate the methods. We use the range from
33--35◦C to show the statistics of the motion. For each ◦C
we count the number of maximal deviations (peaks) across
the session (6.26-h or 375 min along the rows of the matrix)
and gather them in a frequency histogram. For each of the
histograms representing the motions for each ◦C-interval we
then fit a probability distribution function. Using maximum
likelihood estimation (MLE) we obtain estimates of the shape
(a) and the scale (b) parameters of the Gamma probability
distribution with 95% confidence intervals. (We have used
the continuous Gamma family of probability distributions in
previous work to characterize the range of human motion
variability across a range of neurological disorders and typical
motions). From the Gamma estimated parameters we obtain
the Gamma statistical parameters (mean and variance) and plot
them on a (µ, σ)-plane. Each point represents the Gamma
statistical parameters of the acceleration-dependent motions for
a temperature ◦C-interval taken across the time length of the
session.

Noise-to-Signal Ratio Analyses
We also use for each minute (comprising the 60 s × 128
Hz frames per minute) the above mentioned approach to
obtain for each entry in the matrix the Fano Factor. This
is the variance divided by the mean, the noise to signal
ratio. The resulting noise-to-signal ratio matrix corresponding
to the motion matrix for the May 8th session is shown
in Figure 5A bottom panel. Notice here that at 25◦C the
highest noise-to-signal level is revealed. Figure 5B shows the
frequency histograms for each of the 11 columns of the matrix
corresponding to each ◦C-interval. We mark the regimes with
the highest (blue star) and lowest (red star) noise levels detected
at 25◦C and 32◦C respectively. This immediately alerts us
that not all motion from the accelerometers is physiologically
relevant. At 25◦C for example this session reveals a pattern
of motion whereby the motion noise registered by these
accelerometers overpowers the signal. The range from 33-
-35◦C used in Figure 4 to illustrate the methods are also
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FIGURE 2 | Measurements: (A) Patient wearing the sensors in both
wrists. (B) Tri-axial acceleration measurements from one of the sensors during
recording one session of 7.09 h. (C) Temperature measurements from both the
left and right wrist sensors during the session. (D) Acceleration scalar obtained
by computing the norm of each acceleration vector over time. (E) Acceleration
plotted as a function of temperature (degree Celsius) for the full range of

temperatures registered across the 7.09 h session of April 24th 2014. (F) Matrix
of maximal deviations from the mean acceleration values registered on May 8th
2014 for the temperature range and time duration in minutes (for 12.28 h). For
each minute and ◦C the motion content was registered. The color bar shows
the range of the motion values (units/s2). The range of changes in temperature
values was registered between 22◦C and 38◦C for that day’s recording session.

marked here to show their range of noise-to-signal. Using the
MLE procedure we estimate the Gamma distribution shape
and scale parameters of the distributions corresponding to
the noise-to-signal values. This was done to determine the
physiologically appropriate statistical regimes in the motion data
to further analyze that data. These are regimes of temperature
where the motion maintains minimal noise-to-signal ratios
across the session, as opposed to the signal being overpowered
by instrumentation noise. We plot the estimated shape and
scale parameters on the Gamma plane with 95% confidence
intervals in Figure 5C. The color code corresponds to the
frequency histograms of Figure 5B and the legend reflects
the corresponding temperature ◦C-interval for this May 8th
session. The points corresponding to the shape value of 1
(log-log plot along the horizontal axis is 10◦) are at the
most random noise-to-signal levels. Those towards the right
correspond to statistically more predictable (systematic) regimes
of noise-to-signal levels (towards symmetric shapes of the
distribution of the noise-to-signal ratios). Along the scale axis,
higher values indicate higher levels of noise (highest marked
by blue star in correspondence with the frequency histogram
in Figure 5B). We also mark the 33--35◦C temperature interval

used in Figure 4B to illustrate the methods to isolate the
physiologically relevant motion regimes and in correspondence
with the frequency histograms of the noise-to-signal ratio in
Figure 5B.

In summary we first examine the motion statistical regimes
for each minute and ◦C-interval (Figure 4) and then examine
the noise-to-signal ratios corresponding to each of these
acceleration-dependent motion entries (Figure 5). By combining
temperature and motion of these sensors we automatically
extract the range of physiologically relevant motion data to
discriminate noise from signal. Then we can further perform
our longitudinal activity tracking analyses to blindly detect
relevant changes in skin surface temperature and to distinguish
systematic from spontaneous acceleration-dependent motion
patterns. Figure 6 summarizes in matrix form the separation
between relevant data and noisy data using the May 8th session
as an example.

Automatic Blind Identification of Relevant
Periods in the Longitudinal Data
The analyses of the evolution in the patterns of noise-to-signal
ratio for one session can be extended to each of the sessions to
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FIGURE 3 | Construction of the matrix containing the sensor data from a
registered range of surface skin temperatures: Motion data from the
tri-axial linear accelerometers are obtained continuously for each
minute of recordings (128 Hz × 60 frames) in 6.26 h (375.6 min) for this
session. Each entry of the matrix contains the maximal deviation from the mean

acceleration at each ◦C-interval (columns) and for each minute (rows) of the
session. The right panel shows the 34--35◦C-interval (red) and the inset shows
the linear acceleration data corresponding to that temperature ◦C interval. On
the left panel the 34--35◦C-interval is marked to show the patterns of the
maximal deviation from the mean acceleration over the session’s time length.

FIGURE 4 | Noise analyses to separate predictable and reliable
from random and noisy motion data: The minute by minute
variability is obtained for the maximal deviations from the mean
acceleration, taken for each ◦C interval. (A) Top panel is the matrix
of maximal deviations from the mean linear acceleration (explained in
Figure 2) within the temperature regime of motions. Bottom panel is the
matrix of the noise-to-signal ratio (the Fano Factor: the estimated
Gamma variance divided by the estimated Gamma mean) obtained from
the estimated shape and scale parameters of the continuous Gamma
family of probability distributions. The highest motion regime occurs

between 33◦C and 35◦C. The highest noise regime occurs at 25◦C
while the lowest noise regime occurs at 32◦C. (B) The frequency
histograms of the noise-to-signal values are color coded in order of
increasing temperature values. Colors are in correspondence to the
points on the Gamma plane in (C). The red star marks the highest
noise-to-signal regime while the blue star marks the lowest regime. The
temperature intervals containing the highest motion patterns are
enclosed by a rectangle. These correspond to the three right most
points in the Gamma plane (most systematic patterns), also enclosed
within a rectangle.

assess the longitudinal evolution of the physiologically relevant
data in each session. Recall that these are the data combining the
minimal noise-to-signal ratios across the various ◦C-intervals.
Figure 7 depicts the longitudinal stochastic trajectory of the
noise-to-signal ratios extracted from the motion data across all
sessions. There are 124 measurements automatically extracted
from 21 sessions registered across 4 months (spanning from

April to July). In each session several temperature ◦C-intervals of
low noise data were extracted and their shift in Gamma (b)-scale
parameter levels obtained for each ◦C-interval along with
their shift in the Gamma (a)-shape parameter corresponding
to the frequency histogram of the motion’s noise-to-signal
ratio and estimated using MLE. We point here that the
Gamma (b)-scale parameter relates to the Fano Factor, the
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FIGURE 5 | Steps to analyze the patterns of acceleration variability:
(1) Build the matrix having in each entry the maximal deviations from the mean
acceleration, as described in Figure 2, for each minute of the 6.26-h session
and each ◦C-interval of the surface skin temperature range registered (2). For
each column harness the peaks from the entries of the matrix with low and

predictable noise-to-signal ratio. The frequency histogram of the peak
deviations from the mean is obtained for each ◦C interval and the best fitting
probability distribution function obtained (3). Obtain the empirically estimated
Gamma mean and Gamma variance from the experimental data using the
estimates of the shape and scale Gamma parameters (see text for details).

Gamma estimated variance divided by the Gamma estimated
mean value. The former is a.b while the latter is a.b2. The
Fano Factor is then b, which is the scale parameter. Thus
we are examining the rate of change of the noise-to-signal
ratio from the acceleration-dependent motions as they turn
more or less random, and/or as they turn more or less
systematic.

Figure 7A (right wrist) and Figure 7B (left wrist) show
the 3-dimensional trajectories of the changes in these Gama
parameters (X-Y log-log plane) along the temperature ranges
(Z-axis ◦C) registered by the sensors. The vector field (black
arrows) indicates the direction and the magnitude of the change
in the reliability and predictability of the changes in the noise-
to-signal ratio form the motion data. Low changes in values vs.
high changes in values are better appreciated in Figures 7C,D
along the surface fitted through the 124 points of physiologically
relevant (low noise) data across all sessions. Along the Z-axis of
these surfaces are the changes in temperature level. Notice that

the right wrist had a dramatically sharp change in the month of
May, while the left wrist had a gradual change in temperature
from June onwards. We come back to this observation in the
discussion section below. Points along the 0-change lines of
temperature, scale and shape are steady states in each session.

Identification of and Further Distributional
Analyses in Critical Sessions
Once the proper regimes of noise-to-signal levels are determined
from the motion-temperature data, and their rates of change
obtained, we go back to the stochastic analyses of the acceleration
data. The prior methods allow us to zoom in the month of
highest (or lowest) change in activity across the longitudinal
data. Figure 8 shows the frequency histograms of the right and
left wrists data involving the maximal deviations from the mean
acceleration obtained within the proper temperature intervals
(those identified with the lowest noise-to-signal levels). The
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FIGURE 6 | Automatic Extraction of physiologically relevant data:
(A) Right wrist accelerometer and temperature data represented in matrix
form and color coded by activity level in minute-by-minute intervals. As
explained in Figure 2, in the first panel each entry of the matrix represents
the maximal deviation from the mean acceleration for each given minute
and ◦C. Color scale represents motion intensity from low (blue) to high
(red). In the second panel each entry of the matrix represents the values of
the shape parameter of the continuous Gamma family of probability
distributions estimated from acceleration data. Each (i,j)-entry is the shape
estimate for the ith minute the jth ◦C. Each entry in the third matrix, as

explained in Figure 3, has the Fano Factor, the noise-to-signal ratio from
the estimated Gamma mean and variance parameters for the ith minute
and the jth ◦C. The lower panel contains the subset from the full range of
surface skin temperature registered where the noise to signal is lower
(minimal level enclosed by red square). In A (the right wrist) minimal noise
in the acceleration is at 32◦C (also the highest shape value, indicating
most symmetric distribution of the motion parameter). In (B) (the left wrist)
the noise-to-signal is low for 32--35◦C, with 35◦C having the lowest
noise-to-signal regimes and the most systematic motions indicated by the
higher values of the shape parameter.

figure focuses on the month of May which Figure 7 identified
as critical for the dominant hand. Notice the changes in the
shape and width of these frequency histograms across the various
sessions in May.

Figure 9A tracks the stochastic trajectories of the estimated
Gamma parameters for each wrist (corresponding to the
acceleration-dependent motions) and identifies (with a star) in
each case the session with the largest rate of change towards
the regimes of lowest variability (most reliable) and most
symmetric shape, towards systematic motions, away from the
(most random) Exponential distribution regimes of the Gamma
plane. The starting and ending points of the trajectories are
also highlighted. Figure 9B shows for each day the Gamma
estimated statistics (mean and variance) highlighting in the
legend the dates of the sessions and the largest change in
statistical regimes. Other analyzes of the rates of change in these
estimated parameters were performed for the month of May and
for other months as well. We report the results in the next section
of the paper.

Results

Identification of the motion regimes with the lowest noise-to-
signal ratio per session enabled us to focus on the physiologically
relevant motion data and examine the rates of change of
the width and the shape of the frequency distributions of

the maximal deviation from the mean acceleration. Given
that there are many spontaneous motions in the patient,
the purpose of these analyses was to discriminate random
from systematic changes in shape and scale parameters,
as well as to establish possible relations between motion
and temperature data indicative of emerging volition in the
movements.

Figure 10A shows the result of the analyses corresponding to
the stochastic changes in the shape of the distribution estimated
for each of the sessions of each month where the noise-to-signal
was at its minimum. The frequency distribution of the rate of
change of the shape parameter in each session was well fit by the
Gamma family. The estimated shape and scale parameters are
plotted with 95% confidence intervals on the (log-log) Gamma
Plane. This plane shows a clear separation in the clustering
of the points corresponding to the sessions in the month of
May for the right wrist. This separation is consistent with the
overall behavior of the changes in temperature and motion data
identified in Figures 7C,D. The upward shift in this cluster along
the vertical axis indicates an increase in the variability (the width)
of the shapes of the distributions of the acceleration-dependent
motion parameter. The rightwards shift of this cluster along
the horizontal axis indicates systematic changes towards more
symmetric shapes. More symmetric shapes indicate Gaussian-
like behavior with a build up in the expected value of the
parameters while shifts away from these regimes (towards the left
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FIGURE 7 | Longitudinal changes in temperature and
noise-to-signal ratio: (A) Stochastic trajectories of the right wrist
variability in the acceleration data registered within the range of
temperature with the lowest noise-to-signal ratio. Arrows show the
flow of directional change towards stable temperature regimes of low
changes in the noise of the motion. This is marked by the size of the
arrows from large at low temperature to small at higher temperature
values (between 32--34◦C). The starting and ending points of the
stochastic trajectories are marked. (B) Same as in (A) for the left wrist.
(C) Surface fit through 124 points from the motion data longitudinally
obtained from the right wrist. These are the data with the lowest noise

level in the maximal deviations from the mean acceleration. Notice that
the area showing the sharpest rate of change in temperature and
noise-to-signal levels was registered in May. (D) The surface fitting the
124 longitudinal data points from the left wrist shows decrease in the
rate of change of temperature in May, followed by a gradually slow
increase of this parameter across the subsequent months of June and
July. In both cases there are also points aligned at near zero-change in
noise-to-signal ratio for the motion. These are the points where the
signatures of variability in the motion patterns registered by the sensors
were more stable and had more steady state of temperature levels
as well.

of the shape axis) mark increase in randomness and total lack of
volition.

In summary these analyses revealed that the rate of change
of the shape parameter estimated from the linear accelerations
with the lowest noise-to-signal values singled out May as the
critical month. This was the month with highest variability in
the change of the shape parameter of the maximal deviations
from the mean acceleration, but it was also the month when
these changes were the most systematic, predictive of a reliable
expected value. In other words, the variability in the acceleration-
dependent motion of the dominant hand was not random during
the month of May. These motions were not spontaneous in

nature as those with random patterns are. The rate of change
in the stochastic patterns was highly systematic, as quantified
by the shifts in the shape of the probability distribution of the
acceleration dependent parameters.

Figure 10B shows the results from similar analyses as in
Figure 10A but this time corresponding to the rate of change
of the noise-to-signal levels in the surface skin temperature.
The frequency distributions of the rate of change of surface
skin temperature noise followed the Gamma distribution as well.
We estimated the shape and scale parameters of each session
with minimal acceleration-dependent motion noise and plotted
the point from each session on the (log-log) Gamma plane
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FIGURE 8 | Gamma pdf estimation from each session and temperature
range having low noise-to-signal information in the month of May 2014.
(A--G) The estimation of the Gamma pdf’s across 7 sessions was done from the
empirical data registered by the sensors at the wrist. Insets are the frequency
histograms of the maximal deviations from the mean acceleration and graphs
are the pdf curves within the ranges of the experimental data and for the

estimated shape and scale parameters of the continuous Gamma family of
probability distributions. (H,I) Summary of the right (red) and left (blue) wrist
Gamma pdf patterns obtained within the temperature values determined using
the methods of Figure 2 according to the minimal noise-to-signal values within
the temperature ranges from the sensor’s readings. Each number on the graph
represents the day of the recording in the month of May.

with 95% confidence interval. The month of May once again
stood out as a separate cluster with systematic shifts downwards
towards regimes of reliable measurements (low noise) and shifts
rightwards towards more systematic regimes tending towards
symmetric (Gaussian) shapes of the distribution of the rate of
change in temperature noise. These patterns were not present
in the values registered by the left wrist. In the left wrist the
points from the sessions in the month of May did not cluster
apart from those estimated from the measurements taken in the
othermonths. Unlike in the right wrist, no reliable and systematic
changes were revealed in the motions of the left wrist during the
month of May.

Figure 10C shows the patterns corresponding to the rate
of change in the shape parameter discussed in Figures 10A,B
for the acceleration-dependent motion as a function of the

temperature. The points representing the month of May cluster
apart from the rest. Here, in relation to the other months, May
had larger values for the change in the shape of the acceleration-
dependent distribution corresponding to larger values in the
change of the shape of the temperature-dependent distribution.
This indicates a systematic change in the shapes of these
distributions towards more symmetric shapes: as the changes
in the shape of the distributions of temperature became more
systematic, so did the changes in the shape of the distributions
of the maximal deviations from the mean acceleration. This
means that in May the changes in the motions of the right
wrist as a function of surface skin temperature were not
random.

While Figure 10C speaks of systematic changes in the shapes
of the parameters’ distributions, Figure 10D speaks of the
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FIGURE 9 | Longitudinal trends in changes of stochastic signatures
of acceleration variability (May). (A) Trajectory across recording sessions
of the estimated scale and shape parameters for maximal acceleration
using the continuous Gamma family of probability distributions. Each point
is plotted on the Gamma parameter plane with 95% confidence intervals.
Arrows indicate the flow of the trajectory in the order in which the data were
acquired from the start circle (May 06) to the end triangle (May 17th). The
star is the point of maximal change in shape (towards symmetric

Gaussian-like range of the Gamma plane) and drop in scale value (decrease
in the noise-to-signal ratio). (B) Estimated mean and variance parameters of
the Gamma probability distribution for each session (see legend with dates
for right R and left L cases) with symbols corresponding as well to
parameters in (A). The log-log plot is used for better visualization. Notice
that the values of the variance and the mean corresponding to the maximal
shifts in stochastic parameters marked by stars in (A) are at the extreme
locations of the Gamma-statistics plane.

changes in their noise-to-signal levels. There we see that in
relation to other months, the measurements in the month of May
stood out with lower changes in temperature noise and higher
changes in acceleration noise. The rates of change in noise levels
in temperature were steady, while the rates of change in the
acceleration noise increased. There was more variability in the
motion for steady temperature ranges. Yet this variability was
systematic according to the statistics of the shape values of the
distribution of motion parameters shown in the inset.

The inset zooms in the Gamma statistics of the changes
in the shape of the distributions of maximal deviation from
the mean acceleration. The figure shows that in May the
motions were more systematic than in the other months and
their variability in the shape of the distribution was higher. In
particular, by May 17th the changes in surface skin temperature
were steadier as the changes in motion patterns turned more
systematic (as revealed by the higher values of the shape of
the distribution of the relevant acceleration and temperature
dependent parameters).

Patient AB had the C-section delivery of her baby boy onMay
22, 2014. All the data preceding that date indicated patterns of
systematic variability in her motions from the dominant (right)
hand that were absent in the motions from her non-dominant
(left) hand. Furthermore, the medical records indicated the
formation of a blood clot in the right arm after May. Figure 7D
shows a slow gradual increase in the changes in surface skin
temperature for the left wrist that also coincided with higher
levels of motion. These motions from the left wrist however
had no discernable patterns of systematic changes in variability
levels as those observed in May. The motions registered in
the left wrist were truly spontaneous in nature (random)
whereas those of the right wrist were reliably predictable of an
expected value.

Discussion

This paper introduces new methods to assess in a personalized
manner the day-by-day longitudinal progression of body
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FIGURE 10 | Longitudinal analyses of the rates of change of the
noise-to-signal levels of the acceleration as a function of the
temperature readings. (A) The changes in the shape of the distributions of
the noise-to-signal values of the motion (maximal deviations from the mean
acceleration) followed a Gamma distribution. They are plotted on the Gamma
parameter plane. Notice that the stochastic signatures corresponding to the
sessions recorded in May stand out from those in the other months. (B) Similar
analyses in the rate of change of the noise-to-signal of the temperature of the
right wrist single out the month of May as a separate cluster from all other
readings. Lower changes in the noise level and overall higher values of the
parameter indicating the shape of the distribution were registered in May, as

compared to the other months. (C) The rates of change in the shape of the
distributions characterizing the noise-to-signal levels of the acceleration as a
function of the temperature were systematic during the month of May and
clustered apart from the readings of the other months. (D) The stochastic
signatures of the rates of change in the noise-to-signal levels of the acceleration
expressed as a function of those of the temperature also clustered apart in May
from the rest of the recordings in other months. Inset shows the estimated
Gamma statistics for the rate of change in the shape of the Gamma distribution
corresponding to the acceleration parameters with systematic increases in the
variability of the maximal deviation from the average acceleration with increases
in the mean value of this parameter.

motions as a function of surface skin temperature using wearable
sensors. The statistical metrics introduced here may permit the
continuous longitudinal assessment of patients as they move and
as they undergo changes in physiological states. We have used a
particular case of a patient with severe brain trauma to illustrate
the methods. Yet these methods can be generally extended
and used in other patients as well. These methods do not
assume population statistics or expected values of the parameters
of interest. Instead, they empirically estimate the probability
distributions most likely underlying the changes in motion and

physiologically relevant parameters registered in tandem within
each daily session and longitudinally over months. The methods
focus on the rates of change of these parameters’ statistics along
a continuum.

A surprising revelation from these analyses was that not
all motions recorded by wearable sensors were physiologically
relevant. We found a great deal of instrumentation noise that we
had to separate from the signal in order to perform appropriate
analyses on the motion data. This is important in light of the
general use of wearable sensors in the market to track activity,
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wellness and fitness. Here we found high levels of noise-to-
signal ratio in the acceleration data under unrealistic regimes
of skin surface temperature. We were able to further use the
surface skin temperature as a natural filter to help us separate the
random rates of change of the noise levels in the motion from
systematic rates of change. We also distinguished systematic
from random changes in the shape of the distributions of these
parameters.

These data analyses suggest that in general more motion
registered by accelerometers does not imply that there is
more neural control of movements. The registration of higher
acceleration values should not be associated with more volitional
control or intent in the motions. Instead, one should separate
the noisy data and assess the levels of reliable and systematic
changes in the motion data with low noise-to-signal ratio. In
these sensors a layer of noise, particularly at low levels of
temperature rendered irrelevant a large portion of high levels
of motions registered by the tri-axial linear accelerometers. The
lower temperature regimes coincided with motion data that was
predominantly noisy. This was consistently the case across all
sessions of recordings.

We note here that Newtonian mechanics concerned
with acceleration estimations has no known relation
to thermodynamics. The laws of mechanics governing
physical motions were derived for inanimate objects and
rigid bodies, rather than for biological bodies in motion
undergoing physiological changes that impact the motions’
variability. Such changes are guided by feedback from
sensory nerves conducting information from the peripheral
to the central nervous system about pain, temperature and
motion/touch/pressure. Although the field of neural control
of movement employs primarily Newtonian mechanics in
the analyses and modelings of behavioral states (Shadmehr
and Wise, 2005), it may be important to introduce new ways
of examining motion data in tandem with physiologically
relevant measurements (such as temperature, heartbeat,
breathing patterns, etc.) of use in clinical settings. An approach
such as the one introduced here would then enable us to
better understand the nature of motion data that is also
governed by a nervous system under volitional control, rather
than exclusively described by the physical laws of motion.
The motor output variability registered in tandem with the
surface skin temperature helped us unambiguously distinguish
random (spontaneous) patterns from systematic, reorganized
(predictable) patterns. We may have characterized a degree of
volition in the dominant wrist as the patient repeatedly touched
her abdomen during the contractions preceding the day of the
C-section.

While analyses and modeling of motion data is the
exclusive focus of the field of neural control of movements
without regards of physiological data, the medical field follows
a complementary approach to patient assessment. In the
clinical settings, measurements of physiological data such as
temperature, breathing, heartbeat, blood pressure, etc. are
routinely taken from the patient. These measurements are taken
in isolation, without considering possible relationships to bodily
motion patterns.

The human body is in constant motion in tandem with
other physiological patterns of the person. Such patterns
fluctuate and change over time. In clinical settings the absolute
values of the parameters of interest are often registered,
but very little is said about the trends and fluctuations
of their rates of change over time. Here we have shown
that the rates of change of those parameters over time
contained information predictive of a relevant upcoming event.
In particular we were able to blindly identify May as the
month of highest relevance in these longitudinal data sets.
A dramatic and sharp change in the patterns of motion
and surface skin temperature of this patient’s dominant hand
manifested in May preceding the birth of her baby boy by
C-section.

These metrics may be of use to monitor critical events
during pregnancy and foretell (and possibly prevent) potential
problems. It is possible that we may have even captured and
characterized here in this patient the patterns of noise-to-signal
corresponding to the painful contractions that are known to
precede birth, as her hand moved to her abdominal area. It
will be interesting to repeat this study systematically in a large
number of pregnant women of different ages. We would be
able to characterize with unprecedented precision the risk of
miscarriage as a function of age, as well as various individualized
physiological scales of painful contractions as a function of
temperature and motion profiles, among other symptoms during
pregnancy.

The critical task of characterizing longitudinally the
individualized profiles of various physiological stages of
pregnancy in an objective, non-invasive manner would be highly
feasible now using our new analytics in tandem with a broad
range of wearable sensors available in the market. The current
market offers sensors that capture heart rate variability, electro
dermal activities, and blood-volume levels, among others. The
various outcomes of these biomarkers are currently examined
in isolation during visits to the clinic. These new analytics offer
the possibility of integrating the physiological signals with the
motion’s temporal profiles to provide a multi-dimensional
profile tractable longitudinally at home and during the visits to
the clinic. Pregnant patients increase their visits to the clinicians
during the last trimester and other techniques are used to
monitor their progress (Reece and Hobbins, 2007). It would be
ideal to team up with an antenatal and perinatal expert to be
able to compare and combine the methods presented here with
currently used neuroimaging techniques, ultrasound among
others.

We also suggest that in the future by combining the motion
and the physiological measures (registered in tandem) we could
better and continuously monitor patients with post trauma to
the brain (independent of the type of trauma). We could better
understand the course of individual changes in their motions
and body physiology as the patient receives therapies and as the
patient undergoes drug treatments. We could find new ways to
objectively track the progress of patients as they recover from
brain trauma, identify critical points along the evolution of the
person and assess the effectiveness of treatments in non-invasive
ways.We could do all of this continuously at home or in the clinic
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by simply using off-the-shelf wearable sensing technology
broadly available today.

In summary these sensor’s physiological data were able to
blindly forecast what without a doubt would be considered
the most important day in a woman’s biological lifecycle.
They did so even under a coma state. The information
revealed by this new analytical technology could be potentially
of use to individually track the longitudinal patterns of
other patients with post trauma to the brain and tailor

their treatments accordingly. These new metrics may
bring us a step closer towards true personalized medical
practices.
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Abstract—Accurate estimations of variability in multiple
donnings of sensor suites may aid algorithm development for
wearable motion capture systems that make use of Inertial
Measurement Units (IMUs). The accuracy of any algorithm
incorporating these sensors is limited by the accuracy of the
sensor to segment calibration. When either sensor placement
(use by a non-expert) or limb motion during calibration (natural
human variation) vary, the estimations are affected. In this
study, 22 participants self-placed IMUs on three locations and
performed six prescribed motions during each of these five
donnings. For absolute placement of the sensors, the chest location
mean was less than the forearm, which was less than the bicep.
For sensor orientation, the opposite ordering of location was
found. No difference in sensor rotation was found between the
bicep and forearm, but both locations differed from the chest
location. Results were analyzed at the beginning of prescribed
motions.

Keywords—Variability, Inertial Measurement Unit, Sensor
Suites, Donning, Doffing.

I. INTRODUCTION

According to the 2014 IHS MEMS & Sensors for Wearable
Report [1], consumers will be wearing close to 500 million
sensors by 2019. This estimate includes devices for motion
measurement, user interfaces, and health industry products,
with an emphasis on personal devices that are used daily by
non-experts. A necessary requirement to enable such portable
and continually-used consumer systems that are reliable, self-
sufficient, and require minimal-logistical needs is to understand
and appropriately incorporate the variability of humans during
repeated use in the system architecture. This study specifically
considers wearable technology systems for estimating human
motion.

A common method for estimating rigid body motion is
the use of Inertial Measurement Units (IMUs), which are
small electronic sensor suites of accelerometers, rate gyros,
and magnetometers that measure linear acceleration, angular
velocity, and local magnetic field. Compared to other motion
capture technologies like optical, image-based, and magnetic,
IMUs provide an inexpensive and portable solution. Recent
technological advances have improved the energy consump-
tion, cost, and availability of these sensors [2]. Whereas optical

and acoustic devices require a source emission to track objects,
IMUs do not, which simplifies system integration and increases
portability.

Despite these benefits, IMUs have disadvantages. Ac-
celerometers measure the sum of linear acceleration and grav-
ity. In a quasi-static movement, linear acceleration can be
neglected. In a dynamic situation, it is difficult to decouple
the two measures and may lead to difficulty calculating attitude
accurately [3]. Angular velocity measurements by gyroscopes
are prone to sensor drift over time, and magnetometers are sus-
ceptible and influenced by ferrous material. With an estimated
orientation for a given IMU, there is still a need to calibrate
individual sensors to the global body coordinate system every
time the sensor suite is donned.

To overcome these individual sensor disadvantages, fusion
techniques have been implemented. Starting in 1970, Bortz [4]
computed sensor orientation by integrating angular velocity.
Since then, others have extended fusion methods and examined
Kalman Filter algorithms to obtain dynamic orientations of
IMUs by implementing an Euler angle representation [5][6].
To avoid singularities in Euler angles and to limit the need for
linearizing, quaternion-based Extended Kalman Filters (EKF)
have been implemented [7][8], although this method still
requires an embedded physical model linearization and is
limited to slow motions due to the computation time.

Results of the use of IMUs on robotic hinges rather than
on humans [9] show that if accelerometers can be placed
exactly on the joint center, a simpler algorithm (common-mode
rejection algorithm) can accurately predict joint-angles without
the need for computationally heavy filters. The need for the
IMU to be placed exactly on the joint center indicates that the
variability of sensor placement by humans during repeated use
may be a large cause of motion estimation errors. As Luinge
et al. [10] also conclude, the accuracy of any method is limited
by the accuracy of the sensor to segment calibration.

IMU calibration can be either static or dynamic (e.g. [11],
[12], respectively). The most common pose held for a static
calibration is a “T” pose in which both arms are held straight
out to each side. Dynamic calibration motions vary but may
include simple one degree of freedom motions for relevant



segments. Wu et al. [13] developed a self-calibration process
incorporating sensor misplacement for in-plane orientation
misalignment, but it was not able to aid misalignment in
rotations along local body curvature. All these calibrations
relate the local coordinate system of the IMU to the global
placement of the IMU on the body. Calibration poses increase
preparation time for a system and are also only as accurate as
the ability of a human to perform a specified motion.

The literature suggests that a motion capture system using
IMUs where both sensor placement and calibration poses
and motions are exact and repeatable provide good estimates
of the system state. However, when either sensor placement
(non-expert) or limb motion during calibration (natural human
variation) vary, the estimations are affected. This study will
test the hypotheses that initial placement (defined as distance,
orientation, and rotation) of IMUs located at the chest, bicep,
and forearm by a non-expert are affected by (1) the number
of times the sensors are donned, (2) the type of functional
motions performed, and (3) the location of the IMU. Here,
the uncertainty in IMU placement when donned by a non-
expert user is characterized. These data will aid in algorithm
development to minimize and compensate for the donning and
doffing variability measured in relevant motions.

II. METHODS

A. Participants

The study included 22 subjects (6 female) aged 23.3 ± 3.0
years. The study was carried out in the Man-Vehicle Labora-
tory within the Department of Aeronautics and Astronautics
at the Massachusetts Institute of Technology. Procedures were
approved by the MIT Committee on the Use of Humans as
Experimental Subjects (COUHES) and participants provided
written consent. Participants received a $20 gift card as com-
pensation.

B. Experimental Protocol

Participants were instructed to self-place four IMUs
(APDM, Opal 425) during the study to analyze the variability
in placement on the upper body for two mounting configu-
rations, straps and garment based. In this paper, the straps
mounting configuration is highlighted.

Prior to data collection, researchers placed 24 passive re-
flective markers (12 9.5mm diameter markers on the participant
and 12 6.4 mm diameter markers on the IMUs) to permit
standard motion capture analysis (Vicon 10-camera Bonita
system) (Fig. 1).

For data collection, all subjects were asked to perform five
donnings and doffings of each of the two IMU configurations.
During each donning, one calibration pose was performed
prior to the six predetermined motions (Fig. 2) that were
performed randomly a total of six times each (total of 36
motions during each donning). The motions were randomized
to prevent learning effects.

An instructional donning was performed during the first
mounting configuration, in which all straps were adjusted for
fit and comfort using the participant’s feedback. This instruc-
tional donning was purely for fit and none of the predetermined
motions were performed. The participants were also fitted for

Fig. 1: Recommended sensor placement (boxes on straps)
and researcher placed optical motion capture markers. Sensor
placement labelling scheme is shown in the bottom of the
figure.

fabric arm braces, placed on the right forearm and bicep, to
prevent subjects from using the imprint of the IMU on the
skin as a reference for placement during repeated donnings.
The braces were not removed during the multiple donnings of
the IMUs. During the garment fit, the second configuration, a
trace of the silhouette of the participant was created and used
as a guide to participants when they repeated the calibration
pose, limiting variability. The strap and garment configurations
were not resized after this instructional donning.

C. Data Acquisition

1) Donning Configuration: The IMU strap configuration
utilized Velcro straps (APDM) to independently mount the four
IMUs (Fig. 1). One single hoop strap was used for each IMU
placed on the hand, forearm, and bicep. A chest strap with two
connection points, two snap buttons on one side of the IMU,
and hoops for each arm was used to secure an IMU to the
chest.

2) Motion Capture: Vicon data were sampled at 120 Hz.
The IMU data were sampled at 128 Hz and wirelessly logged
in real-time and synchronized to enable comparison of the
optical and inertial data. In addition, all participants were video
recorded during the trials.

3) Motions: Six predetermined motions were described to
the participants prior to data collection through text and visual
descriptions (Fig. 2). The motions were chosen to include
a range of single and multiple (more than one) degrees of
freedom. Motions included elbow, wrist, and shoulder flexion



Fig. 2: Predetermined motions showing relevant degrees of freedom (A = elbow flexion and extension; B = forearm pronation
and supination; C = wrist ulnar and radial deviation, wrist flexion and extension; D = Lifting arm upwards, which included
elbow flexion and extension, shoulder flexion and extension; E = Lifting arm forward and to the side, which included shoulder
abduction, flexion and rotation; F = Lifting arm forward from a behind the back starting position, which included wrist, elbow,
and shoulder flexion and extension, shoulder abduction, and forearm pronation and supination). Motions have numbered figures
to indicate sequence of poses. Subjects performed the sequence in a motion, and then returned to the first pose in the sequence.
Target Apparatus only shown in Motion C but was used by four motions (A * indicates the motion used a guide).

and extension; forearm pronation and supination; wrist ulnar
and radial deviation; and shoulder abduction and rotation. The
visual descriptions of the motions were within eye sight of
the participants during data gathering for reference. During 4
of the 6 motions, a target apparatus was used to determine
the starting and ending positions (Fig. 2). The apparatus was
created out of 3/4” PVC pipe and consisted of two poles at
90 degrees, one vertical at arms reach of the participant and
one horizontal above the head of the participant. The vertical
bar had a red target at shoulder height. The horizontal bar had
a purple target above the participant, at a height just above
the reach of the participant. The apparatus was adjusted to the
height of each participant and was not adjusted during data
collection.

D. Data Processing

Vicon Nexus software was used to reconstruct, label mark-
ers, fill in gaps, and export the optical data. A Biomecahnical
Toolkit was used to import these data to Matlab. In-house code
was used to calculate IMU position, orientation, and rotation.
Here, data for IMUs 1, 2, and 3 are presented.

As as shown in Fig. 1, each IMU had a triad of markers
labeled A, B, and C corresponding to the top left, top right,
and bottom left markers, respectively. The centroid of each
IMU was defined as the midpoint between markers B and C.
IMU position was defined as the distance between the IMU’s
centroid and a pre-specified body-fixed marker for each IMU
(Fig. 3). IMU orientation was defined as the angle (in degrees)
the IMU had rotated along the plane of initial placement. A
vector from the IMU centroid to the pre-specified body-fixed
marker defined zero degrees. The angle between this vector,
and a vector created from marker C to A on each IMU, defined
the IMU orientation (Fig. 3).

IMU rotation was defined as the angle about the local body
curvature (Torso, bicep, and forearm for IMU 1, 2, and 3,
respectively). IMU rotation was calculated as the dot product
of a normal vector to the IMU plane and a normal vector
created from surrounding body-fixed markers (Fig. 3). An
example of IMU 2 rotation being calculated can be found in
Fig. 4. IMU 1, 2, and 3 distance, orientation, and rotation were
scaled by torso, bicep, and forearm length, respectively, for
each subject. These normalized values then had the overall



Fig. 3: Definition of the three IMU measurements for each
of the three IMUs and associated markers. IMUs had three
markers, labeled A, B, and C, used to define the local IMU
coordinate system. Each subfigure shows the surrounding
markers used in the IMU’s measurement calculation.

Fig. 4: Example of how rotation is calculated on IMU 2. This
view is from the elbow looking towards the shoulder. The
rotation angle is the angle between the IMU normal vector
and the surrounding body markers’ normal vector. From this
view, markers IM2A and RSHO are masked.

means by IMU number subtracted such that comparisons
between IMUs could be made.

E. Statistical Analysis

Data are presented as scaled IMU distance, orientation,
and rotation. ANOVAs were performed to examine the main
and interaction effects of the independent variables (loca-
tion, donning, and motion). A p value <0.05 was used to
indicate statistical significance. The Tukey Difference test
and the Student-Newman-Keuls test were used for post-hoc
comparisons. Levene’s test was used to assess the equality of
variances. SYSTAT software was used for calculations.

III. RESULTS

A three-factor ANOVA was conducted for each depen-
dent variable (distance, orientation, and rotation) to test for
main and interaction effects of location, donning, and motion.
Significant effects were found for all main effects, two-way,
and three-way interactions (p <0.0005) for all three IMU
dependent measurements.

Post-hoc pairwise comparisons of the IMU location using
Tukey’s Difference Test showed significant differences be-
tween all three locations for IMU distance (p <0.0005). For
IMU orientation, significant differences were found between
locations 1 and 2 (p <0.0005), and locations 1 and 3 (p
<0.0005), but not between locations 2 and 3 (p = 0.554).
Similarly, for IMU rotation, significant differences were found
between locations 1 and 2 (p <0.0005), and locations 1 and
3 (p <0.0005), but not for locations 2 and 3 (p = 0.837).
Pairwise comparisons for donning showed no significant dif-
ference between donnings 1 and 3 (p = 0.225), 1 and 5 (p
= 0.485), and 3 and 5 (p = 0.995). Donnings 2 and 4 were
significantly different from the other donnings (p <0.0005).
Student-Newman-Keuls post-hoc tests were used to group
similar motions. For IMU distance and orientation, there were
3 groupings: motion A, motions B and C, and motions D,
E, and F. For IMU rotation, there were also three groupings:
motion B, motions A and C, and motions D, E, and F.

Since no consistent trend in any dependent variable was
found with consecutive donnings, the donnings were pooled
and interaction effects of motion with location were analyzed.
Fig. 5 shows the significant difference within motions for all
IMUs.

Levene’s test showed significant differences in the vari-
ances for the distance (p <0.0005) and orientation (p <0.0005)
for all three IMU locations (Table I). For distance, location 2
was the most variable and location 1 was the least variable. For
orientation, location 1 was the most variable while location 2
was the least variable. There was no significant difference in
rotation variance between locations 2 and 3.

IV. DISCUSSION

This study aimed to characterize the uncertainty in IMU
distance, orientation, and rotation during donning by a non-
expert. Participants performed five donnings of self-placed
IMUs on the chest, bicep, and forearm. Within each donning,
participants performed six repetitions each of six prescribed
motions. This study tested the hypotheses that initial distance,



Fig. 5: Shown are the within motion interaction effects between location. Additional significant effects across motions are not
shown. Main effect groupings are shown in horizontal bars above graphs in the order of group means from smallest (G1) to
largest (G3). Bars show one standard deviation from the mean. Above each graph, asterisks (*) indicate significant difference
according to Tukey’s Difference Test (p <0.05).

TABLE I: Normalized and mean shifted location variances for
all independent variables

Variable
Variance

IMU 1 IMU 2 IMU 3

Distance (mm/mm) 0.0038 ?� 0.0172 ?/ 0.0119 �/
Orientation (degrees/mm) 0.0646 ?� 0.0024 ?/ 0.0044 �/
Rotation (degrees/mm) 5.5×10-7?� 1.24×10-5? 1.21×10-5�

?, �, and / indicate significance (p <0.0005) between IMUs
1 and 2, 1 and 3, and 2 and 3, respectively.

orientation, and rotation of IMUs are affected by (1) the
number of times the sensors are donned, (2) the type of
functional motions performed, and (3) the location of the IMU.

While hypothesis 1 was confirmed, that there were sig-
nificant main effects of donning, no consistent trend in any
dependent variable with consecutive donnings were found.
This implies that multiple donnings do not show learning
effects. For initial placement, multiple donnings did not lead
to more or less accurate placement.

Hypothesis 2 suggested that prescribed motions may affect
the dependent measurements. Although motions A and B
had the same starting position, the dependent measures were
significantly different from each other. Motions D, E, and
F were consistently grouped together for all IMU dependent
variables. These three motions had different starting positions
than motions A, B, and C, but similar starting positions to
each other. It is clear that the starting point has an effect on
the dependent variables. Relative placements are important be-
cause the relationship between the local and global coordinate
system is defined in the calibration pose.

Hypothesis 3 suggests that location of IMU may affect
the dependent variables. IMU distance showed significant
differences across all locations, with the group mean lowest
for location 1. This is consistent as the torso enabled the most
precise placement of the IMU centroid due to having more
constraints than the straps on IMUs 2 and 3 (Fig. 1). IMU 1
orientation was also found to be significantly different from

IMUs 2 and 3. The similarity in orientation between IMUs
2 and 3 is consistent with the strap configurations. For the
attachment method evaluated, the location of the IMU had
an effect on IMU placement. There is a component of IMU
placement that may be due to the user’s natural placement
variability, but there is also a portion that can be influenced
by the strap type.

As a component may be attributed to strap type, it is impor-
tant to consider how the straps were implemented. The straps
associated with IMU 1 were constrained by four incoming
straps with two connection points while IMUs 2 and 3 had
two incoming straps and two connection points (Fig. 1). The
loop on IMUs 2 and 3 that secured the IMU to the bicep and
forearm allowed for more freedom of movement along the limb
as well as movement along the local body curvature. In order to
don these straps, the Velcro was looped through a buckle that
was the same width as the IMU. This fixture limited changes
in orientation of the IMU because the Velcro was as wide
as the buckle, causing the IMU to align with the strap more
consistently. The strap on IMU 1 was donned by looping each
arm (much like a sweater is put on) and then snapping two
buttons on one side of the IMU. Since the strap lengths were
not changed, the chest strap was expected to provide consistent
placement of the IMU centroid and to limit rotation about
the torso. However, each of the two buttons had snaps that
allowed some pivot, and thus small changes in strap location
on the shoulder and under the armpit induced changes in IMU
orientation. The data were consistent with these strap types
and showed IMU 1 variance to be highest for orientation, but
lowest for distance and rotation as compared to the other two
IMUs.

This study made use of strap mounting configurations for
the IMUs and understands that not all sensors are mounted
in this manner. These results, however, can inform sensor
attachment design. While an arm brace was used to limit
the imprint on the skin, participants still had proprioceptive
feedback which could aid in re-alignment of the IMU.

All these results were analyzed at the initial time point
of the six motions studied. However, calibrations affect es-
timations throughout a time trajectory so it is important to



study how these relationships change throughout the entire
motion. When the data are studied across time points, dif-
ferent similarity groupings may arise due to the changes in
orientation of the limb. Future work will present the effect of
IMU distance, orientation, and rotation changes across each
motion. The data collected on the garment, which has fewer
attachments points, will also be analyzed. From the current
analysis, the hypothesis is that garments, which have less
embedded structure, may show increased placement variability.
Next steps are to understand how the effect size of these
distance, orientation, and rotation variations affect motion
estimations using current algorithms.

V. CONCLUSION

The accuracy of rigid body motion estimation is dependent
on sensor placement and calibration. Therefore, characteriza-
tion of sensor placement is needed to aid in development of
algorithms and sensor attachment design for wearable motion
capture systems. The results presented in this study examined
the effects of self-donning on IMU distance, orientation, and
rotation at the chest, bicep, and forearm. This study made use
of off-the-shelf strap mounting configurations for the IMUs
and found that the chest mount varied the least in initial
placement in terms of distance and rotation, but its orientation
varied more than when the IMUs were placed on the bicep
and forearm.

This research was the first to characterize the way users
vary placement of sensors on the human body. Relating
mounting locations, motions, and number of donnings to IMU
placement provides data to assist in designs for housing sensors
and can aid the development of quick don and doff sensor
suites that can be reliably used by a non-expert for real-time
decision making.
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